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ABSTRACT 

Image compression plays a crucial role in optimising storage and transmission efficiency. This paper evaluates 

the performance of Run-Length Encoding (RLE), Huffman Coding, and Lempel-Ziv-Welch (LZW) algorithms 

for compressing grayscale PNG and JPG images. The study analyses their effectiveness using compression 

ratio, bits per pixel, and compression time as key performance metrics. Results indicate that LZW achieved 

the highest compression ratio, ranging from 1.0113 to 2.4020, making it the most efficient for file size 

reduction. RLE performed moderately, with compression ratios between 0.5456 and 2.3895, while Huffman 

Coding exhibited the lowest ratios, ranging from 0.2646 to 1.0680. In terms of bits per pixel, LZW recorded 

the lowest values, highlighting its ability to reduce data while preserving image quality. Compression time 

analysis revealed that RLE was the fastest, with processing times between 0.0019 and 0.0468 seconds, making 

it suitable for real-time applications. LZW and Huffman Coding demonstrated a trade-off between compression 

efficiency and speed. These findings establish LZW as the most effective algorithm for high compression with 

minimal quality loss, while RLE remains the best option for speed-critical applications.  
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INTRODUCTION 

Image compression is a widely used technique to reduce file 

sizes for storage and processing, particularly as image quality 

and resolution continue to increase. With the growing reliance 

on cloud storage, compression plays a crucial role in 

efficiently managing large volumes of images online 

(Kodukulla, 2020). 

Generally, data compression involves transforming files such 

as text, audio, and video into a more compact form, allowing 

for full recovery without loss of information. This is essential 

for optimising storage space and reducing resource 

requirements for data transmission. Compression techniques 

balance space and time complexity, requiring trade-offs 

between compression level, distortion, and computational 

cost for encoding and decoding data (Sharma, 2020). 

Image compression is broadly classified into lossy and 

lossless techniques (Vemuri et al., 2014). Lossless methods 

preserve all original data, while lossy methods discard some 

information to achieve higher compression ratios (Mathpal & 

Mehta, 2017). Among lossless techniques, Run-Length 

Encoding, Huffman Coding, and Lempel-Ziv Coding are 

commonly used. These methods are evaluated based on 

metrics such as compression ratio, compression time, and 

Peak Signal-to-Noise Ratio (PSNR) (Sara et al., 2019). 

Huffman coding, for example, assigns shorter codes to 

frequently occurring symbols and longer codes to less 

frequent ones, constructing a binary tree for efficient 

encoding. 

As image data continues to grow exponentially in various 

domains such as healthcare, security, and multimedia, the 

need for efficient compression techniques becomes critical for 

optimising storage, reducing transmission time, and 

improving computational efficiency (Ungureanu et al., 2024). 

Although lossy compression methods can achieve higher 

compression rates, they are unsuitable for applications 

requiring exact data preservation, such as medical imaging 

and forensic analysis (Bourai et al., 2024). This highlights the 

importance of lossless compression techniques in ensuring 

data integrity while maintaining reasonable compression 

efficiency. 

Lossless compression algorithms such as Run-Length, 

Huffman, and Lempel-Ziv are widely used for image data 

storage and transmission due to their ability to retain original 

data without loss (Fitriya et al., 2017), However, their 

efficiency varies across different image formats,  influencing 

compression ratios and processing speeds (Agber et al., 

2024). Given that gray-scale PNG and JPG images are 

extensively used in critical applications such as medical 

imaging and biometric security, where detail preservation is 

essential (Akhtarkavan et al., 2023), evaluating the 

performance of these algorithms on such images is crucial. 

Agber et al. (2024) highlights that while the Lempel-Ziv 

algorithm is suitable for JPEG, PNG, and BMP formats, it is 

not as efficient as Huffman compression, and further research 

is needed to compare lossless algorithms for optimising image 

quality in both original and compressed formats. 

Understanding how these algorithms perform in terms of 

compression ratio, speed, and reconstructed image quality is 

essential for selecting the most suitable approach for various 

applications requiring high data fidelity. 

