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ABSTRACT 

This study investigates the stability properties of impulsive functional differential inclusions with finite delays, 

a class of mathematical models that encapsulate dynamic systems influenced by sudden changes (impulses) 

and time delays in their state variables. We begin by establishing a comprehensive framework for analyzing 

such inclusions, incorporating the classical theory of functional differential equations and the modern theory of 

inclusions. By employing advanced mathematical tools, including Lyapunov functions and the Razumikhin 

technique, uniform stability and uniform asymptotic stability of impulsive functional differential inclusions are 

obtained. We derive sufficient conditions for the stability of solutions under varying impulse magnitudes and 

delay intervals. The interplay between impulsive effects and delayed responses is explored, revealing critical 

insights into how these factors influence the overall stability of the system. Our findings are further illustrated 

through several examples, demonstrating the practical implications of the theoretical results. This research not 

only contributes to the existing literature on impulsive differential inclusions but also provides valuable 

guidance for the design and analysis of complex dynamic systems in fields such as control theory, biology, and 

engineering. 
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INTRODUCTION 

Mathematical modeling through stability investigations of 

impulsive functional differential inclusions with finite delays 

stands as a leading field of research considering dynamic 

systems with time-dependent sudden changes. The review 

analyzes academic research to present essential discoveries 

about stability features within systems that exhibit finite 

delays through impulsive functional differential inclusions. 

Traditional difference equations evolve into impulsive 

functional differential equations by enabling finite time 

changes at predetermined points during the system. Such 

modeling method enables better representation of real 

systems like population control models and economic 

systems. The fundamental principles of impulsive differential 

equations were first established by Jack and Huseyin (1991) 

through their research which centered on solution existence, 

uniqueness and their continuous dependence. 

When dynamical systems employ finite delays then the 

prediction of their future state becomes more complicated 

because future states depend upon current states and 

preceding states. Bainov and Simeonov (1993) dedicated their 

research to functional differential equations with delays thus 

establishing fundamental results about stability and 

boundedness. Stability criteria with delay considerations were 

introduced as fundamental conditions by the authors with 

emphasis on how delays affect solution behavior. Stability 

investigations of impulsive functional differential inclusions 

use both Lyapunov direct method and fixed-point theorems 

for analysis. During the year 1892 Lyapunov initiated a study 

of dynamical systems equilibrium stability through his 

stability analysis methods. Stability methods from Lyapunov 

have been adapted through the research of Stanova  and  

Stamov(2014) ,and Lu et al (2015) to include impulsive 

effects as well as time delays. The research of Zhang & Sun 

(2006) led to developing sufficient stability conditions for 

asymptotic stability, so solutions remain robust against 

perturbations. 

The analysis of impulsive functional differential inclusions 

depends heavily on the application of Banach and Schauder 

fixed-point theorems together with other fixed-point 

theorems. Benchora et al (2006) used these theorems to 

develop existence results for differential inclusion solutions 

which created methods to determine stability properties. The 

authors demonstrate that both compactness and continuity 

remain key components for impulsive systems within their 

approach. 

The research on stable impulsive functional differential 

inclusions with finite delays generates important 

consequences for multiple academic fields. Smith et al. (2018) 

and other biological researchers utilize these concepts to 

analyze population dynamics with emphasis on how 

impulsive harvesting strategies and environmental delays 

affect species populations. According to their research it is 

essential to incorporate impulsive effects together with time 

delays when developing ecological models. 

The recent scholarly research aims to enhance stability criteria 

for impulsive functional differential inclusions with finite 

delays to extend their modeling scope. Zhang and Liu (2020) 

created new methods for stability assessment that account for 

nonlinearities in systems that experiences multiple impulsive 

triggers and various delay patterns. In many situations, 

analytic solution are almost impossible; Egbetade and 

Abimbola (2025) attempted to use the Tau method in finding 

a numerical solutionwith the estimation of the error term 

Studies on impulsive functional differential systems must 

now emphasize the development of models that combine 

stochastic impulses with hybrid dynamic components and 

multiple state dimensions. Any investigations into stability 

behavior in impulsive systems require numerical methods 

combined with simulations to both confirm theoretical 

findings and disclose practical system behavior. 

The research domain of impulsive functional differential 

inclusions with finite delays continues to develop actively into 

a diverse field of investigation regarding stability properties. 

Various scientific and engineering disciplines face essential 
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implications from the combination of impulsive effects with 

time delays together with stability analysis techniques. The 

advancement of understanding complex dynamic systems in 

real-world applications depends on continuous research 

activities at the intersection between impulsive effects and 

functional differential inclusions with finite delays. 

 

MATERIALS AND METHODS 

Preliminaries 

The domain consists of real ℝ together with ℝ+while ℝ𝑛 

represents an n-dimensional Euclidean norm. The space 

contains elements from real numbers which use the Euclidean 

norm as its distance measurement. The set of positive real 

numbers is denoted byℤ+ i.e.ℤ+ = { 1, 2,…}.  For any 

interval 𝐽 ⊆  ℝ𝑘 , (1 ≤ 𝑘 ≤ 𝑛),  
𝑙𝑒𝑡 𝐶(𝐽, 𝑆) = {𝜓: 𝐽 → 𝑆 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠} 𝑎𝑛𝑑 

 𝑃𝐶(𝐽, 𝑆) is continuous everywhere except at finite number of 

points t at which    

𝜓(𝑡+),   𝜓(𝑡−) 𝑒𝑥𝑖𝑠𝑡 𝑎𝑛𝑑  𝜓(𝑡+) =  𝜓(𝑡)}   ,  
Functional differential equations with impulse of the form 

