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ABSTRACT 

Linear multistep method is a problem-solving technique mostly used to find the solution to mathematical 

problems involving one independent variable mostly called ordinary differential equations. However, this 

research seeks to carry out a formulation of an efficient numerical scheme for the approximation of first order 

ordinary differential equation (ODE) has been investigated. The method is a block scheme for 3-step linear 

multistep method using Hermit polynomials as the basis function. The continuous and discrete multi-step 

methods (LMM) have been formulated through the technique of collocation and interpolation. Also, numerical 

examples of ODE’S have been solved and results obtained show that the proposed scheme can be efficient in 

solving initial value problems of first order ordinary differential equations.  
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INTRODUCTION 

Background to the study 

Linear multistep methods (LMMs) are very popular for 

solving initial value problems (IVPs) of Ordinary Differential 

Equations (ODEs). They are also applied to solve higher order 

ODEs. LMMs are not self-starting hence, need starting values 

from single-step methods like Euler’s Method and Runge-

Kutta family of methods Lambart, (1973). 

We consider the general form of the first order initial value 

problems. 

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 𝑦(𝑥0) = 𝑦0  (1) 

𝑦𝑘(𝑥) = ∑ 𝑐𝑖𝜔𝑖(𝑥),𝑘
𝑖=0  𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+𝑘     (2) 

Where  

𝜔𝑖(𝑥) = 𝑥𝑖 , 𝑖 = 0,1,2, … 𝑘      (3) 

Substituting (2) into (1) and add 𝜆𝐻𝑘(𝑥) where 𝜆 is the 

perturbed term and 𝐻𝑘(𝑥) is the Hermite polynomial of 

degree 𝑘 valid in 𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+𝑘 we have 

∑ 𝑐𝑖𝜔𝑖(𝑥),𝑘
𝑖=0 = 𝑓(𝑥, 𝑦) +  𝜆𝐻𝑘(𝑥)  (4) 

We shall consider cases where 𝑘 = 1,2 and 3 in (2) and (3) 

The Hermite polynomial is given by 𝐻𝑖(𝑥) =  𝑖 = 0,1,2, … 𝑘 

𝐻0(𝑥) = 1 

𝐻1(𝑥) = 2𝑥 

𝐻2(𝑥) = 4𝑥2 − 2                     (5) 

𝐻3(𝑥) = 8𝑥3 − 12𝑥 

These polynomials are gotten from the Hermite Rodrigue’s 

formula 

𝐻𝑛(𝑥) = 𝑒𝑥2
(−1)𝑛 𝑑𝑛

𝑑𝑥𝑛 (𝑒𝑥2
)       (6) 

Using the set of polynomials in (5) to formulate the block 

schemes in the interval [𝑥𝑛, 𝑥𝑛+𝑘  ], thus, introducing the 

change of variable to define the Hermite polynomial as 

𝑥 =
2�̅�−(𝑥𝑛+𝑘+ 𝑥𝑛)

(𝑥𝑛+𝑘− 𝑥𝑛)
  𝑘 = 1,2,3           (7) 

According to Lambert (1973) the general 𝑘-step LMM is 

given as;  

∑ 𝛼𝑗𝑦𝑛+𝑗 = ℎ ∑ 𝛽𝑗 𝑓𝑛+𝑗
𝑘
𝑗=0  𝑘

𝑗=0        (8) 

Where 𝛼j and 𝛽j are uniquely determined and 𝛼0 + 𝛽0  ≠ 0. 

The LMM in Equation (8) generates discrete schemes which 

are used to solve first-order ODEs. Other researchers have 

introduced the continuous LMM using the continuous 

collocation and interpolation approach leading to the 

development of the continuous LMMs of the form; 

∑ 𝛼𝑗(𝑥)𝑦𝑛+𝑗 = ℎ ∑ 𝛽𝑗(𝑥) 𝑓𝑛+𝑗
𝑘
𝑗=0  𝑘

𝑗=0     (9) 

Where 𝛼j and 𝛽j are expressed as continuous functions of 𝑥 

and are at least differentiable once.  

