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ABSTRACT

As the efficacy of traditional antimicrobial therapies diminishes, the need for novel, safe, and effective
antimicrobial agents has become increasingly urgent. An unconventional yet promising source of such agents
is spider silk. Traditionally recognized for its remarkable mechanical attributes, including high tensile strength
and elasticity, spider silk has recently garnered attention for its potential biomedical applications, particularly
its intrinsic antimicrobial activity. This study investigated the antimicrobial potential of silk from two spider
species: Pholcus phalangioides and Hippasa sp. Silk samples were collected, extracted using methanol and
formic acid, and subsequently filtered. The resulting extracts were assessed for antimicrobial activity using both
disc diffusion and well diffusion assays against a panel of pathogenic microorganisms, including Candida
albicans, Circinotrichum sp., Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and
Klebsiella pneumoniae. The methanolic extract of P. phalangioides silk demonstrated significant antimicrobial
activity (P< 0.05), with the most considerable effect observed against Circinotrichum sp. In contrast, the formic
acid extract of Hippasa sp. displayed greater antimicrobial efficacy compared to its methanolic counterpart,
with more substantial activity against bacterial strains than fungal pathogens. Notably, inhibition zones
observed in the disc diffusion assays were generally larger than those measured in the well diffusion assays.
These findings suggest that spider silk from P. phalangioides and Hippasa sp. harbors bioactive compounds,
potentially antimicrobial peptides that exhibit significant inhibitory effects against pathogenic microbes. The
results underscore the potential of spider silk as a novel reservoir for developing next-generation antimicrobial

agents.
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INTRODUCTION

Antimicrobial resistance (AMR) is a rapidly escalating global
health threat, driven by the accelerated evolution of microbial
resistance mechanisms. This phenomenon renders previously
effective antimicrobial agents ineffective against a broad
spectrum of pathogens, including bacteria, fungi, viruses, and
parasites (Nikaido, 2009; Larsson and Flach, 2022). Beyond
complicating the treatment of infections, AMR significantly
heightens the risks associated with standard medical
interventionssuch as surgical procedures, by increasing
vulnerability to severe complications and mortality
(Magiorakos et al., 2012).

Notably, Gram-negative bacteria such as Pseudomonas
aeruginosa, Salmonella spp., and members of the
Enterobacteriaceae family, as well as Gram-positive
pathogens like Staphylococcus aureus, have demonstrated
increasing resistance, limiting the efficacy of current
antibiotic therapies (WHO, 2017). According to data from the
Global Research on Antimicrobial Resistance (GRAM),
Nigeria ranks 20th globally in age-standardized mortality
attributed to AMR among 204 countries. In 2019 alone, over
185,000 deaths in Nigeria were associated with infections
caused by  Streptococcus  pneumoniae,  Klebsiella
pneumoniae, Escherichia coli, Staphylococcus aureus, and
Group B Streptococcus (GRAM, 2019).

Despite the pressing global demand for novel antibiotics,
investment in antibiotic drug discovery has remained limited,
thereby constraining the therapeutic options available to
manage multidrug-resistant (MDR) infections (Morehead and
Scarbrough, 2018). This shortfall has prompted researchers to
investigate natural sources, including plants, microorganisms,

and animals for novel bioactive compounds with
antimicrobial activity (Goy et al., 2016; Ciriminna et al.,
2020; Kumar, 2020Stan et al.,2021; Lee et al., 2022; Ouertani
et al., 2024). Among these, spider silk has emerged as a
promising biomaterial due to its documented wound healing
properties and potential biomedical applications (Newman
and Newman, 1995; Phartale et al., 2019; Deshmukh and
Pansare, 2019; Tsiareshyna et al., 2024). A distinguishing
characteristic that enhances the suitability of spider silk for
biomedical applications is its inherent capacity to inhibit
microbial growth and resist bacterial degradation (Lammel et
al.,2010).