{

𝑦′(𝑡)𝜖𝐹(𝑡, 𝑦𝑡)𝑎. 𝑒𝑡𝜖𝐽 ∶=  [0, 𝑇], 𝑡 ≠ 𝑡𝑘

∆𝑦|𝑡=𝑡𝑘
= 𝑦(𝑡𝑘) − 𝑦(𝑡𝑘

−) =  𝐼𝑘(𝑡𝑘, 𝑦(𝑡𝑘
−)), 𝑘 = 1,2, . . , 𝑛

𝑦(𝑡) =  𝜙(𝑡),     − 𝑟 ≤ 𝑡 ≤ 0

 (1) 

Where 𝜙 ∈ ℂ, 𝑓 ∈ 𝐶([𝑡𝑘−1, 𝑡𝑘)]𝑋 ℂ, ℝ𝑛 ) , 𝑓(𝑡, 0) =
0 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑃𝐶([−𝑟, 0], ℝ𝑛) 

Assuming𝑦(. ): [𝛼, +∞] → 𝑆 ,  for every t ≥ 𝑡0we represent 

by 𝑦𝑡 the member in  ℂ 

described by 𝑦𝑡(𝑠) = 𝑦(𝑡 + 𝑠), 𝑠 ∈ [−𝑟, 0].Describe PCB = 

[𝜑 𝜖 ℂ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜑 ] is bounded; 

 for 𝜑 ∈ PCB, the norm of𝜑 is described by 

||𝜑|| =  𝑠𝑢𝑝𝛼≤𝜙≤0|𝜑(0)| 

 Describe 𝑃𝐶𝐵𝛿 = [𝜑 ∈ 𝑃𝐶𝐵: ||𝜑||  ≤ 𝛿] 

𝐼𝑘(𝑡, 𝑥) ∈ 𝐶([0, 𝑇)𝑋ℝ𝑛, ℝ𝑛)𝑎𝑛𝑑𝐼𝑘(𝑡, 0) = 0, 𝑘 = 1, … , 𝑛 

 

Description 1: Function U: [0, 𝑇]𝑋 ℝ   →   ℝ is classified as 

a member of 𝑣0 if 

U is continuous on every member of the sets 
([𝑡𝑘−1, 𝑡𝑘)]𝑋 ℂ and 

lim
(𝑡,𝜑)→(𝑡𝑘

−,𝜑)
𝑈(𝑡, 𝜑) = 𝑈(𝑡𝑘

−, 𝜑) exists; 

(ii) U(t, x) is Lipschitzian locally in y and U(t, 0) is equivalent 

to zero 

 

Description 2: Assuming 𝑣 ∈  𝑣0, considering any(𝑡, 𝜑)  ∈
([𝑡𝑘−1, 𝑡𝑘)]𝑋 ℂ , the upper right-hand (urh) Dini derivative of 

U with the solution of equation (1) is described by 

𝐷+𝑈(𝑡, 𝜑(0)) =  lim
ℎ →0+

sup [𝑈(𝑡 + ℎ), 𝜑(0) + ℎ𝑓(𝑡, 𝜑) −

𝑣(𝑡, 𝜑(0)  

 

Description 3. The solution x = 0 of equation (1) is said to be 

(H1) stable, if we take any 𝜎 ≥  𝑡0 𝑎𝑛𝑑 𝜀 >
0, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝛿 =  𝛿(𝜀, 𝜎) > 0 in such away that 𝜙 𝜖 𝑃𝐶𝐵𝛿  

Means that |𝑥(𝑡, 𝜎, 𝜙)| < 𝜀,    𝑡 ≥ 𝜎 

(H2) uniformly stable, if considering the 𝛿 in (H1) to be 

independent on 𝜎 ; 

(H3) uniformly asymptotically stable, if (H2) is affirmed and 

we now have some zero in such away that for 

any 𝜀 > 0 we then have some 𝑇 = 𝑇(𝜀, 𝛿) > 0 in such a way 

that  𝜙 𝜖 𝑃𝐶𝐵𝛿  

means that |𝑥(𝑡, 𝜎, 𝜙)| < 𝜀, 𝑡 ≥ 𝜎 + 𝑇 

In addition, we describe the following classes of functions for 

later use: 

𝐾1 = {𝑎 ∈ 𝐶(ℝ+, ℝ+)|𝑎(0) = 0 𝑎𝑛𝑑 𝑎(𝑠) > 0 𝑓𝑜𝑟  𝑠 > 0 

𝐾2 = {𝑎 ∈ 𝐶(ℝ+, ℝ+)|𝑎∈𝐾1
𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑛𝑜𝑛𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑛  𝑠 

 

 

Stability results 

Now, in this section, we shall consider our stability result 

 

Theorem 1. Let's say that we have some functions, namely 

Ω1 , Ω2 ∈ K2, and P, G ∈ K1 ;   