Recent advancements in image compression have 

incorporated artificial intelligence and statistical methods for 

improved performance. (Lu et al., 2018) demonstrated the 

potential of convolutional neural networks (CNNs) in lossy 

compression, surpassing traditional techniques such as 

JPEG2000. Similarly, Li and Ji (2020) introduced NICE, a 

framework combining neural explanation with semantic 

image compression, achieving higher compression rates while 

preserving classification accuracy. Archana and Jeevaraj 

(2024) reviewed image processing techniques, comparing 

traditional and deep learning approaches. They highlighted 

the strengths and challenges of methods like denoising, 

segmentation, and classification. The study emphasised deep 

learning’s effectiveness while addressing computational and 

interpretability concerns. 
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Peng et al. (2023) applied transfer learning to reduce training 

times while maintaining performance across datasets. Divya 

et al. (2020) explored lossless text document compression to 

optimise storage and transmission efficiency. They discussed 

Huffman, Run-Length, and Lempel-Ziv Welch encoding 

techniques, highlighting their distinct approaches to reducing 

data size. The study emphasised imprsoved security and 

compression management through encoding and decoding 

processes, while Joshi et al. (2025) explored hybrid 

compression techniques for medical images, optimising 

PSNR and compression ratio. They highlighted deep learning-

based autoencoders for reducing data size while preserving 

diagnostic integrity. Ma (2023) compared Huffman and LZW 

algorithms for image compression, evaluating Compression 

Ratio (CR), Mean Square Error (MSE), Peak Signal to Noise 

Ratio (PSNR), and Bits Per Pixel (BPP). The study found 

Huffman achieved better CR for small images (≤300KB), 

while LZW provided higher image quality. Future research 

may explore larger images and processing time.  Additionally, 

Peng et al. (2023)  leveraged large language models to 

enhance perceptual similarity metrics. Singh et al. (2024) 

incorporated structural similarity and PSNR evaluations for a 

more comprehensive assessment of compression techniques.  

This paper systematically compares the performance of Run-

Length, Huffman, and Lempel-Ziv algorithms in compressing 

gray-scale PNG and JPG images, assessing their effectiveness 

in maintaining image quality. 

 

MATERIALS AND METHODS 

Data Collection 

The dataset used in this study comprises grayscale PNG and 

JPG images, primarily featuring logos sourced from publicly 

available repositories. The image search tool adopted in this 

paper is Content based image retrieval (CBIR). The choice of 

CBIR is due to its ability to extract visual content of an image, 

like colour, texture, and shape automatically which enhances 

the compression techniques accuracy with lower 

computational time (Ibrahim & Ahmad, 2019). The Logos 

were selected due to their distinct shapes, simplicity, and high 

contrast, making them well-suited for assessing compression 

algorithms in applications where image clarity is essential. 

The dataset was predominantly logos of varying sizes, 

resolutions, and complexities, enabling a thorough evaluation 

of the algorithms. This selection ensures that the study’s 

findings are applicable to real-world scenarios, such as web 

design, branding, and digital media, where efficient logo 

compression is necessary. 

 

Traditional Lossless Image Compression Algorithms 

Lossless compression algorithms reduce data size without 

losing any original information, which is crucial in fields 

where data accuracy and fidelity are paramount. There are 

basically three lossless image compression algorithms as 

presented below. 

 

Run-Length Encoding (RLE)  

Run-Length Encoding (RLE) is a compression technique that 

reduces file size by replacing sequences of repeated elements 

with a single value followed by the count of occurrences. For 

instance, the sequence "AAAAAA" is encoded as "6A," 

making it more compact than the original. This method is 

highly effective for data with frequent repetition, such as 

binary images and certain text format (Ma, 2023).  

 

Pseudocode for Run-Length Algorithm 
RLE(input) 

    initialize encoded_output as empty 

    count = 1 

    for i = 1 to length(input) - 1 

        if input[i] == input[i - 1] 

            count = count + 1 

        else 

            append (input[i-1], count) to encoded_output 

            count = 1 

    end for 

    append (input[length(input)-1], count) to encoded_output 

    return encoded_output 

 

Illustration of Run-Length Algorithm 

For the string "AAABBBCCCDAA," RLE produces the 

output A3B3C3D1A2, reducing storage, especially effective 

in areas like fax transmission and monochrome image (Nitu 

et al., 2019). 