Spider silk may exhibit antimicrobial properties primarily for
two functional reasons: the protection of the spider and the
preservation of the silk itself. Many spiders inhabit silk-lined
environments and deposit their nutrient-rich eggs within silk
casings, rendering both the silk and the eggs highly
susceptible to microbial colonization and degradation
(Babczynska et al., 2019; Makover et al., 2019). Furthermore,
spider silk is composed mainly of proteinaceous fibers rich in
hydrophobic amino acids, which could serve as substrates for
microbial activity (Vollrath, 2000; Romer and Scheibel,
2008), thus necessitating intrinsic antimicrobial defenses.
Despite the potential of spider silk as a novel antimicrobial
agent, research efforts in Nigeria remain predominantly
focused on plant-derived materials (Ugboku ef al., 2020; Ojah
et al., 2021; Zailani et al., 2024), with comparatively limited
attention given to animal-derived products such as spider silk.
In light of this, the present study aims to investigate the
antimicrobial properties of silk from Pholcus phalangioides
and Hippasa sp.
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MATERIALS AND METHODS

Spider Silk Collection and Extraction

Spiders were collected from their natural habitats within the
premises of Ahmadu Bello University, Zaria, Nigeria, and
taxonomically  identified based on  morphological
characteristics following the keys provided by Dippenaar-
Schoeman and Jocqué (1997). To ensure the authenticity of
silk production, the spiders were maintained under controlled
laboratory conditions in individual cages. Silk samples were
obtained by gently drawing a sterile pipette through freshly
spun webs, which were then transferred into a sterile, cleaned
Eppendorf tube for extraction. Silk from Hippasa sp. and
Pholcus phalangioides was weighed (0.2 g) and placed into
borosilicate test tubes, followed by the addition of 5 mL each
of formic acid and methanol in separate preparations. The
mixtures were allowed to stand for 24 hours. Subsequently,
the samples were filtered, and the resulting extracts were used
for antimicrobial assays (Phartale et al., 2019).

Antibacterial Assay Formic and Methanolic Silk Extract

The antimicrobial activity of both formic acid and methanolic
spider silk extracts was evaluated against Gram-positive
bacteria (Staphylococcus aureus) and Gram-negative bacteria
(Escherichia coli, Pseudomonas aeruginosa, Klebsiella
pneumoniae) using disc diffusion and well diffusion methods.
For the disc diffusion assay, Mueller-Hinton agar was
prepared, and 100 uL of standardized microbial suspension
was evenly spread across the surface of each agar plate using
a sterile glass spreader. Sterile filter paper discs were
impregnated with varying volumes of silk extract (37.5, 150,
and 300 pg/ul), labeled accordingly, and placed onto the
inoculated agar surfaces. Plates were incubated at 37+ 1 °C
for 24 hours, after which antimicrobial activity was assessed
by measuring the diameter of the inhibition zones in
millimeters (Phartale et al., 2019).

For the well diffusion assay, agar plates were similarly
prepared and inoculated, and uniform wells were bored into
the agar using a sterile cork borer. Each well was labeled and
filled with (37.5, 150, and 300 pg/uL) if the respective silk
extract. Plates were incubated at 37 + 1 °C for 24 hours, and
the resulting zones of inhibition were measured to determine
antimicrobial efficacy (Deshmukh and Pansare, 2019).
Formic acid and methanol served as negative controls, while
10 pg gentamicin was employed as the positive control. All
experimental assays were conducted in triplicate.

Antifungal Assay of Formic and Methanolic Silk Extract

The antifungal activity of formic acid and methanolic spider
silk extracts was assessed against Candida albicans and
Circinotrichum sp. using both disc diffusion and well
diffusion methods. Sabouraud Dextrose Agar (SDA) plates
were prepared, and upon solidification, 100 puL of
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standardized fungal spore suspension was inoculated onto the
center of each plate and evenly spread using a sterile glass
spreader. For the disc diffusion assay, sterile filter paper discs
impregnated with different volumes of silk extract (37.5, 150,
and 300 pg/uL) were aseptically placed on the inoculated
agar surfaces. In the well diffusion assay, wells were created
in the agar using a sterile cork borer, labeled accordingly, and
filled with the same volumes of silk extract. All plates were
incubated at 28 + 1 °C for 24 to 72 hours. Antifungal activity
was determined by measuring the diameter of the inhibition
zones (in millimeters). Each experiment was performed in
triplicate, and formic acid and methanol were negative
controls to validate the specificity of the silk extracts’
antifungal effect, while 10 pg econazole was used as the
positive control.