We  also have  q ∈ C(ℝ+, ℝ+),  g ∈ P C(ℝ+, ℝ+), and U(t, 

x)∈ 𝑣0 and constants 𝛽𝑘 ≥ 0, k∈  ℤ+, in such away that 

i. Ω1(|x|) ≤ U(t, x) ≤ Ω2 (|x|),   and (t, x) ∈ [𝑡0, T] x S(𝜌); 

ii. For each (𝑡𝑘, 𝜓) ∈  ℝ+ x  PC([ɑ, 0], S(𝜌1)), 

U(𝑡𝑘, 𝜓(0) + 𝐼𝑘(𝑡𝑘, 𝜓)) -  U(𝑡𝑘
−1, 𝜓(0)) ≤ 𝛽𝑘(𝑡𝑘

−1, 𝜓(0)), 

Where ∑ 𝛽𝑘
∞
𝑘=1 =̇ 𝛽 <  ∞;   

iii. For any 𝜎 ≥  𝑡0and 𝜓  that is in a piecewise continuous 

interval ([ɑ, 0], S(𝜌)), if piecewise set P(U(t, 𝜓(0))) > 

U(t+𝜃, 𝜓(0)) for Max{ɑ, - q(U(t))} ≤ 𝜃 ≤ 0, then 

𝐷+U(t, 𝜓(0)) ≤ - g(t)G(U(t, 𝜓(0))), t ∈ [𝑡𝑘−1, 𝑡𝑘), k ∈ ℤ+, 

Where P(s) > s for s > 0; 

iv. Let's assume we have 𝜀2> 𝜀1> 0, then there exists a ƞ =
 ƞ(𝜀1, 𝜀2) > 0 in such a way that for any A > 0  implies 

that  

∫ 𝑔(𝑡)𝑑𝑡 >
(1 + 𝛽)Ω2(𝜀2)

𝑀

𝐴+𝜂

𝐴

 

Such that M = 𝑖𝑛𝑓0.5Ω1(𝜀1)≤𝑠≤Ω2(𝜀2)G(s) 

Then the zero solution of (I) is uniformly asymptotically 

stable 

Proof. The first step is to establish that the zero solution of (I) 

is uniformly stable. 

Given any 𝜀 ∈  (0, 𝜌1),  one may select a 𝛿 > 0in such away 

that Ω2(𝛿) ≤  𝛽∗−1Ω1(𝜀), in return 

𝛽∗ = ∏ (1 + 𝛽𝑘) + 1∞
𝑘=1 . Given𝜎 ≥ 𝑡0 and ∅ ∈ 𝑃𝐶𝐵𝛿 , 

assume  x(t) = x(t, 𝜎, ∅) be a solution of (1) along the path 

(𝜎, ∅), 

Notice that ∅ ∈ 𝑃𝐶𝐵𝛿 ,  obviously 

Ω1(|x|) ≤ U(t, x(t)) ≤ Ω2(𝛿) ≤ 𝛽∗−1Ω1(𝜀) < Ω1(𝜀), 𝜎 +ɑ ≤ t 

≤ 𝜎 

Which means that |x(t)| < 𝜌1, t ∈ [ 𝜎 +ɑ, 𝜎] 

Let assume we have𝜎 ∈ [𝑡𝑚−1, 𝑡𝑚) for certain m ∈ ℤ+, then 

we can go ahead to prove for t ∈ [ 𝜎 + 𝑡𝑚) 

U(t, x(t)) ≤  𝛽∗−1Ω1(𝜀).   (2) 

Let say this is false, then we have some t ∈ [ 𝜎 + 𝑡𝑚) in such 

a way that  

U(t, x(t)) > 𝛽∗−1Ω1(𝜀). 

Define  

𝑡∗= inf{ t ∈ [ 𝜎 + 𝑡𝑚), U(t, x(t)) > 𝛽∗−1Ω1(𝜀)}, 

Obviously,𝑡∗ ≥ 𝜎, U(𝑡∗, 𝑥(𝑡∗)) = 𝛽∗−1Ω1(𝜀) and U(t, x(t)) >
𝛽∗−1Ω1(𝜀), t ∈ [𝜎, 𝑡∗], 

At the same time, we know 

D*U|(1)(t*, x(t*))≥0   (3) 

Here, it holds 

P(U(t*, x(t*)))>U(t*, x(t*)) = 𝛽∗−1Ω1(𝜀)≥ U(s, x(s)), t*+ ɑ ≤ 

x ≤ t* 

By statement (c), g ∈PC(ℝ+, ℝ+), and G ∈ 𝐾1 we obtain 

D* U(t*, x(t*))≤ -g(t*)G(U(t*, x(t*))) = -

g(t*)G(𝛽∗−1Ω1(𝜀))<0, 

This inequality contradict (3). Although (2) still holds. It 

simply means that   

x(𝑡𝑚
− ) ∈ S(𝜌1), x(𝑡𝑚) ∈ S(𝜌). 

 note that. 

U(𝑡𝑚, x(𝑡𝑚)) ≤ (1 + 𝛽𝑚)V(𝑡𝑚
− , x(𝑡𝑚

− )  ≤ 𝛽∗−1(1 + 𝛽𝑚)Ω1(𝜀). 

To show that for t ∈ [𝑡𝑚, 𝑡𝑚+1) 

U(t, x(t)) ≤ 𝛽∗−1(1 + 𝛽𝑚)Ω1(𝜀). 

Assume this is false, then we can define 

t* = inf[ t ∈[𝑡𝑚, 𝑡𝑚+1), U(t, x(t))> 𝛽∗−1(1 + 𝛽𝑚)Ω1(𝜀)] 

Thus, by the same arguments as the proof of (2), we can arrive 

at a contradiction and we shall therefore omit the details. 

By a previous induction hypothesis, we can prove that for 
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t ∈ [𝜎, 𝑡𝑚)∪ [𝑡𝑘, 𝑡𝑘+1), k≥m, 

U(t, x(t)) ≤ 𝛽∗−1(1 + 𝛽𝑚)(1 +  𝛽𝑚+1) … . . (1 + 𝛽𝑘)Ω1(𝜀). 