 

Table 1: Compression Efficiency Table 

Original Data Compressed Data Compression Ratio 

AAAABBBCCCCDD A4B3C4D2 2.5:1 

ABCD A1B1C1D1 1:1 

 

RLE is suitable where data has long runs, but less effective for files with high entropy (Smith et al., 2021). 

 

Huffman Coding 

Huffman Coding is a lossless compression technique that 

assigns variable-length binary codes to symbols based on their 

frequency. More frequent symbols receive shorter codes, 

while less common symbols are assigned longer ones, 

minimising the average bit length required for storage (Nitu 

et al., 2019). By constructing a binary tree, Huffman coding 

effectively reduces redundancy, making it suitable for text 

and image compression (Fauzan et al., 2022). The process 

starts with building a frequency table, followed by the 

creation of a binary tree where lower-frequency symbols are 

placed deeper. The efficiency of Huffman coding depends on 

the distribution of symbol frequencies (Sujatha & Selvam, 

2022). 

 

 

 

Huffman Coding Process 

The algorithm begins by creating a frequency table, 

constructing a tree, and then assigning binary codes based on 

the tree paths. The compression efficiency depends on symbol 

frequency (Archana & Jeevaraj, 2024). 

Formula for Average Bit Length 

𝐿 = ∑ (×  𝑙𝑖)𝑛
𝑖=1       (1) 

Where 𝑓𝑖 the frequency of each is character, and 𝑙𝑖 is the bit 

length of the Huffman code. This approach has been widely 

applied in file compression formats like JPEG and MP3 Ma 

(2023). 
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Lempel-Ziv-Welch (LZW) 

Lempel-Ziv-Welch (LZW) is a dictionary-based compression 

algorithm that builds a table of repeating sequences as it 

processes data. Initially, each symbol has its own dictionary 

entry. As new patterns emerge, they are assigned unique 

codes, allowing for efficient encoding of repeated sequences 

(Nitu et al., 2019). This adaptability enables LZW to achieve 

high compression rates without requiring prior knowledge of 

the data’s characteristics. It is widely used in formats such as 

GIF and ZIP file compression (Das et al., 2024). 

 

 

LZW Algorithm Pseudocode 
LZW(input) 

    initialize dictionary with unique symbols in input 

    w = empty string 

    for each character k in input 

        if w + k exists in dictionary 

            w = w + k 

        else 

            add (w + k) to dictionary 

            output code for w 

            w = k 

    end for 

    output code for w 

Table 2: Dictionary Growth Example for “ABABABA” 

Step Sequence Processed Dictionary State Output Code 

1 A {A: 1, B: 2, AB: 3} 1 

2 B {A: 1, B: 2, AB: 3, BA: 4} 2 

3 AB {A: 1, B: 2, AB: 3, BA: 4} 3 

 

LZW is commonly used in GIF compression, providing a 

balance between speed and efficiency, especially for images 

with repeating patterns (Sujatha & Selvam, 2022). 

 

Performance Metrics 

Performance metrics are key to assessing the efficiency and 

effectiveness of data compression algorithms. These metrics 

quantify how well an algorithm performs in terms of 

compression efficiency, speed, quality retention, and resource 

consumption. By understanding these metrics, one can 

optimize algorithms based on the specific requirements of 

different applications, such as real-time systems, archival 

purposes, or media streaming. 

 

Compression Ratio (CR) 

The compression ratio is one of the most basic and widely 

used performance metrics. It is defined as the ratio of the 

original data size to the compressed data size. A higher 

compression ratio indicates more effective compression. The 

formula is given by: 

Compression Ratio (CR) =
Original Size

Compressed Size
    (2) 

 

Compression Speed (CS) 

This refers to the amount of time taken to compress the data. 