Data Analyses

Leven’s homogeneity of variance and Shapiro-Wilk test were
used to check the data's homogeneity and normal distribution.
Analysis of variance (ANOVA) was conducted to determine
statistically significant differences in the zones of inhibition
among the tested microbial species at a significance level of
P< 0.05. Boxplots were used to compare inhibition zones
between the two assay methods (disc and well diffusion).
Furthermore, group principal component analysis (PCA) was
employed to assess the relationship between spider species
based on the assay method and inhibition zone patterns. All
statistical analyses were performed using Microsoft Excel 365
(2024) and R for Windows version 4.3.2.

RESULTS AND DISCUSSION

The methanolic extract of Pholcus phalangioides silk
exhibited significantly greater antimicrobial activity (P<
0.05) compared to the formic acid extract across the tested
microbial strains. Notably, no zones of inhibition were
observed for the formic acid extract against fungal organism.
In contrast, both methanolic and formic acid extracts
demonstrated significant antimicrobial effects against
Escherichia coli, Staphylococcus aureus, Pseudomonas
aeruginosa, and Klebsiella pneumoniae. The highest
antimicrobial activity for P. phalangioides silk was observed
in the methanolic extract against Circinotrichum sp (Figure
1).

Conversely, the formic acid extract of Hippasa sp. silk
exhibited significantly higher antimicrobial efficacy (P<
0.05) than its methanolic counterpart. The greatest zone of
inhibition was recorded for the formic acid extract against S.
aureus, while the lowest activity was observed with the
methanolic extract against C. albicans and Circinotrichum sp
(Figure 2). Generally, the fungal isolates were less susceptible
to the silk extract as compared to the bacterial isolates.
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Figure 1: Antimicrobial activity of Pholcus phalangioides using disc and well diffusion assay PC: positive
control; WD: well diffusion; DD: disc diffusion; NC: Negative control; ME: methanolic extract; FE:
formic acid extract; Ca: Candida albicans, Cs: Circinotrichum sp.; Ec: Escherichia coli; Sa:
Staphylococcus aureus; Pa: Pseudomonas aeruginosa; Kp: Klebsiella pneumoniae
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Figure 2: Antimicrobial activity of Hippasa sp. using disc and well diffusion assay
PC: positive control; WD: well diffusion; DD: disc diffusion; NC: Negative control; ME: methanolic extract; FE:
formic acid extract; Ca: Candida albicans; Cs: Circinotrichum sp.; Ec: Escherichia coli; Sa: Staphylococcus
aureus; Pa: Pseudomonas aeruginosa; Kp: Klebsiella pneumoniae
Figure 3 illustrates a comparative analysis of inhibition zones marginally greater antimicrobial effectiveness. The

produced by two antimicrobial susceptibility testing methods:
disc diffusion and well diffusion assays. Both methods
display comparable median inhibition zones, as indicated by
the central lines within each boxplot. However, the disc
diffusion method shows a slightly higher median, suggesting

interquartile ranges (IQRs), represented by the heights of the
boxes, are similar for both methods, reflecting comparable
variability in the inhibition measurements. Additionally, the
whiskers extend over nearly the same range for each method,
indicating similar overall distributions.
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Figure 3: Comparison between the disc and well diffusion zones of inhibition

The Principal Component Analysis (PCA) plot (Figure 4)
provides a multivariate assessment of the antimicrobial
inhibition profiles of silk extracts from Hippasa sp. and
Pholcus phalangioides, as influenced by different assay
methods and extract types. The first principal component
(PC1) accounts for 69.2% of the total variance, while the
second principal component (PC2) explains an additional
14.7%, cumulatively representing 83.9% of the dataset’s
variation. This indicates that PC1 is the primary axis
differentiating the antimicrobial responses of the two spider
species. A clear separation is observed between Hippasa sp.
and P. phalangioides along PC1, suggesting distinct
differences in their antimicrobial efficacy. The clustering

