
PERFORMANCE COMPARISON OF RUN… Okude et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 4, April, 2025, pp 99 – 105 99

8

PERFORMANCE COMPARISON OF RUN-LENGTH, HUFFMAN AND LEMPLE-ZIV ALGORITHMS ON

GRAY-SCALE PNG AND JPG IMAGES COMPRESSION

1Okude Joshua Okude, 1Emmanuel Ogala and *2Terseer Andrew Gaav

1Department of Computer Science, College of Physical Sciences, Joseph Sarwuan Tarta University, Makurdi.

2Department of Computer Science. Faculty of Computing, Federal University of Lafia, Lafia

*Corresponding authors’ email: gaavterseer@gmail.com

ABSTRACT

Image compression plays a crucial role in optimising storage and transmission efficiency. This paper evaluates

the performance of Run-Length Encoding (RLE), Huffman Coding, and Lempel-Ziv-Welch (LZW) algorithms

for compressing grayscale PNG and JPG images. The study analyses their effectiveness using compression

ratio, bits per pixel, and compression time as key performance metrics. Results indicate that LZW achieved

the highest compression ratio, ranging from 1.0113 to 2.4020, making it the most efficient for file size

reduction. RLE performed moderately, with compression ratios between 0.5456 and 2.3895, while Huffman

Coding exhibited the lowest ratios, ranging from 0.2646 to 1.0680. In terms of bits per pixel, LZW recorded

the lowest values, highlighting its ability to reduce data while preserving image quality. Compression time

analysis revealed that RLE was the fastest, with processing times between 0.0019 and 0.0468 seconds, making

it suitable for real-time applications. LZW and Huffman Coding demonstrated a trade-off between compression

efficiency and speed. These findings establish LZW as the most effective algorithm for high compression with

minimal quality loss, while RLE remains the best option for speed-critical applications.

Keywords: Image Compression, Run-Length Encoding (RLE), Huffman Coding, Lempel-Ziv-Welch (LZW),

Compression Efficiency

INTRODUCTION

Image compression is a widely used technique to reduce file

sizes for storage and processing, particularly as image quality

and resolution continue to increase. With the growing reliance

on cloud storage, compression plays a crucial role in

efficiently managing large volumes of images online

(Kodukulla, 2020).

Generally, data compression involves transforming files such

as text, audio, and video into a more compact form, allowing

for full recovery without loss of information. This is essential

for optimising storage space and reducing resource

requirements for data transmission. Compression techniques

balance space and time complexity, requiring trade-offs

between compression level, distortion, and computational

cost for encoding and decoding data (Sharma, 2020).

Image compression is broadly classified into lossy and

lossless techniques (Vemuri et al., 2014). Lossless methods

preserve all original data, while lossy methods discard some

information to achieve higher compression ratios (Mathpal &

Mehta, 2017). Among lossless techniques, Run-Length

Encoding, Huffman Coding, and Lempel-Ziv Coding are

commonly used. These methods are evaluated based on

metrics such as compression ratio, compression time, and

Peak Signal-to-Noise Ratio (PSNR) (Sara et al., 2019).

Huffman coding, for example, assigns shorter codes to

frequently occurring symbols and longer codes to less

frequent ones, constructing a binary tree for efficient

encoding.

As image data continues to grow exponentially in various

domains such as healthcare, security, and multimedia, the

need for efficient compression techniques becomes critical for

optimising storage, reducing transmission time, and

improving computational efficiency (Ungureanu et al., 2024).

Although lossy compression methods can achieve higher

compression rates, they are unsuitable for applications

requiring exact data preservation, such as medical imaging

and forensic analysis (Bourai et al., 2024). This highlights the

importance of lossless compression techniques in ensuring

data integrity while maintaining reasonable compression

efficiency.

Lossless compression algorithms such as Run-Length,

Huffman, and Lempel-Ziv are widely used for image data

storage and transmission due to their ability to retain original

data without loss (Fitriya et al., 2017), However, their

efficiency varies across different image formats, influencing

compression ratios and processing speeds (Agber et al.,

2024). Given that gray-scale PNG and JPG images are

extensively used in critical applications such as medical

imaging and biometric security, where detail preservation is

essential (Akhtarkavan et al., 2023), evaluating the

performance of these algorithms on such images is crucial.