This metric is particularly important in scenarios where time 

constraints are critical, such as video conferencing or real-

time media streaming. Faster compression speeds are 

essential to ensure smooth operation, especially in systems 

that handle large volumes of data. The formula to calculate 

compression speed is: 

Compression Speed (CS) =
Size of Data

Time Taken to Compress
   (3) 

For example, if a 1 GB file is compressed in 2 seconds, the 

compression speed would be 0.5 GB per second. The speed of 

compression is often inversely related to the compression 

ratio, with algorithms that offer higher compression ratios 

tending to take more time. 

 

Decompression speed (DS) 

This refers to the time required to restore the compressed data 

to its original form. This metric is especially important in real-

time applications where rapid data retrieval is essential. 

Efficient decompression ensures that the system can quickly 

serve the decompressed data without causing delays in 

playback or processing. The formula for decompression speed 

is similar to compression speed: 

Decompression speed (DS) =
Size of Data

Time Taken to Decompress
    

     (4) 

As with compression speed, decompression speed should be 

optimized for applications like cloud storage and media 

streaming where data must be readily accessible (Sujatha & 

Selvam, 2022). 

 

Bits per Pixel (BPP) 

This Represents the average number of bits required to store 

each pixel in a compressed image. It provides insights into 

how compactly image data is stored, with lower values 

indicating better compression. It is given as: 

BPP =
Size of Compressed Image (in bits)

Time Number  of pixels in Image
   (5) 

 

RESULTS AND DISCUSSION 

Results of the Utilised Algorithms  

This section presents and discusses the results of the utilized 

algorithms (RLE, LZW and Huffman) using various metrics. 

 

Table 3: Results of Run-length Encoding (RLE) 

Image Name 
Original 

Size (KB) 

Num 

Characters 

Compressed 

Size (KB) 

Compression 

Ratio 

Compression 

Time (s) 
Bits/Pixel 

Decompression 

Time (s) 

A_Man .jpg 129.40 220,314 121.88 1.0617 0.0412 4.5319 0.0852 

android_logo.png 002.09 016,384 001.32 1.5895 0.0020 0.6577 0.0036 

bird.jpg 133.71 218,988 162.94 0.8206 0.0468 6.0953 0.0962 

facebook_logo.png 002.00 016,384 000.83 2.3895 0.0019 0.4175 0.0034 

location_logo .png 002.32 016,384 001.06 2.1917 0.0253 0.5298 0.0377 

Radio.png 006.22 050,625 011.39 0.5456 0.0452 1.8435 0.0659 

search.png 002.00 050,625 001.63 1.2237 0.0061 0.2642 0.0107 

twitter_Icon.png 002.23 016,384 001.02 2.1990 0.0020 0.5078 0.0035 

wifi_Icon.png 002.38 016,384 001.17 2.0350 0.0020 0.5859 0.0035 

Zebra.png 002.45 014,568 001.24 0.9368 0.0019 0.6577 0.0206 

AVERAGE 028.48 063,704 030.448 1.4993 0.0174 1.6091 0.0330 
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The result in table 3 indicate that Run-Length Encoding 

(RLE) achieved compression ratios average of 1.4992, 

performing better on smaller images. Its compression time 

average of 0.0174 seconds, demonstrating fast processing, 

especially for simple images. However, bits per pixel values 

varied from 0.2642 to 6.0953, highlighting inconsistent data 

retention. This suggests that while RLE is effective for images 

with large uniform areas, it is less suitable for complex images 

with diverse patterns.  