According to Okunuga and Ehigie (2009) the existing 

methods of deriving the LMMs in discrete form include the 

interpolation approach, numerical integration, Taylor series 

expansion and through the determination of the order of 

LMM. Continuous collocation and interpolation technique is 

now widely used for the derivation of LMMs, block methods 

and hybrid methods. Several continuous LMMs have been 

derived using different techniques and approaches; Alabi 

(2014) derived continuous solvers of IVPs using Chebyshev 

polynomial in a multistep collocation technique; Okunuga 

and Ehigie (2009) derived two-step continuous and discrete 

LMMs using power series as basis function; Mohammed 

derived a linear multistep method with continuous 

coefficients and used it to obtain multiple finite difference 

methods which were directly applied to solve first-order 

ODEs.  

The analytical solution of differential equation may not be 

easily gotten due to the rate and region of convergence which 

is always potential in such case numerical methods are very 

useful. In engineering and physical sciences problems 

involving first order differential equation can be solved using 

various methods. One of which is using analytical methods. 

However, this is tedious and scientists like Adam Moulton 

(1971) develop method for direct solution of first-order 

differential ordinary equation could not obtain accurate 

solution with very low efficiency in comparison to the exact 

solution of the problem. In this research we will work on a 

three-step method to solve a stiff problem using hermit 

polynomials as a bases function in which higher order 

accuracy will be achieve. 

The idea of LMM is one that is beginning to strike the cord in 

our world today due to its input in the field of study and our 

lives in general. 

The aim of this research paper is to formulate an effective 

three-step numerical method using the hermit polynomial as 

a bases function for solution of stiff problems. 

In recent years, Edogbanya Helen Olaronke et al (2020), 

proposed a modified Laguerre collocation block method for 

solving second order ordinary differential equation. Discrete 

method was given which were used in block and implemented 

for solving the initial value problems, being the continuous 
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interpolation derived the collocated at grid points. The 

derived scheme was used to solve some second order 

differential equation (ODEs) in order to show their validity 

and accuracy. 

There are so many authors who have done work on the direct 

solution of ordinary differential equation of the form 

𝑓(𝑥, 𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑛.) , 𝑦(𝑝) = 𝑦0, 𝑦(𝑞) = 𝑦1, . . 𝑦(𝑛−1) =

𝑦𝑛 ,        (10) 

Which comprises of Awoyemi (2001), and Kayode (2008). 

Every one of them worked on the development of several 

methods for solving equations directly without having to 

reduce to system of first order differential equations. 

Awoyemi (2001) developed methods to solve second order 

initial value problems which are the mathematical 

formulation for systems without dissipation. Awoyemi (2001) 

developed Nystrom type technique for initial value problem 

(IVPs) for the solution of first order differential equations in 

which the conditions for the determination of the parameters 

of the systems were discussed. Power series has been used in 

differential Algebraic systems to solve differential algebraic 

equations by Haweel (2015). Michael (2016) researched on 

using power series method as a basic method for solving 

linear differential equations with variable co-efficient and 

also on second order differential equations. Familua and 

Omole, (2017) 5-points mono hybrid point linear multistep 

method for solving nth order ordinary differential equations 

using power series functions. Yahaya et al. (2024) examined 

the development of mathematical model for optimal rice 

production in Niger state base on variables such as rainfall , 

temperature, humidity and land area used and production cost 

using multivariate regressional (MLR) method. Result shows 

that 96.35% variance in rice production can be explained by 

the independent variable due to accuracy and high level of 

yield.  

Odekunle et al (2013) developed a continuous linear multistep 

method using interpolation and collocation for the solution of 

first-order ODE with constant step size; Adesanya et al (2012) 

considered the method of collocation of the differential 

system and interpolation of the approximate solution to 

generate a continuous LMM, which is solved for the 

independent solution to yield a continuous block method; 

James et al (2013) proposed a continuous block method for 

the solution of second order IVPs with constant step size, the 

method was developed by interpolation and collocation of 

power series approximate solution. Anake (2011) developed 

a new class of continuous implicit hybrid one-step methods 

capable of solving IVPs of general second order ODEs using 

the collocation and interpolation techniques of the power 

series approximate solution. James et al (2013) adopted the 

method of collocation and interpolation of power series 

approximate solution to generate a continuous LMM. 