Which yields 

Ω1(‖𝑥‖)  ≤U(t, x(t)) ≤ 𝛽∗−1 ∏ (1 + 𝛽𝑘𝜎<𝑡𝑘<𝑡 )Ω1(𝜀)<Ω1(𝜀),  

t≥ 𝜎, 

Hence, |x(t)| <𝜀, t ≥ 𝜎. Considering the choice of 𝛿, the zero 

solution of (1) is uniformly stable. 

Then, we prove the uniformly asymptotic stability.As (1) has 

the zero solution which is uniformly stable, for any given 𝜀2 ∈ 

(0, 𝜌1), 𝜎 ≥ 𝑡𝜃, we can look for a related𝛿 = 𝛿(𝜀2) > 0 in such 

a way that for any ∅ ∈ 𝑃𝐶𝐵𝛿 indicate that |x(t)| ≤ 𝜀2<𝜌1, t≥
𝜎 and U(t, x(t)) ≤ Ω2(𝜀2), t ≥ 𝜎. In the sequel, for the sake of 

without loss of generality we assume that𝜎 ∈ [𝑡𝑚1−1, 𝑡𝑚1
), 

𝑚1 ∈ ℤ+. 

For any 𝜀 ∈ (0, 𝜀2), we make a choice of arbitrary constants 

M, also a as follows: 

M = M(𝜀2, 𝜀)= 𝑖𝑛𝑓0.5Ω1(𝜀)≤𝑠≤Ω2(𝜀2)G(s) 

ɑ = ɑ(𝜀2, 𝜀) = min {𝑖𝑛𝑓0.5Ω1(𝜀)≤𝑠≤𝑊2(𝜀2)[𝑃(𝑠) − 𝑠], 0.5Ω1(𝜀)} 

 obviously,  M > 0, ɑ > 0. Also, from statement (d) we observe 

that we have𝜂 = 𝜂(𝜀, 𝜀2)> 0 in such a way that for any A > 0 

implies that 

∫ 𝑔(𝑡)𝑑𝑡 >
(1+ 𝛽)Ω1(𝜀2)

𝑀

𝐴+𝜂

𝐴
   (4) 

Now we choose N ∈ ℤ+, such that 

0.5Ω1(𝜀) + (N – 1) ɑ ≤ Ω2(𝜀2) <0.5Ω1(𝜀) + 𝑁ɑ. 

Since ∑ 𝛽𝑖
∞
𝑖=1 <∞, we have𝑁∘>𝑚1 which is large enough in 

such a way that  

∑ 𝛽𝑖 <
ɑ

3Ω2(𝜀2)

∞
𝑖=𝑁∘

, 𝑎𝑛𝑑 𝛽𝑘 <
ɑ

3𝑁Ω1(𝜀)
, 𝑘 ≥  𝑁∘   (5) 

Suppose that 𝑡𝑁∘
 = 𝜎 + 𝜆𝜂, where 𝜆 is an arbitrary constant. 

Then we proof that we have 

  𝑇1 > 𝑡𝑁∘
in such a way that 

U(𝑇1, x(𝑇1)) < 0.5Ω1(𝜀) + (𝑁 − 1)ɑ.  (6) 

Suppose on the contrary, then for all t  > 𝑡𝑁∘
 

U(t, x(t)) ≥ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ ≥ 0.5Ω1(𝜀). 

Considering the definition of ɑ, we get 

P(U(t, x(t))) ≥ U(t, x(t)) + ɑ 

≥ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ + ɑ 

= 0.5Ω1(𝜀) + 𝑁ɑ 

> Ω2(𝜀2) ≥ V(s, x(s)), t + ɑ≤ s ≤ t, t >𝑡𝑁∘
 

By assuming (c), we have the inequality D*U(t, x(t)) ≤ -g(t) 

G(U(t, x(t))) holds for all  

t >𝑡𝑁∘
, t≠ 𝑡𝑘. Integrating above inequality from 𝑡𝑁∘

  to  𝑡𝑁∘
+

𝜂, by (4) we get 

U(𝑡𝑁∘
  + 𝜂, x(𝑡𝑁∘

+ 𝜂)) ≤  U(𝑡𝑁∘
, x(𝑡𝑁∘

)) - 

∫ 𝑔(𝑠)𝐺(𝑈(𝑥))𝑑𝑠
𝑡𝑁∘+𝜂

𝑡𝑁∘
 

+ ∑ [𝑈(𝑡𝑁∘<𝑡<𝑡𝑁∘+𝜂 𝑡𝑘) − 𝑈(𝑡𝐾
−1)  

≤ U(𝑡𝑁∘
, x(𝑡𝑁∘

)) – M ∫ 𝑔(𝑠)𝑑𝑠
𝑡𝑁∘+𝜂

𝑡𝑁∘
 

+∑ 𝛽𝑘𝑡𝑁∘<𝑡<𝑡𝑁∘+𝜂  𝑈(𝑡𝐾
−1) 

≤ Ω2(𝜀2) -  M ∫ 𝑔(𝑠)𝑑𝑠
𝑡𝑁∘+𝜂

𝑡𝑁∘
 

+ ∑ 𝛽𝑘𝑡𝑁∘<𝑡<𝑡𝑁∘+𝜂 Ω2(𝜀2)  