Agber et al. (2024) highlights that while the Lempel-Ziv

algorithm is suitable for JPEG, PNG, and BMP formats, it is

not as efficient as Huffman compression, and further research

is needed to compare lossless algorithms for optimising image

quality in both original and compressed formats.

Understanding how these algorithms perform in terms of

compression ratio, speed, and reconstructed image quality is

essential for selecting the most suitable approach for various

applications requiring high data fidelity.

Recent advancements in image compression have

incorporated artificial intelligence and statistical methods for

improved performance. (Lu et al., 2018) demonstrated the

potential of convolutional neural networks (CNNs) in lossy

compression, surpassing traditional techniques such as

JPEG2000. Similarly, Li and Ji (2020) introduced NICE, a

framework combining neural explanation with semantic

image compression, achieving higher compression rates while

preserving classification accuracy. Archana and Jeevaraj

(2024) reviewed image processing techniques, comparing

traditional and deep learning approaches. They highlighted

the strengths and challenges of methods like denoising,

segmentation, and classification. The study emphasised deep

learning’s effectiveness while addressing computational and

interpretability concerns.

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 9 No. 4, April, 2025, pp 99 - 105

DOI: https://doi.org/10.33003/fjs-2025-0904-3555

mailto:gaavterseer@gmail.com
https://doi.org/10.33003/fjs-2025-0904-3555

PERFORMANCE COMPARISON OF RUN… Okude et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 4, April, 2025, pp 99 – 105 100

Peng et al. (2023) applied transfer learning to reduce training

times while maintaining performance across datasets. Divya

et al. (2020) explored lossless text document compression to

optimise storage and transmission efficiency. They discussed

Huffman, Run-Length, and Lempel-Ziv Welch encoding

techniques, highlighting their distinct approaches to reducing

data size. The study emphasised imprsoved security and

compression management through encoding and decoding

processes, while Joshi et al. (2025) explored hybrid

compression techniques for medical images, optimising

PSNR and compression ratio. They highlighted deep learning-

based autoencoders for reducing data size while preserving

diagnostic integrity. Ma (2023) compared Huffman and LZW

algorithms for image compression, evaluating Compression

Ratio (CR), Mean Square Error (MSE), Peak Signal to Noise

Ratio (PSNR), and Bits Per Pixel (BPP). The study found

Huffman achieved better CR for small images (≤300KB),

while LZW provided higher image quality. Future research

may explore larger images and processing time. Additionally,

Peng et al. (2023) leveraged large language models to

enhance perceptual similarity metrics. Singh et al. (2024)

incorporated structural similarity and PSNR evaluations for a

more comprehensive assessment of compression techniques.

This paper systematically compares the performance of Run-

Length, Huffman, and Lempel-Ziv algorithms in compressing

gray-scale PNG and JPG images, assessing their effectiveness

in maintaining image quality.

MATERIALS AND METHODS

Data Collection

The dataset used in this study comprises grayscale PNG and

JPG images, primarily featuring logos sourced from publicly

available repositories. The image search tool adopted in this

paper is Content based image retrieval (CBIR). The choice of

CBIR is due to its ability to extract visual content of an image,

like colour, texture, and shape automatically which enhances

the compression techniques accuracy with lower

computational time (Ibrahim & Ahmad, 2019). The Logos

were selected due to their distinct shapes, simplicity, and high

contrast, making them well-suited for assessing compression

algorithms in applications where image clarity is essential.

The dataset was predominantly logos of varying sizes,

resolutions, and complexities, enabling a thorough evaluation

of the algorithms. This selection ensures that the study’s

findings are applicable to real-world scenarios, such as web

design, branding, and digital media, where efficient logo

compression is necessary.

Traditional Lossless Image Compression Algorithms

Lossless compression algorithms reduce data size without

losing any original information, which is crucial in fields

where data accuracy and fidelity are paramount. There are

basically three lossless image compression algorithms as

presented below.