 

MATERIALS AND METHODS 

Derivation of the Methods 

The two-step hybrid block method with second derivative that 

produces approximations 𝑦𝑛+𝑘to the first order ordinary 

differential equations (ODEs)  

𝑥 ′ = 𝑓(𝑡, 𝑥)    (11) 

 is given as follows: 

∑ 𝛼𝑗𝑥𝑛+𝑗 + ∑ 𝛼𝑣𝑗𝑥𝑛+𝑣𝑗
2
𝑗=1

𝑘
𝑗=0 = ℎ(∑ 𝛽𝑗𝑓𝑛+𝑗 +𝑘

𝑗=0

∑ 𝛽𝑣𝑗𝑓𝑛+𝑣𝑗
2
𝑗=1 ) + ℎ

2𝛾𝑘𝑓𝑛+𝑘
′      (12) 

𝛼𝑗 , 𝛼𝑗𝑣  𝛽𝑗  and 𝛽𝑣𝑗  are constant coefficients.  

In order to obtain (12), we approximate the solution by the 

orthogonal function 𝑋(𝑡) of the form  

𝑋(𝑡) = ∑ 𝑎𝑗𝜑(𝑡)𝑟+𝑠−1
𝑗=0    (13) 

where  

(i) 𝑡 ∈ [𝑎, 𝑏]  
(ii) 𝜑(𝑡) is an orthogonal function defined by the Hermit 

polynomial 

(iii) 𝑎𝑗  are unknown coefficients to be determined  

(iv) r is the number of interpolations for 1 ≤ 𝑟 ≤ 𝑘 and  

(v) s is the number of distinct collocation points with 𝑠 > 0 

The continuous approximation is constructed by imposing the 

following conditions  

𝑋(𝑡𝑛+𝜇) = 𝑥𝑛+𝜇, {𝑗, 𝑣1, 𝑣2}, 𝑗 = 0,1, . . . , 𝑘 − 1  (14) 

𝑋 ′(𝑡𝑛+𝜇) = 𝑓𝑛+𝜇, {𝑗, 𝑣1, 𝑣2}, 𝑗 = 0,1, . . . , 𝑘 (15) 

𝑋″(𝑡𝑛+𝑗) = 𝑓𝑛+𝑗
′ , 𝑗 = 𝑘   (16) 

where 𝑣1 and 𝑣2 are not integers. Equations (14) – (16) form 

a nonlinear system of equations in 𝑎𝑗'𝑠 which is solved using 

the matrix inversion technique via Maple software. The 

values of  𝑎𝑗 '𝑠 obtained are then substituted back into (13) to 

yield the continuous formulation of our proposed method in 

the form; 

∑ 𝛼𝑗(𝑡)𝑥𝑛+𝑗 + ∑ 𝛼𝑣𝑗(𝑡)𝑥𝑛+𝑣𝑗
2
𝑗=1

𝑘
𝑗=0 = ℎ(∑ 𝛽𝑗(𝑡)𝑓𝑛+𝑗 +𝑘

𝑗=0

∑ 𝛽𝑣𝑗(𝑡)𝑓𝑛+𝑣𝑗
2
𝑗=1 ) + ℎ

2𝛾𝑘(𝑡)𝑓𝑛+𝑘
′ ,  (17) 

 which upon evaluation at 𝑡 = 𝑡𝑛+𝑘 , 𝑘 = 2 gives the discrete 

two-step second derivative hybrid method. However, we 

intend to implement our methods in a block form, which shall 

simultaneously generate approximate solutions to (11). In 

view of this, evaluating the second derivative of (17) at some 

required points gives a number of discrete schemes necessary 

to implement the methods in block form. In what follows, two 

separate block methods for two-step second derivative block 

hybrid method will be derived following the above 

procedures. The distinguishing factor in the two proposed 

block methods is the choice of 𝑣𝑖 , (𝑖 = 1,2)    

Three-step second derivative hybrid block method 

(TSDHBM3) 

In this case, take 𝐻3(𝑥) = 8𝑥3 − 12𝑥 since 𝑘 = 3 

We collocate this equation at 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2 𝑎𝑛𝑑 𝑥𝑛+3 and 

solve to have  

𝑥 =
2�̅�−(𝑥𝑛+𝑘+ 𝑥𝑛)

(𝑥𝑛+𝑘− 𝑥𝑛)
    (18) 

=
2𝑥𝑛−(𝑥𝑛+3+ 𝑥𝑛)

𝑥𝑛+3− 𝑥𝑛
    (19) 

=
− 𝑥𝑛+3+ 𝑥𝑛

𝑥𝑛+3− 𝑥𝑛
    (20) 