≤ Ω1𝜀2()(1+𝛽) - M ∫ 𝑔(𝑠)𝑑𝑠
𝑡𝑁∘+𝜂

𝑡𝑁∘
 

< 0, 

Which is false. Thus equation (6) holds. We make a choice𝑇1 

=𝑡𝑁∘
+  𝜂 = 𝜎 + (𝜆 + 1)𝜂 

To show for all t > 𝑇1 

U(t, x(t)) ≥ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ +
ɑ

2
  (7) 

Assume this is false, then we have 𝜏2> 𝑇1in such a way that 

U(𝜏2, x(𝜏2)) ≥ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ +
ɑ

2
 (8) 

And  

U(t, x(t)) < 0.5Ω1(𝜀) + (𝑁 − 1)ɑ +
ɑ

2
 for all 𝑇1 ≤ 𝑡 < 𝜏2 

     (9) 

Suppose that 𝑇1 ∈ [𝑡𝑚, 𝑡𝑚+1), m ≥ 𝑁∘, m∈ ℤ+, then we assert 

that 𝜏2 ≥ 𝑡𝑚+1. Contrarily, then 𝜏2 ∈ [𝑇1, 𝑡𝑚+1). Since (6) 

holds, obviously, we have𝜏1 ∈ [𝑇1, 𝜏2) in such away that 

U(𝜏1, x(𝜏1)) = 0.5Ω1(𝜀) + (𝑁 − 1)ɑ 

Then we have for t ∈ [𝜏1, 𝜏2] 

P(U(t, x(t))) ≥U(t, x(t)) + ɑ 

≥ 0.5Ω1(𝜀) + 𝑁ɑ 

> Ω2(𝜀2) ≥U(s, x(s)), t + ɑ ≤ s ≤ 𝑡 

Using statement (c) we have 

D*U(t, x(t)) ≤ -g(t)G(U(t)) ≤ 0, 𝜏1 ≤ t ≤ 𝜏2 

Impling that 

U(𝜏2, x(𝜏2)) ≤U(𝜏1, x(𝜏1)) 

This is false in view of (8). Then we have shown that 𝜏2 ≥
𝑡𝑚+1. Without loss of generality, we can assume that 𝜏2  ∈
[𝑡𝑚+𝑞, 𝑡𝑚+𝑞+1), q ≥ 1. Subsequently we shall assert that we 

have 𝜏1 ∈ (𝑇1, 𝜏2) in such a way that 

0.5Ω1(𝜀) + (𝑁 − 1)ɑ < U(𝜏1, x(𝜏1)) <0.5Ω1(𝜀) + (𝑁 − 1)ɑ 

+
ɑ

2
     (10) 

Through (9), it suffices to show only the l-h-s inequality of 

(10). Assume this inequality does not hold for all  t ∈ (𝑇1, 𝜏2), 

U(t, x(t))≤ 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ. 

Then by (8), we are aware that there should be 𝜏2 = 𝑡𝑚+𝑞 . 

Next is that 

U(𝑡𝑚+𝑞, x(𝑡𝑚+𝑞)) ≥ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ +
ɑ

2
, U(𝑡𝑚+𝑞

−1 , 

x(𝑡𝑚+𝑞
−1 )) ≤ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ, 

Which together with statement (b) yields 
ɑ

2
≤ 𝛽𝑚+𝑞U(𝑡𝑚+𝑞

− , x(𝑡𝑚+𝑞
− )) ≤ 𝛽𝑚+𝑞Ω1(𝜀2) 

Consequently, we have 

𝛽𝑚+𝑞 ≥
ɑ

2Ω1(𝜀2)
 

This is a contradiction considering the first inequality of 

equation (5) and therefore, equation (10) holds 

Definition now 

𝜏1̃ = sup[ t ∈ [𝑇1, 𝜏2], Ω1(t, x(t))< 0.5Ω1(𝜀) + (𝑁 − 1)ɑ] 

Then 

U(𝜏1̃, x(𝜏1̃)) ≤ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ 

U(𝜏1̃, x(𝜏1̃)) = U(𝜏1̃
∗
, x(𝜏1̃

∗
)) ≥ 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ 

     (11) 

And  

0.5Ω1(𝜀) + (𝑁 − 1)ɑ≤U(t, x(t))≤ 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ +
ɑ

2
 

, t ∈ [𝜏1̃, 𝜏2],    (12) 

Because of (10) we are aware that 𝜏1̃<𝜏2. Note that 𝜏2 ∈
[𝑡𝑚+𝑞, 𝑡𝑚+𝑞+1), we go a step further to show that  𝜏1̃ < 𝑡𝑚+𝑞 . 

Assuming on the converse that 𝜏1̃ ∈ [𝑡𝑚+𝑞, 𝜏2) we do not 

have impulse point 𝑡𝑘 in between 𝜏1̃ and 𝜏2. 

From equation (12), we get 

P(U(t, x(t))) ≥  U(t, x(t)) + ɑ 

≥ 0.5 Ω1(𝜀) + 𝑁ɑ  

> Ω2(𝜀2) ≥U(s, x(s)), t + ɑ ≤ s ≤ 𝑡,   𝜏1̃ ≤ t ≤ 𝜏2 

By statement (c) we get 

D*U(t, x(t)) ≤ -g(t)G(U(t)) ≤ 0, 𝜏1̃ ≤ t ≤ 𝜏2 

Which indicate that  

U(𝜏2, x(𝜏2)) ≤ U(𝜏1̃, x(𝜏1̃)). 

This is contrary to the definition of 𝜏1̃. Therefore, we have 

that 𝜏1̃<𝑡𝑚+𝑞 . 