Run-Length Encoding (RLE)

Run-Length Encoding (RLE) is a compression technique that

reduces file size by replacing sequences of repeated elements

with a single value followed by the count of occurrences. For

instance, the sequence "AAAAAA" is encoded as "6A,"

making it more compact than the original. This method is

highly effective for data with frequent repetition, such as

binary images and certain text format (Ma, 2023).

Pseudocode for Run-Length Algorithm
RLE(input)

 initialize encoded_output as empty

 count = 1

 for i = 1 to length(input) - 1

 if input[i] == input[i - 1]

 count = count + 1

 else

 append (input[i-1], count) to encoded_output

 count = 1

 end for

 append (input[length(input)-1], count) to encoded_output

 return encoded_output

Illustration of Run-Length Algorithm

For the string "AAABBBCCCDAA," RLE produces the

output A3B3C3D1A2, reducing storage, especially effective

in areas like fax transmission and monochrome image (Nitu

et al., 2019).

Table 1: Compression Efficiency Table

Original Data Compressed Data Compression Ratio

AAAABBBCCCCDD A4B3C4D2 2.5:1

ABCD A1B1C1D1 1:1

RLE is suitable where data has long runs, but less effective for files with high entropy (Smith et al., 2021).

Huffman Coding

Huffman Coding is a lossless compression technique that

assigns variable-length binary codes to symbols based on their

frequency. More frequent symbols receive shorter codes,

while less common symbols are assigned longer ones,

minimising the average bit length required for storage (Nitu

et al., 2019). By constructing a binary tree, Huffman coding

effectively reduces redundancy, making it suitable for text

and image compression (Fauzan et al., 2022). The process

starts with building a frequency table, followed by the

creation of a binary tree where lower-frequency symbols are

placed deeper. The efficiency of Huffman coding depends on

the distribution of symbol frequencies (Sujatha & Selvam,

2022).

Huffman Coding Process

The algorithm begins by creating a frequency table,

constructing a tree, and then assigning binary codes based on

the tree paths. The compression efficiency depends on symbol

frequency (Archana & Jeevaraj, 2024).

Formula for Average Bit Length

𝐿 = ∑ (× 𝑙𝑖)𝑛
𝑖=1 (1)

Where 𝑓𝑖 the frequency of each is character, and 𝑙𝑖 is the bit

length of the Huffman code. This approach has been widely

applied in file compression formats like JPEG and MP3 Ma

(2023).

PERFORMANCE COMPARISON OF RUN… Okude et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 4, April, 2025, pp 99 – 105 101

Lempel-Ziv-Welch (LZW)

Lempel-Ziv-Welch (LZW) is a dictionary-based compression

algorithm that builds a table of repeating sequences as it

processes data. Initially, each symbol has its own dictionary

entry. As new patterns emerge, they are assigned unique

codes, allowing for efficient encoding of repeated sequences

(Nitu et al., 2019). This adaptability enables LZW to achieve

high compression rates without requiring prior knowledge of

the data’s characteristics. It is widely used in formats such as

GIF and ZIP file compression (Das et al., 2024).

LZW Algorithm Pseudocode
LZW(input)

 initialize dictionary with unique symbols in input

 w = empty string

 for each character k in input

 if w + k exists in dictionary

 w = w + k

 else

 add (w + k) to dictionary

 output code for w

 w = k

 end for

 output code for w

Table 2: Dictionary Growth Example for “ABABABA”

Step Sequence Processed Dictionary State Output Code

1 A {A: 1, B: 2, AB: 3} 1

2 B {A: 1, B: 2, AB: 3, BA: 4} 2

3 AB {A: 1, B: 2, AB: 3, BA: 4} 3

LZW is commonly used in GIF compression, providing a

balance between speed and efficiency, especially for images

with repeating patterns (Sujatha & Selvam, 2022).