= −1 

Thus substitute the value of 𝑥 into 𝐻3(𝑥) = 8𝑥3 − 12𝑥 and 

obtain 𝐻3(𝑥) = 4 

Following the same process for  𝑥𝑛+1 we have  

=
2𝑥𝑛+1−(𝑥𝑛+3+ 𝑥𝑛)

𝑥𝑛+3− 𝑥𝑛
          (21) 

Put 𝑥𝑛+1 = 𝑥𝑛 + ℎ,  𝑥𝑛+3 = 𝑥𝑛 + 3ℎ and obtain  

=
2(𝑥𝑛+ℎ)−(𝑥𝑛+3ℎ+ 𝑥𝑛)

𝑥𝑛+3ℎ− 𝑥𝑛
   (22) 

= −
1

3
  

By substituting the value of 𝑥 into 𝐻3(𝑥) = 8𝑥3 − 12𝑥 then 

 𝐻3(𝑥) =
100

27
  

Follow the same procedure for 𝑥𝑛+2 and have  

𝑥 =
2𝑥𝑛+2−(𝑥𝑛+3+ 𝑥𝑛)

𝑥𝑛+3− 𝑥𝑛
       (23) 

Put 𝑥𝑛+2 = 𝑥𝑛 + 2ℎ,  𝑥𝑛+3 = 𝑥𝑛 + 3ℎ 

and substituting into 𝐻3(𝑥) = 8𝑥3 − 12𝑥 to obtain 

𝑥 =
2(𝑥𝑛+2ℎ)−(𝑥𝑛+3ℎ+ 𝑥𝑛)

𝑥𝑛+3ℎ− 𝑥𝑛
   (24) 

Substituting the value of 𝑥 into 𝐻3(𝑥) = 8𝑥3 − 12𝑥 then 

 𝐻3(𝑥) = −
100

27
  

Following the same procedure for 𝑥𝑛+3 we have  

𝑥 =
2�̅�−(𝑥𝑛+𝑘+ 𝑥𝑛)

(𝑥𝑛+𝑘− 𝑥𝑛)
        (25) 

𝑥 =
2𝑥𝑛+3−(𝑥𝑛+3+ 𝑥𝑛)

𝑥𝑛+3− 𝑥𝑛
        (26) 
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𝑥 = 1 

Substituting the value of 𝑥 into 𝐻3(𝑥) = 8𝑥3 − 12𝑥 then we 

have 

𝐻3(𝑥) = −4 

Thus recall that  𝜔𝑖(𝑥) =  𝑥𝑖 , 𝑖 = 0,1,2, … 𝑘 

𝜔0
′ (𝑥) = 0 

𝜔1
′ (𝑥) = 1            (27) 

𝜔2
′ (𝑥) = 2𝑥  

𝜔3
′ (𝑥) = 3𝑥2 

The equation 𝜔𝑖(𝑥) =  𝑥𝑖 , 𝑖 = 0,1,2, … 𝑘 reduces to the form 

𝑓(𝑥, 𝑦) = 𝑐1 + 2𝑥𝑐2 + 3𝑥2𝑐3 −  𝜆𝐻3(𝑥)     (28) 

We now collocate the above equation at 𝑥𝑛+𝑖(𝑖 = 0,1,2) and 

interpolate (2) at 𝑥 = 𝑥𝑛 to obtain a system of five equations 

with 𝑐𝑖(𝑖 = 0,1,2,3) and parameter 𝜆 as 

𝑦𝑛 = 𝑐0 + 𝑐1𝑥𝑛 + 𝑐2𝑥𝑛
2 + 𝑐3𝑥𝑛

3 

𝑓𝑛 = 𝑐1 + 2𝑐2𝑥𝑛 + 3𝑐3𝑥𝑛
2 − 4𝜆 

𝑓𝑛+1 = 𝑐1 + 2𝑐2𝑥𝑛+1 + 3𝑐3𝑥𝑛+1
2 +

100

27
𝜆  

𝑓𝑛+2 = 𝑐1 + 2𝑐2𝑥𝑛+2 + 3𝑐3𝑥𝑛+2
2 +

100

27
𝜆  

𝑓𝑛+3 = 𝑐1 + 2𝑐2𝑥𝑛+3 + 3𝑐3𝑥𝑛+3
2 + 4𝜆 

Solving the system above resulted to 

𝜆 =
9

128
(𝑓𝑛 − 3𝑓𝑛+1 + 3𝑓𝑛+2 − 𝑓𝑛+3)  