Assume that 𝜏1̃ ∈ [𝑡𝑚+𝑘, 𝑡𝑚+𝑘+1), 1 ≤ k < q, then we put into 

consideration two possibilities stated below: 

Case 1: if 𝜏1̃> 𝑡𝑚+𝑘, i.e., 𝜏1̃ ∈ [𝑡𝑚+𝑘, 𝑡𝑚+𝑘+1), then putting 

into consideration the definition of 𝜏1̃, we get 

U(𝜏1̃, x(𝜏1̃)) = 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ. 

From equation (12) we can derive that for  t ∈ [ 𝜏1̃, 𝜏2], 

P(U(t, x(t))) ≥ U(t, x(t)) + ɑ > U(s, x(s)), t + ɑ ≤ s ≤ t. 
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By (c) this inequality D*U(t, x(t)) ≤ -g(t)G(U(t)) ≤ 0 holds 

for t ∈ [ 𝜏1̃, 𝜏2]. Therefore we get 

0.5 Ω1(𝜀) + (𝑁 − 1)ɑ +
ɑ 

2
 ≤ U(𝜏2, x(𝜏2)) 

≤ U(𝜏1̃, x(𝜏1̃)) + ∑ [𝑈(
𝑚+𝑞
𝑖=𝑚+𝑘+1 𝑡1) − 𝑈(𝑡1

−)] 

≤ 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ + ∑ 𝛽𝑖𝑈(
𝑚+𝑞
𝑖=𝑚+𝑘+1 𝑡1

−) 

≤ 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ + ∑ 𝛽𝑖Ω2(𝜀2) 
𝑚+𝑞
𝑖=𝑚+𝑘+1 , 

Which yields 
ɑ 

2
≤ ∑ 𝛽𝑖Ω2(𝜀2) 

𝑚+𝑞
𝑖=𝑚+𝑘+1   

This does not align with the first inequality of equation (5). 

Which implies that we cannot possibly have case 1 

Case 2: If 𝜏1̃ = 𝑡𝑚+𝑘, then by equation (11), we have 

U(𝑡𝑚+𝑘
−1 , x(𝑡𝑚+𝑘

−1 )) ≤ 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ. 

Then, 

U(𝜏1̃, x(𝜏1̃)) = U(𝑡𝑚+𝑘, x(𝑡𝑚+𝑘)) ≤ (1 + 𝛽𝑚+𝑘) U(𝑡𝑚+𝑘
−1 , 

x(𝑡𝑚+𝑘
−1 )) 

≤ (1 + 𝛽𝑚+𝑘)[ 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ]. 

From equation (12) we still have that P(U(t, x(t))) > U(s, x(s)), 

t + ɑ ≤ s ≤ t, 𝜏1̃ ≤ t ≤ 𝜏2. Using statement (c) again, we get 

that  inequality D*U(t, x(t)) ≤ -g(t)G(U(t)) ≤ 0 holds for t ∈ [ 

𝜏1̃, 𝜏2]. Therefore, in this case we derive. 

0.5Ω1(𝜀) + (𝑁 − 1)ɑ + 
ɑ 

2
≤U(𝜏2, x(𝜏2)) 

≤U(𝜏1̃, x(𝜏1̃)) + ∑ [𝑈(
𝑚+𝑞
𝑖=𝑚+𝑘+1 𝑡1) − 𝑈(𝑡1

−)] 

< (1 + 𝛽𝑚+𝑘)[ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ]  

+ ∑ 𝛽1𝑈(
𝑚+𝑞
𝑖=𝑚+𝑘+1 𝑡1

−) 

Which when combine with the latter inequality of equation 

(5) and considering the fact that ɑ ≤ 0.5 Ω1(𝜀) yields. 
ɑ 

2
≤ 𝛽𝑚+𝑘[0.5Ω1(𝜀) + (𝑁 − 1)ɑ] + ∑ 𝛽1Ω2(𝜀2) 

𝑚+𝑞
𝑖=𝑚+𝑘+1  

≤ 𝛽𝑚+𝑘𝑁0.5 Ω1(𝜀) + ∑ 𝛽1Ω2(𝜀2) 
𝑚+𝑞
𝑖=𝑚+𝑘+1  

≤
ɑ

3𝑁Ω1(𝜀)
 . N0.5Ω1(𝜀) + ∑ 𝛽1Ω2(𝜀2) 

𝑚+𝑞
𝑖=𝑚+𝑘+1  

This is, 
ɑ 

3
≤ ∑ 𝛽1Ω2(𝜀2) 

𝑚+𝑞
𝑖=𝑚+𝑘+1   

This does not align with the first inequality of equation (5). 

Which implies that we cannot possibly have case 2 either. 

This shows, we have proven that equation (7) holds for all t 

>𝑇1. 

Now, we have this hypothesis by equation (6) and equation 

(7): 

{
𝑈(𝑇1, 𝑥(𝑇1)) < 0.5Ω1(𝜀) + (𝑁 − 1)ɑ                   

𝑈(𝑡, 𝑥(𝑡)) < 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ + 
ɑ 

2
, 𝑡 > 𝑇1

 (13) 

Where 𝑇1 =  𝜎 + (𝜆 + 1)𝜂  

We describe an arbitrary constant: 

q = sup{𝑞(𝑠)|0.5 Ω1(𝜀)≤   x ≤ Ω2(𝜀2) }  

Then we can derive the existence of 𝑇2>𝑇1 + 𝑞in such a way 

that 

U(𝑇2, x(𝑇2) <0.5Ω1(𝜀) + (𝑁 − 2)ɑ + 
ɑ 

2
 

This proof is equivalent to the proof of equation (6) using 

equation (13), and all that is required is  to note the 

Razumikhin condition: 

P(U(t, x(t))) ≥  U(t, x(t)) + ɑ 

≥ 0.5Ω1(𝜀) + (𝑁 − 1)ɑ +  
ɑ 

2
 

>U(s, x(s)), max {t + ɑ, t – q(U(t))} ≤ s ≤ t, t >𝑇1+ q 

We make a choice of𝑇2 = 𝑇1 + q +𝜂 =  𝜎 + (𝜆 + 1)𝜂 + 𝑞. 