Performance Metrics

Performance metrics are key to assessing the efficiency and

effectiveness of data compression algorithms. These metrics

quantify how well an algorithm performs in terms of

compression efficiency, speed, quality retention, and resource

consumption. By understanding these metrics, one can

optimize algorithms based on the specific requirements of

different applications, such as real-time systems, archival

purposes, or media streaming.

Compression Ratio (CR)

The compression ratio is one of the most basic and widely

used performance metrics. It is defined as the ratio of the

original data size to the compressed data size. A higher

compression ratio indicates more effective compression. The

formula is given by:

Compression Ratio (CR) =
Original Size

Compressed Size
 (2)

Compression Speed (CS)

This refers to the amount of time taken to compress the data.

This metric is particularly important in scenarios where time

constraints are critical, such as video conferencing or real-

time media streaming. Faster compression speeds are

essential to ensure smooth operation, especially in systems

that handle large volumes of data. The formula to calculate

compression speed is:

Compression Speed (CS) =
Size of Data

Time Taken to Compress
 (3)

For example, if a 1 GB file is compressed in 2 seconds, the

compression speed would be 0.5 GB per second. The speed of

compression is often inversely related to the compression

ratio, with algorithms that offer higher compression ratios

tending to take more time.

Decompression speed (DS)

This refers to the time required to restore the compressed data

to its original form. This metric is especially important in real-

time applications where rapid data retrieval is essential.

Efficient decompression ensures that the system can quickly

serve the decompressed data without causing delays in

playback or processing. The formula for decompression speed

is similar to compression speed:

Decompression speed (DS) =
Size of Data

Time Taken to Decompress

 (4)

As with compression speed, decompression speed should be

optimized for applications like cloud storage and media

streaming where data must be readily accessible (Sujatha &

Selvam, 2022).

Bits per Pixel (BPP)

This Represents the average number of bits required to store

each pixel in a compressed image. It provides insights into

how compactly image data is stored, with lower values

indicating better compression. It is given as:

BPP =
Size of Compressed Image (in bits)

Time Number of pixels in Image
 (5)

RESULTS AND DISCUSSION

Results of the Utilised Algorithms

This section presents and discusses the results of the utilized

algorithms (RLE, LZW and Huffman) using various metrics.

Table 3: Results of Run-length Encoding (RLE)

Image Name
Original

Size (KB)

Num

Characters

Compressed

Size (KB)

Compression

Ratio

Compression

Time (s)
Bits/Pixel

Decompression

Time (s)

A_Man .jpg 129.40 220,314 121.88 1.0617 0.0412 4.5319 0.0852

android_logo.png 002.09 016,384 001.32 1.5895 0.0020 0.6577 0.0036

bird.jpg 133.71 218,988 162.94 0.8206 0.0468 6.0953 0.0962

facebook_logo.png 002.00 016,384 000.83 2.3895 0.0019 0.4175 0.0034

location_logo .png 002.32 016,384 001.06 2.1917 0.0253 0.5298 0.0377

Radio.png 006.22 050,625 011.39 0.5456 0.0452 1.8435 0.0659

search.png 002.00 050,625 001.63 1.2237 0.0061 0.2642 0.0107

twitter_Icon.png 002.23 016,384 001.02 2.1990 0.0020 0.5078 0.0035

wifi_Icon.png 002.38 016,384 001.17 2.0350 0.0020 0.5859 0.0035

Zebra.png 002.45 014,568 001.24 0.9368 0.0019 0.6577 0.0206

AVERAGE 028.48 063,704 030.448 1.4993 0.0174 1.6091 0.0330

PERFORMANCE COMPARISON OF RUN… Okude et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 4, April, 2025, pp 99 – 105 102

The result in table 3 indicate that Run-Length Encoding

(RLE) achieved compression ratios average of 1.4992,

performing better on smaller images. Its compression time

average of 0.0174 seconds, demonstrating fast processing,

especially for simple images. However, bits per pixel values

varied from 0.2642 to 6.0953, highlighting inconsistent data

retention. This suggests that while RLE is effective for images

with large uniform areas, it is less suitable for complex images

with diverse patterns.