𝑐3 =
1

12ℎ2
(𝑓𝑛 − 𝑓𝑛+1 − 𝑓𝑛+2 + 𝑓𝑛+3)  

𝑐2 =
1

96ℎ2
(61ℎ𝑓𝑛 − 63ℎ𝑓𝑛+1 − 9ℎ𝑓𝑛+2 + 11ℎ𝑓𝑛+3 +

24𝑓𝑛𝑥𝑛 − 24𝑓𝑛+1𝑥𝑛 − 29𝑓𝑛 + 2𝑥𝑛 + 24𝑓𝑛𝑥𝑛)  

𝑐1 =
1

96ℎ2 (123ℎ2𝑓𝑛 − 18ℎ2𝑓𝑛+1 + 18ℎ2𝑓𝑛+2 −

27ℎ2𝑓𝑛+3 + 122ℎ𝑓𝑛𝑥𝑛 − 126ℎ𝑓𝑛+1𝑥𝑛 − 18ℎ𝑓𝑛+2𝑥𝑛 +
22𝑓𝑛+3𝑥𝑛 + 24𝑓𝑛𝑥𝑛

2 − 24𝑓𝑛+1𝑥𝑛
2 − 24𝑓𝑛+2𝑥𝑛

2 + 24𝑓𝑛 +
3𝑥𝑛

2)  

𝑐0 =
1

96ℎ2 (123ℎ2𝑓𝑛𝑥𝑛 − 81ℎ2𝑓𝑛+1𝑥𝑛 + 81ℎ2𝑓𝑛+2𝑥𝑛 −

27ℎ2𝑓𝑛+3𝑥𝑛 + 61ℎ𝑓𝑛𝑥𝑛
2 − 63ℎ𝑓𝑛+1𝑥𝑛

2 − 63ℎ𝑓𝑛+1𝑥𝑛
2 −

9ℎ𝑓𝑛+2𝑥𝑛
2 + 11ℎ𝑓𝑛+3𝑥𝑛

2 + 8𝑓𝑛𝑥𝑛
3 − 8𝑓𝑛+1𝑥𝑛

3 − 8𝑓𝑛+3𝑥𝑛
3 −

96ℎ2𝑦𝑛)  

 

Again, from (2) we have 

�̅� = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥2         

The required numerical scheme is then obtained if collocation 

of the above equation is done at 𝑥𝑛+1 and substituting for 

𝑐0, 𝑐1, 𝑐2 𝑎𝑛𝑑 𝑐3 as 

𝑦𝑛+1 =  𝑦𝑛 +
ℎ

48
(35𝑓𝑛 − 13𝑓𝑛+1 + 41𝑓𝑛+2 − 15𝑓𝑛+3). 

Formulating the block schemes for the polynomials of cases 

𝑘 =  1,2,3 

For 𝑘 = 1 collocate equation (12) at 𝑥 = 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3 to 

obtain  

𝑦𝑛+1 =  𝑦𝑛 +
ℎ

2
(𝑓𝑛 + 𝑓𝑛+1) 

𝑦𝑛+2 =  𝑦𝑛 + ℎ(𝑓𝑛 + 𝑓𝑛+1)             (29) 

𝑦𝑛+3 =  𝑦𝑛 +
3ℎ

2
(𝑓𝑛 + 𝑓𝑛+1) 

For 𝑘 = 2 collocate equation (18) at 𝑥 = 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3 to 

obtain 

𝑦𝑛+1 =  𝑦𝑛 +
ℎ

4
(𝑓𝑛 + 2𝑓𝑛+1 + 𝑓𝑛+2)  

𝑦𝑛+2 =  𝑦𝑛 +
ℎ

2
(𝑓𝑛 + 2𝑓𝑛+1 + 𝑓𝑛+2)      (30) 

𝑦𝑛+3 =  𝑦𝑛 +
3ℎ

4
(6𝑓𝑛 + 2𝑓𝑛+1 + 𝑓𝑛+2)  

For 𝑘 = 3 collocate equation (23) at 𝑥 = 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3 to 

obtain 

𝑦𝑛+1 =  𝑦𝑛 +
ℎ

48
(35𝑓𝑛 − 13𝑓𝑛+1 + 41𝑓𝑛+2 − 15𝑓𝑛+3)  

𝑦𝑛+2 =  𝑦𝑛 +
ℎ

48
(33𝑓𝑛 + 13𝑓𝑛+1 + 67𝑓𝑛+2 − 17𝑓𝑛+3)          (31) 

𝑦𝑛+3 =  𝑦𝑛 +
3ℎ

8
(𝑓𝑛 + 3𝑓𝑛+1 + 3𝑓𝑛+2 + 𝑓𝑛+3)  

 

 

Analysis of the Methods  

Consider the analysis of the newly constructed methods such 

as order, error constant, consistency, convergence and the 

regions of absolute stability of the methods. 