Then using the same argument as equation (7), we now have 

that for all t > 𝑇2 

U(t, x(t)) < 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ, t > 𝑇2. 

In this manner we can show that for j ∈ ℤ+, 

{
𝑈 (𝑇𝑗 , 𝑥(𝑇𝑗)) < 0.5 Ω1(𝜀) + (𝑁 − 1)ɑ −  

𝑗−1

2
ɑ                

𝑈(𝑡, 𝑥(𝑡)) < 0.5Ω1(𝜀) + (𝑁 − 1)ɑ − 
𝑗−2

2
ɑ  , 𝑡 > 𝑇𝑗

  

Where 𝑇𝑗 = 𝜎 + (𝜆 + 1)𝜂 +(q + 𝜂)(j-1). Specifically, let j = 

2N, then we get that U(t, x(t)) <0.5 Ω1(𝜀)<Ω1(𝜀), 𝑡 > 𝑇2𝑁. It 

indicates that |x(t)| <𝜀, 𝑡 > 𝑇2𝑁. Recall that (𝜆 + 1)𝜂 +(q 

+ 𝜂)(2N-1) does not dependent on𝜎, then we get that the zero 

solution of equation (1) is uniformly asymptotically stable∎ 

If we consider only the uniform stability of (1) then one can 

obtain the following result. 

Corollary 3.1. The zero solution of equation(1) is uniformly 

stable if per existence of some function 𝑊1, 𝑊2 ∈  𝐾2, P, G ∈
 𝐾1, g ∈ PC(ℝ+, ℝ+), U(t, x) ∈  𝑣0 and an arbtrary constants 

𝛽𝑘 ≥ 0, 𝑘 ∈ ℤ+in such a way that statements (a)(b)(d) in 

Theorem 3.1 and (e) hold, in such a way that: 

(e) For each𝜎,     0 ≥  𝑡0 𝑎𝑛𝑑 𝜓 ∈ 𝑃𝐶([ɑ, 0], S(ρ)) if P(U(t, 

𝜓(0)))> U(t + 𝜃, 𝜓(𝜃)) 

for ɑ ≤ 𝜃 ≤ 0,then 

 D*U(t, 𝜓(0))  ≤  −𝑔(𝑡)𝐺(𝑈(𝑡, 𝜓(0))),  t ∈ [𝑡𝑘−1, 𝑡𝑘) , 𝑘 ∈
ℤ+, 

such that P(s) > s for s > 0, 

However, if function g(t) fulfills the condition that 𝑖𝑛𝑓𝑡 ∈ ℝ+
, 

g(t) = 𝜇 > 0, then by Theorem 3.1 and Corollary 3.1, we get 

the results stated below respectively. 

Corollary 3.2. The zero solution of equation (1) is uniformly 

asymptotically stable if per existence of some functions 𝑊1, 

𝑊2 ∈  𝐾2, P, G ∈  𝐾1 , U(t, x) ∈  𝑣0 and an arbtrary constants 

𝜇 > 0𝛽𝑘 ≥ 0, 𝑘 ∈ ℤ+, in such away that statements (a), (b) in 

Theorem 3.1 and (d) hold, such that, we have. 

(f).. For each𝜎, ≥  𝑡0 and 𝜓 ∈ 𝑃𝐶([α, 0], S(ρ)),  if P(U(t, 

𝜓(0))) > U(t + 𝜃, 𝜓(𝜃)) for max{𝛼, −𝑞(𝑈(𝑡))}  ≤  𝜃 ≤ 0, 
then 

D*U(t, 𝜓(0))  ≤  −𝜇𝐺(𝑈(𝑡, 𝜓(0))),  t ∈ [𝑡𝑘−1, 𝑡𝑘) , 𝑘 ∈ ℤ+, 

such that P(s) > s for s>0. 

Corollary 3.3. The zero solution of equation(1) is uniformly 

stable if per existence of some functions 𝑊1, 𝑊2 ∈  𝐾2, P, G 

∈  𝐾1, V(t, x) ∈  𝑣0 and an arbtrary constants 𝜇 > 0, 𝛽𝑘 ≥
0, 𝑘 ∈ ℤ+in such a way that statements (a), (b) in Theorem 3.1 

and (f) hold such that. 

(g) For each𝜎 ≥  𝑡0 and 𝜓 ∈ 𝑃𝐶([α, 0], S(ρ)),  if P(U(t, 

𝜓(0))) > U(t + 𝜃, 𝜓(𝜃)) for α ≤  𝜃 ≤ 0, then 

D*U(t, 𝜓(0))  ≤  −𝜇𝐺(𝑈(𝑡, 𝜓(0))),  t ∈ [𝑡𝑘−1, 𝑡𝑘) , 𝑘 ∈ ℤ+,  

Such that P(s) > s,     for s>0.  