Table 4: Results of Lempel-Ziv-Welch (LZW)

Image Name
Original

Size (KB)

Num

Characters

Compressed

Size (KB)

Compression

Ratio

Compression

Time (s)
Bits/Pixel

Decompression

Time (s)

A_Man .jpg 129.40 220,314 53.87 2.4020 0.0964 2.0032 0.0964

android_logo.png 002.09 016,384 01.27 1.6482 0.0055 0.6343 0.0055

bird.jpg 133.71 218,988 78.74 1.6982 0.1095 2.9454 0.1095

facebook_logo.png 002.00 016,384 00.85 2.3510 0.0053 0.4243 0.0053

location_logo .png 002.32 016,384 01.11 2.0878 0.0293 0.5562 0.0293

Radio.png 006.22 050,625 06.15 1.0113 0.0356 0.9946 0.0356

search.png 002.00 050,625 01.69 1.1793 0.0170 0.2742 0.0170

twitter_Icon.png 002.23 016,384 01.09 2.0420 0.0054 0.5469 0.0054

wifi_Icon.png 002.38 016,384 01.22 1.9474 0.0054 0.6123 0.0054

Zebra.png 002.43 015,345 01.43 1.3940 0.0065 0.5981 0.0245

AVERAGE 28.478 063,782 14.742 1.7761 0.0316 0.9590 0.0334

The result in table 4 reveals that, the Lempel-Ziv-Welch

(LZW) algorithm achieved compression ratios average of

1.7761, demonstrating its effectiveness in reducing file sizes

across different image types. Compression and

decompression times were stable, ranging from 0.0055 to

0.1095 seconds, indicating efficient processing. With bits per

pixel values between 0.2742 and 2.9454, LZW maintains a

balance between compression efficiency and image quality,

making it suitable for applications requiring both data

reduction and detail preservation.

Table 5: Results of Huffman Coding Algorithm

Image Name
Original

Size (KB)

Num

Characters

Compressed

Size (KB)

Compression

Ratio

Compression

Time (s)
Bits/Pixel

Decompression

Time (s)

A_Man .jpg 129.40 220,314 121.17 1.0680 0.0632 4.5054 0.0632

android_logo.png 002.09 016,384 003.84 0.5442 0.0051 1.9210 0.0051

bird.jpg 133.71 218,988 182.28 0.7335 0.0606 6.8186 0.0606

facebook_logo.png 002.00 016,384 003.11 0.6406 0.0047 1.5576 0.0047

location_logo .png 002.32 016,384 003.56 0.6526 0.0253 1.7795 0.0253

Radio.png 006.22 050,625 017.93 0.3466 0.0134 2.9019 0.0135

search.png 002.00 050,625 007.55 0.2646 0.0131 1.2220 0.0131

twitter_Icon.png 002.23 016,384 003.59 0.6218 0.0054 1.7963 0.0054

wifi_Icon.png 002.38 016,384 003.54 0.6746 0.0051 1.7676 0.0051

Zebra.png 003.47 015,478 004.23 0.6418 0.0136 1.5467 0.0049

AVERAGE 028.582 063,795 035.08 0.6188 0.0210 2.5817 0.0201

In table 5 above, the Huffman Coding algorithm achieved

compression ratios average of 0.6188, performing more

efficiently on smaller images. Compression times ranged

from 0.0047 to 0.0632 seconds, indicating relatively fast

processing. With bits per pixel values average of 2.5817, the

algorithm balances compression efficiency with image detail

retention. This makes Huffman Coding a suitable choice for

reducing file sizes while preserving essential image details.

Figure 1: Comparison of the employed Methods (RLE, LZW and Huffman) Based on Compression Ratio

PERFORMANCE COMPARISON OF RUN… Okude et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 4, April, 2025, pp 99 – 105 103

The comparison of compression methods based on

compression ratio in figure 1 shows that LZW performed the

best, with values ranging from 1.0113 to 2.4020,

demonstrating its strong ability to reduce file sizes. RLE

achieved moderate compression ratios, particularly for

simpler images, with values between 0.5456 and 2.3895.