The proposed three-step hybrid block method with second 

derivative that produces approximations 𝑦𝑛+𝑘 to the first 

order ordinary differential equations (ODEs)  

𝑥′ = 𝑓(𝑡, 𝑥)    (32) 

 is given as follows: 

∑ 𝛼𝑗𝑥𝑛+𝑗 +𝑘
𝑗=0  ∑ 𝛼𝑣𝑗𝑥𝑛+𝑣𝑗 =2

𝑗=1

ℎ(∑ 𝛽𝑗𝑓𝑛+𝑗 +𝑘
𝑗=0   ∑ 𝛽𝑣𝑗𝑓𝑛+𝑣𝑗

2
𝑗=1  ) + ℎ2𝛾𝑘 𝑓𝑛+𝑘

′  (33) 

𝛼𝑗  , 𝛼𝑣𝑗 , 𝛽𝑗 and 𝛽𝑣𝑗   are constant coefficients.  

In order to obtain (33), we approximate the solution by the 

orthogonal function 𝑋(𝑡)  of the form  

𝑋(𝑡) = ∑ 𝛼𝑗𝜑(𝑡)𝑟+𝑠−1
𝑗=0       (34) 

Where  

𝑡 ∈ [𝑎, 𝑏] 
  𝜑(𝑡)is an orthogonal function defined by the Hermit 

Polynomial. 

 𝛼𝑗  are the unknown coefficients to be determined?  

 𝑟 is the number of interpolations for 1≤ 𝑟 ≤ 𝑘 and 

𝑠 is the number of distinct collocation points with 𝑠 > 0 

The continuous approximation is constructed by imposing the 

following conditions  

𝑋(𝛼𝑛+𝜇) =  𝑥𝑛+𝜇 , {𝑗, 𝑣1, 𝑣2, 𝑣3} , 𝑗 = 0,1, … , 𝑘 − 1  

     (35) 

𝑋′(𝑡𝑛+𝜇) =  𝑓𝑛+𝜇 , {𝑗, 𝑣1, 𝑣2, 𝑣3} , 𝑗 = 0,1, … , 𝑘  (36) 

𝑋′′(𝑡𝑛+𝜇) =  𝑓𝑛+𝑗
′   ,      𝑗 = 𝑘   (37) 

𝑋′′′(𝑡𝑛+𝜇) =  𝑓𝑛+𝑖
′′ , 𝑖 = 𝑘    (38) 

Where 𝑣1  and 𝑣2 are not integers. Equations (37) to (39) form 

a nonlinear system of equations in 𝑎𝑗′𝑠 which is solved using 

the matrix inversion technique via Maple software. The 

values of   𝑎𝑗′𝑠 obtained will be substitute back to (37) to yield 

the continuous formulation of our proposed method in the 

form; 

∑ 𝛼𝑗(𝑡)𝑥𝑛+𝑗 +𝑘
𝑗=0 ∑ 𝛼𝑣𝑗(𝑡)𝑥𝑛+𝑣𝑗 =2

𝑗=1

ℎ(∑ 𝛽𝑗(𝑡)𝑓𝑛+𝑗 +𝑘
𝑗=0 ∑ 𝛽𝑣𝑗(𝑡)𝑓𝑛+𝑣𝑗

2
𝑗=1  ) + ℎ2𝛾𝑘(𝑡) 𝑓𝑛+𝑘

′ +

ℎ3𝛽𝑣𝑓𝑛+𝑣   

 Which upon evaluation at  𝑡 = 𝑡𝑛+𝑘 , 𝑘 = 3 gives the discrete 

three-step second derivative hybrid method. However, we 

intend to implement our methods in a block form, which shall 

simultaneously generate approximate solutions to (34). In 

view of this, evaluating the second derivative of the above 

equation at some required points gives a number of discrete 

schemes necessary to implement the methods in block form. 