Proof. For any given 𝜀2 > 𝜀1 > 0, one can choose 𝜂 =
(1+𝛽)𝑊2(𝜀2)

𝜇𝑀
, where M=𝑖𝑛𝑓0.5𝑊1(𝜀)≤𝑠≤𝑊2(𝜀2)G(s).∎𝑠 

 

Discussion 

The paper focuses on a class of mathematical models that 

describe dynamic systems affected by sudden changes 

(impulses) and time delays in their state variables. We 

establish a comprehensive framework to analyze impulsive 

functional differential inclusions, leveraging classical 

theories and modern inclusions. 

Key Findings 

Stability Analysis: The study employs Lyapunov functions 

and the Razumikhin technique to derive results on uniform 

stability and uniform asymptotic stability for impulsive 

functional differential inclusions. This is significant as it 

provides a method to assess how these systems behave under 

various conditions. 

Sufficient Conditions: We derive sufficient conditions for the 

stability of solutions, which depend on varying impulse 

magnitudes and delay intervals. These conditions are crucial 

for determining when the system remains stable despite 

sudden changes. 

Interplay of Delays and Impulses: An important aspect of the 

research is the exploration of how impulsive effects interact 

with delayed responses. This interplay is critical for 

understanding the overall stability of the system and yields 

insights that can be applied to real-world systems. 
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CONCLUSION 

The theoretical breakthroughs achieved in analyzing impulsive 

functional differential inclusions with finite delays apply deeply 

to those systems in the real world where sudden disruptions and 

delayed reactions are embedded. Through the elaboration of 

tough stability criteria, this research arms practitioners in 

disciplines with methods on designing, optimizing and 

controlling complex dynamic systems in delay-prone settings. 

Below, we discuss the transformational uses of this work across 

different domains. 

The stability criteria obtained from this study support the design 

of robust controllers for systems that run on intermittent changes 

and feedback latencies in control systems and robotics. Such 

vehicles such as autonomous vehicles need use real-time sensor 

data to operate in dynamic environments. However, delay in 

processing lidar or camera inputs combined with an impulsive 

correction to avert obstacles causes instability of trajectories. It is 

possible for engineers to develop controllers to withstand such 

bounded delays, impulse magnitudes under the method of 

Lyapunov based stability conditions to make it safe and reliable 

to work even in unpredictable scenarios. Likewise, industrial 

robotic arms performing precision tasks (e.g. assembly or 

welding) need to be assured of stability when sudden mechanical 

adjustments or communication delays happen between sensors 

and actuators. 

Power grids and electrical network are another area of critical 

applications. In modern smart grids, renewable energy sources 

and separate control occur, and switching events (for ex. 

activating circuit breakers) and communication lags between 

nodes of the grid are quite frequent. These systems can be 

inadequate during fault conditions where, for instance, multiple 

faults cause cascading failures when there is delayed fault 

detection, or impulsive load shifts. The developed framework in 

this research enables grid operators to determine the safe 

thresholds of delays as well as the intensities of impulse 

correlating to transient stability and blackout avoidance. For 

instance, when there is a sudden upsurge in production of solar 

energy, then a stability criterion can determine rate of response 

required by backup systems to regulate supply and demand even 

with inherent communication delays. 

Delays and impulses in combination play an ubiquitous role in 

biological systems and medicine. Neural networks, that are 

filtered by the synaptic transmission delays and also impulsions, 

can be described with impulsive functional differential 

inclusions. The stability analysis offers insights on why delayed 

inhibitory signals may not be able to suppress impulsive 

excitatory spikes mathematically caressing the design of 

neurostimulation devices to help stabilize abnormal brain 

activity. In the same way, pharmacokinetic systems benefiting 

from this framework are systems where doses of drugs are shot 

impulsively (for example, by injections) into the body with delays 

in metabolism. Clinicians can maximize dosing schedules to 

achieve therapeutic drug levels with no toxicity, utilizing 

metabolic delays based on that of the patient physiology. 

Networked systems and the Internet of Things (IoT) on their own 

are indicative of the versatility of this research as well. 

Environmental monitoring systems, which are distributed IoT 

networks, will have delayed data transmission, because of 

bandwidth constraints and impulsive state changes, like resets of 

sensor nodes after power failures. Network stability criteria 

guarantee that such networks synchronize well, while preserving 

the integrity and functionality of data amidst the lack of 

connectivity at some point. For example, in the wildfire 

detections systems analysis of delayed alerts from remote 

sensors, and impulsive recalibration of the drones circulating in 

the area can help to ensure prompt, coordinated and effective 

response. 

This work extends the study of impulsive functional differential 

inclusions with finite delays by synthesising classical and 

contemporary theoretical frameworks. Utilizing the smart manner 

of invoking Lyapunov functions and the Razumikhin method, we 

developed precise criteria for uniform stability and uniform 

asymptotic stability, indicating clearly the weighting of impulsive 

perturbations relative to delayed dynamics. The obtained 

sufficient conditions reveal that differences in impulse magnitude 

and delay interval sculpt system behavior, and provide a 

principled account of how to predict and manipulate stability in 

these intricate systems. Through this, illustration of these 

theoretical developments with relevant instances, the research 

connects abstract mathematical analysis to tangible applications 

of control theory, engineering, and biology. Not only have these 

results added more substance to the theory of impulsive 

differential inclusions, they have also armed practitioners with a 

strong set of tools for designing resilient systems in which the 

delays and sudden disturbances are integral components. This 

work therefore represents a basic contribution to mathematical 

theory and interdisciplinary dynamical system design. 
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