Huffman Coding had the lowest compression ratios, ranging

from 0.2646 to 1.0680, making it the least efficient among the

three. The results highlight LZW as the most effective method

for achieving higher compression ratios.

Figure 2: Compression of Compression Methods Based On images in bit/pixel

The comparison of compression methods based on bits per

pixel in figure 2 highlights notable differences in

performance. LZW achieved the lowest bits per pixel values,

ranging from 0.2742 to 2.9454, indicating efficient

compression while preserving image detail. RLE had higher

values, between 0.2642 and 6.0953, reflecting its lower

efficiency in maintaining image quality. Huffman Coding

recorded the highest bits per pixel values, from 1.2220 to

6.8186, suggesting it retains more detail despite compressing

the image. These findings confirm LZW as the most effective

method for balancing data reduction and image quality.

Figure 3: Compression of Compression Methods Based on Images Compression Time (s)

The comparison of image compression methods based on

compression time in figure 4 reveals notable differences in

speed. RLE was the fastest, with compression times ranging

from 0.0019 to 0.0468 seconds, making it ideal for

applications requiring quick processing. LZW had longer

compression times, between 0.0053 and 0.1095 seconds,

reflecting a trade-off between efficiency and speed. Huffman

Coding fell in between, with times ranging from 0.0047 to

0.0632 seconds, offering a balanced performance. These

findings highlight RLE’s advantage in speed-critical

applications, while LZW and Huffman may be preferable

when compression quality is a priority.

Comparative Analysis with Existing Works

In this section, the results of the compression size and

compression ratio obtained in this paper is compared with the

results in the existing works.

0
0.02
0.04
0.06
0.08
0.1

0.12

C
o

m
p

re
ss

io
n

Ti
m

e
(s

)

Tested Image

RLE

LZW

HUFF

PERFORMANCE COMPARISON OF RUN… Okude et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 4, April, 2025, pp 99 – 105 104

Table 6: Comparison of the Results of the Adopted Run-length Encoding (RLE) with the Result of the Existing Works

S/N Authors
Compression Size Compression Ratio

RLE LZW Huffman RLE LZW Huffman

1 Agber et al. (2024) 3,986 8,566 6,120 0.0180 0.3767 0.0656

2 Azeez & Lasisi (2017) 1,198,026 344,264 293,486 770.043 74.6742 119.5180

3 Alarabeyyat et al. (2012) - - - 1.1561 1.4451 1.1603

4 Adopted Method 30.448 14.7420 35.0800 1.4993 1.7761 0.6188

From the result in table 6, Agber et al (2024) revealed that,

RLE algorithm gives a smaller image compression size than

other algorithms. This result contradicts the outcomes in the

work of Azeez and Lasisi (2017) which revealed Huffman as

the algorithm that gives smaller image compression size. The

results from the existing works did not tally with the result

from the adopted method which revealed LZW with the

ability to give smaller image compression size. The

differences in the results of both the existing works and the

method adopted could be as a result of the differences in the

nature of the image datasets used by different authors.

Similarly, in terms of the Compression ratio, while Agber et

al (2024) revealed RLE with smaller compression ratio and

LZW with larger compression ratio, Azeez and Lasisi (2017)

revealed LZW with smaller and RLE with larger compression

ratio. This variation in their result could be associated with

diverse datasets utilized by different authors. However, this

paper and Alarabeyyat et al. (2012) adopted small size images

therefore, both revealed Huffam coding and LZW with

smaller and larger compression ratio respectively.

CONCLUSION

This paper systematically compared the performance of Run-

Length Encoding (RLE), Huffman Coding, and Lempel-Ziv-

Welch (LZW) algorithms in compressing grayscale PNG and

JPG images. The findings revealed that LZW consistently

outperformed the other methods in compression ratio and bits

per pixel, making it the most efficient in reducing file size

while maintaining image quality. RLE demonstrated the

fastest compression times, making it highly suitable for real-

time applications, but its effectiveness was limited to images

with large areas of uniform colour. Huffman Coding, though

maintaining a balance between efficiency and detail

preservation, had the lowest compression ratios, making it

less suitable for applications requiring significant file size

reduction. Overall, the results highlight LZW as the best

choice for achieving high compression efficiency with

minimal quality loss, while RLE is preferred for scenarios

requiring rapid processing. By comparison with existing

works, the choice of the algorithm depend on the type and

nature of images under consideration. Future research could

explore hybrid approaches that integrate the strengths of these

algorithms to enhance compression efficiency across various

image types.