patterns show Hippasa sp. forming a more compact group,
while P. phalangioides exhibits a broader distribution,
indicating greater variability in inhibition zones. Ellipses
around each group reflect within-species variation, with a
wider ellipse for P. phalangioides further supporting this
observation. Vector orientation reveals differential
contributions of the assay methods and extract types.
Methanolic extracts (ME) are more strongly associated with
P. phalangioides, whereas formic acid extracts (FE) align
more closely with Hippasa sp. Additionally, the distinct
positioning of the reference antimicrobials gentamicin and
econazole suggests that their inhibition profiles differ
markedly from those of the spider silk extracts.
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Figure 4: Relationship between spider species as influenced by methods and zones

of inhibition
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Discussion

This study employed both disc and well diffusion assays to
evaluate the antimicrobial activity of methanolic and formic
acid silk extracts derived from Pholcus phalangioides and
Hippasa sp. against six microbial species. The results
revealed significantly greater activity against bacterial strains
compared to fungal isolates. This heightened susceptibility of
bacteria particularly Gram-positive species is due to known
biological and structural characteristics, including the
presence of a peptidoglycan-rich cell wall/faster growth rate
(Perfect, 2017), simpler membrane architecture (Cowen et al.,
2014), and diffusion assays that enable easy access to bacteria
as compared to fungi due to fungal hyphal network (Rex et
al.,2001).

In contrast to the present findings, Phartale et al. (2019)
reported significantly higher antifungal activity relative to
antibacterial effects using dimethyl sulfoxide (DMSO)
extracts of Pardosa brevivulva silk. The discrepancy may be
attributed to differences in solvent polarity, which can
influence the solubility and bioavailability of active
compounds. Supporting the current results, Roozbahani
observed greater inhibition of Listeria monocytogenes (Gram-
positive) compared to Escherichia coli (Gram-negative) using
silk extracts from P. phalangioides. The antimicrobial
potential of spider silk is thought to be associated with its
biochemical composition, as spiders are capable of storing
excess food for months or even years by encapsulating them
in silk (Tabhir ez al., 2017).

The median inhibition zone observed in the disc diffusion
method was marginally larger than that of the well diffusion
method, suggesting its superior efficacy as an assay
technique. This can be attributed to the enhanced diffusion
from the disc, where antimicrobial agents are evenly
dispersed radially from the paper disc across the agar surface,
forming uniform concentration gradients (Balouiri et al.,
2016). Additionally, filter paper discs effectively retain the
antimicrobial agent, allowing for a gradual release over time,
which facilitates diffusion and ensures sustained contact with
the test organism (Cheesbrough, 2006). This method is
particularly advantageous for nonpolar or volatile extracts, as
it minimizes issues related to evaporation and surface tension
(Thakur and Juneja, 2021). Similar results have been reported
by Kazemipoor et al. (2012), Baihaqi-Othmanet al. (2019),
and Kub ef al. (2021). In contrast, Nurkhaliza et al. (2024)
found the well diffusion method to be more effective,
attributing this to the silver nanoparticles potentially
adsorbing to the surface of the disc rather than diffusing into
the agar.

The PCA plot facilitates the comparison of antimicrobial
activities of silk extracts from two spider species, Hippasa sp.
and Pholcus phalangioides, across different extraction
solvents and assay methods. The solvent typemethanol or
formic acidsignificantly influences antimicrobial efficacy,
with methanolic extracts showing greater activity in P.
phalangioides, while formic acid extracts are more effective
in Hippasa sp. This variation may stem from differences in
silk type, as the two species produce distinct silk forms (e.g.,
dragline vs. capture silk), each characterized by unique
protein compositions and concentrations (Brankovi¢ et al.,
2024). Moreover, solvent selection has been shown to induce
conformational changes in silk proteins, altering their
structural properties and modulating interactions with
microbial targets, thereby impacting antimicrobial potency
(Kiseleva et al., 2021). Similar observations have also been
reported by Phatale ef al. (2019).
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CONCLUSION

This study provides the first report of the antimicrobial
activity of Hippasa sp. silk and further evaluates the activity
of Pholcus phalangioides silk using both disc diffusion and
well diffusion assays. The silk extracts from both species
demonstrated notable antimicrobial effects against the tested
bacterial isolates, with inhibition zones observed to be slightly
larger in the disc diffusion assay compared to the well
diffusion method. These findings highlight the potential of
spider silk, particularly from these species, as a promising
source for the development of novel antimicrobial agents.
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