In what follows, three separate block methods for three-step 

second derivative block hybrid method will be derived 

following the above procedures. The distinguishing factor in 

the three proposed block methods is the choice of𝑣𝑗 , (𝑗 =

1,2 … ). 

 

Numerical Example 

Example 1 

Consider the following IVP 

𝑦′(𝑡) = −𝑦, 𝑦(0) = 1 

With the exact solution 𝑦(𝑡) = 𝑒−𝑡 

Example 2 

𝑦′(𝑡) = 𝑥(1 − 𝑦), 𝑦(0) = 0 

With the exact solution 𝑦(𝑡) = 1 − 𝑒−
𝑡2

2  

Note:  

BLS = Block schemes derived in this paper,  

LM = Method of Okedayo et al. (2018),  

Exact = Exact Solution, 
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|Exact-BLS| = the absolute value of the exact solution minus 

computed solution of the method derived in this paper 

|Exact-LM| = the absolute value of the exact solution minus 

computed solution of Okedayo et al. (2018). 

The numerical results of these examples are depicted in 

Tables 1, 2  with 𝑘 = 2 𝑎𝑛𝑑 𝑘 = 3 with constant step size of 

ℎ = 0.1 respectively In tables 1 and 2 we presented a 

comparison of the obtained numerical results using the 

proposed scheme with the exact solution and Table 1 and 2 

presents the comparison of the results obtained from proposed 

scheme, the exact solution and those numerical results 

obtained from Okedayo et al. (2018). 

 

Table 1: A comparison of numerical results of proposed Scheme at 𝒌 = 𝟐 with exact solution for example 1 

x-value BLS 𝒌 = 𝟐 Exact |Exact-BLS| 

0.0 1.000000 1.000000 0.000000 

0.1 0.905090 0.904837 4.253 × 10−4 

0.2 0.818181 0.818730 5.49× 10−4 

0.3 0.749092 0.740818 8.274× 10−3 

0.4 0.675227 0.670320 4.907× 10−3 

0.5 0.608761 0.606531 2.23× 10−3 

0.6 0.548760 0.548811 5.1× 10−3 

0.7 0.504028 0.496585 7.443× 10−3 

0.8 0.448139 0.449328 1.189× 10−3 

0.9 0.416232 0.406569 9.663× 10−3 

1.0 0.373893 0.367879 6.014× 10−3 

 

Table 2: A comparison of numerical results of proposed scheme at 𝒌 = 𝟑 with exact solution and LM for Example 2 

x-value BLS 𝒌 = 𝟑 LM Exact |Exact-BLS| |Exact-LM| 

0.0 1.000000 1.000000 1.000000 0.000000 0.000000 

0.1 0.904808 0.905953 0.904837 2.9× 10−5 1.116× 10−3 

0.2 0.818705 0.820856 0.818730 5.0× 10−5 2.126× 10−3 

0.3 0.740823 0.743857 0.740818 5.0× 10−5 3.039× 10−3 

0.4 0.670304 0.674185 0.670320 1.6× 10−5 3.865× 10−3 

0.5 0.606516 0.611143 0.606531 1.510−5 4.612× 10−3 

0.6 0.548820 0.554100 0.548811 9.0× 10−6 5.289× 10−3 

0.7 0.496576 0.502486 0.496585 9.0× 10−6 5.901× 10−3 

0.8 0.449321 0.455784 0.449328 7.0× 10−6 6.456× 10−3 

0.9 0.406578 0.413527 0.406569 9.0× 10−6 6.958× 10−3 

1.0 0.367876 0.375290 0.367879 3.0× 10−6 7.411× 10−3 

 

Tables 1, and 2 shows that the proposed schemes approximate 

the solutions of initial value problems given in Examples 1 

and 2 as the absolute errors are convergent. 

 

CONCLUSION 

In this research work, a class of three new block schemes for 

the approximation of initial value problems of first order 

ordinary differential equations using Hermite polynomial as a 

basis function has been obtained. The proposed method was 

used to solve numerically some initial value problems and the 

results compared with the exact solutions and the method of 

Okedayo et al. (2015). From the numerical results, it is 

observed that the new schemes were capable for solving first 

order IVPs as generated results compared favorably with the 

existing method and the exact solutions. The method is very 

simple to implement. 
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