REFERENCES

Agber, S., Isah Odoh, S., Gideon Atabo, O., Rufina Godwin,

I., Piyinkir Ndahi, B., & Akumba, B. O. (2024). Efficiency

Evaluation of Huffman, Lempel-Ziv, And Run-Length

Algorithms in Lossless Image Compression for Optimizing

Storage and Transmission Efficiency. Article in International

Journal of Computer Applications, 186(37), 975–8887.

https://doi.org/10.5120/ijca2024923933

Akhtarkavan, E., Majidi, B., & Mandegari, A. (2023). Secure

Medical Image Communication Using Fragile Data Hiding

Based on Discrete Wavelet Transform and A Lattice Vector

Quantization. IEEE Access, 11, 9701–9715.

https://doi.org/10.1109/ACCESS.2023.3238575

Alarabeyyat, A., Khdour, T., & Btoush, M. H. (2012).

Lossless Image Compression Technique Using Combination

Methods. January. https://doi.org/10.4236/jsea.2012.510088

Archana, R., & Jeevaraj, P. S. E. (2024). Deep learning

models for digital image processing: a review. In Artificial

Intelligence Review (Vol. 57, Issue 1). Springer Netherlands.

https://doi.org/10.1007/s10462-023-10631-z

Azeez, N. A., & Lasisi, A. A. (2017). Empirical and Statistical

Evaluation of the Effectiveness of Four Lossless Data

Compression Algorithms. Nigerian Journal of Technological

Development, 13(2), 64. https://doi.org/10.4314/njtd.v13i2.4

Bourai, N. E. H., Merouani, H. F., & Djebbar, A. (2024). Deep

learning-assisted medical image compression challenges and

opportunities: systematic review. In Neural Computing and

Applications (Vol. 36, Issue 17). Springer London.

https://doi.org/10.1007/s00521-024-09660-8

Das, D., Guha, S., Brubaker, J., & Semaan, B. (2024). The

“Colonial Impulse” of Natural Language Processing: An

Audit of Bengali Sentiment Analysis Tools and Their

Identity-based Biases. Conference on Human Factors in

Computing Systems - Proceedings, 1–18.

https://doi.org/10.1145/3613904.3642669

Divya, M. S., Chandrashekhara, J., Vinay, S., & Ramadevi,

A. (2020). Lossless Compression for Text Document Using

Huffman Encoding , Run Length Encoding , and Lempel-Ziv

Welch Coding Algorithms. 9(3), 100–105.

Fauzan, M. N., Alif, M., & Prianto3, C. (2022). Comparison

of Huffman Algorithm and Lempel Ziv Welch Algorithm in

Text File Compression. IT Journal Research and

Development, 7(2), 155–169.

https://doi.org/10.25299/itjrd.2023.10437

Fitriya, L. A., Purboyo, T. W., & Prasasti, A. L. (2017). A

review of data compression techniques. International Journal

of Applied Engineering Research, 12(19), 8956–8963.

Ibrahim, Maryam Lawal, Ahmad, M. A. (2019). AN

ENHANCED RGB AN ENHANCED RGB PROJECTION

ALGORITHM FOR. FUDMA Journal of Sciences (FJS), Vol.