 

Table 4: Results of Lempel-Ziv-Welch (LZW) 

Image Name 
Original 

Size (KB) 

Num 

Characters 

Compressed 

Size (KB) 

Compression 

Ratio 

Compression 

Time (s) 
Bits/Pixel 

Decompression 

Time (s) 

A_Man .jpg 129.40 220,314 53.87 2.4020 0.0964 2.0032 0.0964 

android_logo.png 002.09 016,384 01.27 1.6482 0.0055 0.6343 0.0055 

bird.jpg 133.71 218,988 78.74 1.6982 0.1095 2.9454 0.1095 

facebook_logo.png 002.00 016,384 00.85 2.3510 0.0053 0.4243 0.0053 

location_logo .png 002.32 016,384 01.11 2.0878 0.0293 0.5562 0.0293 

Radio.png 006.22 050,625 06.15 1.0113 0.0356 0.9946 0.0356 

search.png 002.00 050,625 01.69 1.1793 0.0170 0.2742 0.0170 

twitter_Icon.png 002.23 016,384 01.09 2.0420 0.0054 0.5469 0.0054 

wifi_Icon.png 002.38 016,384 01.22 1.9474 0.0054 0.6123 0.0054 

Zebra.png 002.43 015,345 01.43 1.3940 0.0065 0.5981 0.0245 

AVERAGE 28.478 063,782 14.742 1.7761 0.0316 0.9590 0.0334 

 

The result in table 4 reveals that, the Lempel-Ziv-Welch 

(LZW) algorithm achieved compression ratios average of 

1.7761, demonstrating its effectiveness in reducing file sizes 

across different image types. Compression and 

decompression times were stable, ranging from 0.0055 to 

0.1095 seconds, indicating efficient processing. With bits per 

pixel values between 0.2742 and 2.9454, LZW maintains a 

balance between compression efficiency and image quality, 

making it suitable for applications requiring both data 

reduction and detail preservation. 

 

Table 5: Results of Huffman Coding Algorithm 

Image Name 
Original 

Size (KB) 

Num 

Characters 

Compressed 

Size (KB) 

Compression 

Ratio 

Compression 

Time (s) 
Bits/Pixel 

Decompression 

Time (s) 

A_Man .jpg 129.40 220,314 121.17 1.0680 0.0632 4.5054 0.0632 

android_logo.png 002.09 016,384 003.84 0.5442 0.0051 1.9210 0.0051 

bird.jpg 133.71 218,988 182.28 0.7335 0.0606 6.8186 0.0606 

facebook_logo.png 002.00 016,384 003.11 0.6406 0.0047 1.5576 0.0047 

location_logo .png 002.32 016,384 003.56 0.6526 0.0253 1.7795 0.0253 

Radio.png 006.22 050,625 017.93 0.3466 0.0134 2.9019 0.0135 

search.png 002.00 050,625 007.55 0.2646 0.0131 1.2220 0.0131 

twitter_Icon.png 002.23 016,384 003.59 0.6218 0.0054 1.7963 0.0054 

wifi_Icon.png 002.38 016,384 003.54 0.6746 0.0051 1.7676 0.0051 

Zebra.png 003.47 015,478 004.23 0.6418 0.0136 1.5467 0.0049 

AVERAGE  028.582 063,795 035.08 0.6188 0.0210 2.5817 0.0201 

 

In table 5 above, the Huffman Coding algorithm achieved 

compression ratios average of 0.6188, performing more 

efficiently on smaller images. Compression times ranged 

from 0.0047 to 0.0632 seconds, indicating relatively fast 

processing. With bits per pixel values average of 2.5817, the 

algorithm balances compression efficiency with image detail 

retention. This makes Huffman Coding a suitable choice for 

reducing file sizes while preserving essential image details. 

 

 
Figure 1: Comparison of the employed Methods (RLE, LZW and Huffman) Based on Compression Ratio 
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The comparison of compression methods based on 

compression ratio in figure 1 shows that LZW performed the 

best, with values ranging from 1.0113 to 2.4020, 

demonstrating its strong ability to reduce file sizes. RLE 

achieved moderate compression ratios, particularly for 

simpler images, with values between 0.5456 and 2.3895. 

Huffman Coding had the lowest compression ratios, ranging 

from 0.2646 to 1.0680, making it the least efficient among the 

three. The results highlight LZW as the most effective method 

for achieving higher compression ratios. 