3 No.(March), pp 280 – 285.

Joshi, B., Vaseer, G., Science, C., No, G., Rd, S., Range, R.,

Science, C., No, G., Rd, S., & Range, R. (2025). Tailoring

Image Compression Algorithms for Optimal PSNR and

Compression Ratio in Medical Diagnostic Imaging. 54(1),

1800–1811.

https://doi.org/10.5120/ijca2024923933
https://doi.org/10.1109/ACCESS.2023.3238575
https://doi.org/10.4236/jsea.2012.510088
https://doi.org/10.1007/s10462-023-10631-z
https://doi.org/10.4314/njtd.v13i2.4
https://doi.org/10.1007/s00521-024-09660-8
https://doi.org/10.1145/3613904.3642669
https://doi.org/10.25299/itjrd.2023.10437

PERFORMANCE COMPARISON OF RUN… Okude et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 4, April, 2025, pp 99 – 105 105

 ©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

Kodukulla, S. T. (2020). Lossless Image compression using

MATLAB. Bachelor Thesis Electrical Engineering June

2020 Bachelor, June.

Li, X., & Ji, S. (2020). Neural Image Compression and

Explanation. IEEE Access, 8, 214605–214615.

https://doi.org/10.1109/ACCESS.2020.3041416

Lu, T., Liu, Q., He, X., Luo, H., Suchyta, E., Choi, J.,

Podhorszki, N., Klasky, S., Wolf, M., Liu, T., & Qiao, Z.

(2018). Understanding and modeling lossy compression

schemes on HPC scientific data. Proceedings - 2018 IEEE

32nd International Parallel and Distributed Processing

Symposium, IPDPS 2018, 1, 348–357.

https://doi.org/10.1109/IPDPS.2018.00044

Ma, S. (2023). Comparison of image compression techniques

using Huffman and Lempel-Ziv-Welch algorithms. Applied

and Computational Engineering, 5(1), 793–801.

https://doi.org/10.54254/2755-2721/5/20230705

Mathpal Mittal Darji Assistant Professor Assistant Professor,

D., & Mehta Assistant Professor, S. (2017). A Research Paper

on Lossless Data Compression Techniques. IJIRST-

International Journal for Innovative Research in Science &

Technology|, 4(1), 190–194. www.ijirst.org

Nitu, Kumar, Y., & Rishi, R. (2019). Fractal Image

Compression Techniques. International Journal of Computer

Sciences and Engineering, 7(1), 229–233.

https://doi.org/10.26438/ijcse/v7i1.229233

Peng, X., Zhang, Y., Peng, D., & Zhu, J. (2023). Selective

Run-Length Encoding. http://arxiv.org/abs/2312.17024

Sara, U., Akter, M., & Uddin, M. S. (2019). Image Quality

Assessment through FSIM, SSIM, MSE and PSNR—A

Comparative Study. Journal of Computer and

Communications, 07(03), 8–18.

https://doi.org/10.4236/jcc.2019.73002

Sharma, G. (2020). Analysis of Huffman Coding and Lempel-

Ziv-Welch (LZW) Coding as Data Compression Techniques.

International Journal of Scientific Research in Research

Paper. Computer Science and Engineering, 8(1), 37–44.

www.isroset.org

Sujatha, T., & Selvam, K. (2022). Lossless Image

Compression Using Different Encoding Algorithm for

Various Medical Images. ICTACT Journal on Image and

Video Processing, 12(4), 2704–2709.

https://doi.org/10.21917/ijivp.2022.0384

Ungureanu, V. I., Negirla, P., & Korodi, A. (2024). Image-

Compression Techniques: Classical and “Region-of-Interest-

Based” Approaches Presented in Recent Papers. Sensors,

24(3). https://doi.org/10.3390/s24030791

Vemuri, B.C., Sahni, S., Kapoor, C., Leonard, C. and

Fitzsimmons, J. (2014). Lossless Image Compression. The

Essential Guide to Image Processing, March, 385–419.

https://doi.org/10.1016/B978-0-12-374457-9.00016-0

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2020.3041416
https://doi.org/10.1109/IPDPS.2018.00044
https://doi.org/10.54254/2755-2721/5/20230705
www.ijirst.org
https://doi.org/10.26438/ijcse/v7i1.229233
http://arxiv.org/abs/2312.17024
https://doi.org/10.4236/jcc.2019.73002
www.isroset.org
https://doi.org/10.21917/ijivp.2022.0384
https://doi.org/10.3390/s24030791
https://doi.org/10.1016/B978-0-12-374457-9.00016-0