 

 
Figure 2: Compression of Compression Methods Based On images in bit/pixel 

 

The comparison of compression methods based on bits per 

pixel in figure 2 highlights notable differences in 

performance. LZW achieved the lowest bits per pixel values, 

ranging from 0.2742 to 2.9454, indicating efficient 

compression while preserving image detail. RLE had higher 

values, between 0.2642 and 6.0953, reflecting its lower 

efficiency in maintaining image quality. Huffman Coding 

recorded the highest bits per pixel values, from 1.2220 to 

6.8186, suggesting it retains more detail despite compressing 

the image. These findings confirm LZW as the most effective 

method for balancing data reduction and image quality. 

 

 
Figure 3: Compression of Compression Methods Based on Images Compression Time (s) 

 

The comparison of image compression methods based on 

compression time in figure 4 reveals notable differences in 

speed. RLE was the fastest, with compression times ranging 

from 0.0019 to 0.0468 seconds, making it ideal for 

applications requiring quick processing. LZW had longer 

compression times, between 0.0053 and 0.1095 seconds, 

reflecting a trade-off between efficiency and speed. Huffman 

Coding fell in between, with times ranging from 0.0047 to 

0.0632 seconds, offering a balanced performance. These 

findings highlight RLE’s advantage in speed-critical 

applications, while LZW and Huffman may be preferable 

when compression quality is a priority. 

 

Comparative Analysis with Existing Works 

In this section, the results of the compression size and 

compression ratio obtained in this paper is compared with the 

results in the existing works.  
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Table 6: Comparison of the Results of the Adopted Run-length Encoding (RLE) with the Result of the Existing Works 

S/N Authors 
Compression Size Compression Ratio 

RLE LZW Huffman RLE LZW Huffman 

1 Agber et al. (2024) 3,986 8,566 6,120 0.0180 0.3767 0.0656 

2 Azeez & Lasisi (2017) 1,198,026 344,264 293,486 770.043 74.6742 119.5180 

3 Alarabeyyat et al. (2012) - - - 1.1561 1.4451 1.1603 

4 Adopted Method 30.448 14.7420 35.0800 1.4993 1.7761 0.6188 

 

From the result in table 6, Agber et al (2024) revealed that, 

RLE algorithm gives a smaller image compression size than 

other algorithms. This result contradicts the outcomes in the 

work of Azeez and Lasisi (2017) which revealed Huffman as 

the algorithm that gives smaller image compression size. The 

results from the existing works did not tally with the result 

from the adopted method which revealed LZW with the 

ability to give smaller image compression size. The 

differences in the results of both the existing works and the 

method adopted could be as a result of the differences in the 

nature of the image datasets used by different authors. 

Similarly, in terms of the Compression ratio, while Agber et 

al (2024) revealed RLE with smaller compression ratio and 

LZW with larger compression ratio, Azeez and Lasisi (2017) 

revealed LZW with smaller and RLE with larger compression 

ratio. This variation in their result could be associated with 

diverse datasets utilized by different authors.  However, this 

paper and Alarabeyyat et al. (2012) adopted small size images 

therefore, both revealed Huffam coding and LZW with 

smaller and larger compression ratio respectively. 

 

CONCLUSION 

This paper systematically compared the performance of Run-

Length Encoding (RLE), Huffman Coding, and Lempel-Ziv-

Welch (LZW) algorithms in compressing grayscale PNG and 

JPG images. The findings revealed that LZW consistently 

outperformed the other methods in compression ratio and bits 

per pixel, making it the most efficient in reducing file size 

while maintaining image quality. RLE demonstrated the 

fastest compression times, making it highly suitable for real-

time applications, but its effectiveness was limited to images 

with large areas of uniform colour. Huffman Coding, though 

maintaining a balance between efficiency and detail 

preservation, had the lowest compression ratios, making it 

less suitable for applications requiring significant file size 

reduction. Overall, the results highlight LZW as the best 

choice for achieving high compression efficiency with 

minimal quality loss, while RLE is preferred for scenarios 

requiring rapid processing. By comparison with existing 

works, the choice of the algorithm depend on the type and 

nature of images under consideration. Future research could 

explore hybrid approaches that integrate the strengths of these 

algorithms to enhance compression efficiency across various 

image types. 
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