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ABSTRACT 

The analysis of multigroups—multisets defined over group structures—necessitates robust mathematical 

frameworks. Singh's dressed epsilon notation offers an elegant approach to this analysis by extending 

traditional set membership concepts to accommodate multiplicity within sets. This notation introduces a 

refined membership symbol that conveys additional information about the multiplicity of elements within a 

multiset. By employing Singh's dressed epsilon method, one can more effectively verify properties of 

multigroups. This approach not only streamlines the representation of multigroup characteristics but also 

facilitates deeper insights into their structural properties, thereby advancing the theory.  
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INTRODUCTION 

The concept of multigroup extends classical group theory by 

incorporating the framework of multisets, allowing for 

elements to appear multiple times within the algebraic 

structure. This generalization provides a richer context for 

modeling and analyzing systems where multiplicity plays a 

crucial role. 

In traditional group theory, a group is defined as a set 

equipped with a binary operation that satisfies closure, 

associativity, the existence of an identity element, and the 

existence of inverses for each element. Multigroups relax 

certain constraints of these axioms to accommodate the 

multiplicity inherent in multisets. Specifically, while the 

binary operation in a group produces a single output for any 

pair of elements, in a multigroup, this operation can yield 

multiple outputs, reflecting the possible multiple occurrences 

of elements. This approach aligns with the natural 

representation of multisets, where the focus is on the 

frequency of element occurrences rather than their mere 

presence or absence. 

The development of multigroup theory offers a more nuanced 

understanding of algebraic structures where element 

repetition is significant. This has implications for various 

fields, including combinatorics, computer science, and 

systems modeling, where the concept of multiplicity is 

essential. By integrating the principles of multisets into group 

theory, multigroups provide a robust framework for 

addressing problems that involve repeated interactions or 

elements. 

In the study of multigroups, traditional analyses often rely on 

cardinality functions, to represent the number of occurrences 

of an element within a multiset. However, this approach can 

become cumbersome, especially when the exact multiplicity 

of elements is the primary concern Nazmul et al. (2013) and 

Peter et al. (2024). 

To address these challenges, Dasharath Singh introduced the 

dressed epsilon notation (∈₊), which offers a more intuitive 

and flexible framework for analyzing multigroups (Singh 

2006). This notation allows for direct expression of element 

membership and multiplicity without the need for auxiliary 

cardinality functions. 

The dressed epsilon notation enables concise expressions of 

membership conditions. For example, stating that an element 

𝑥 appears in a multiset 𝐴 at least 𝑘 times is directly written as 

𝑥 ∈+
𝑛 𝐴, eliminating the need for additional cardinality 

functions. Utilizing the ∈+ and ∈𝑘 notations leads to more 

straightforward and symbolic proofs. This notation aligns 

closely with classical set theory, facilitating the extension of 

traditional set-theoretic results to multisets. It allows for the 

application of established set operations and properties within 

the context of multisets without necessitating a shift to 

function-based cardinality approaches. 

 

Theoretical Framework 

This study adopts Singh’s dressed epsilon notation as an 

alternative approach to the classical cardinality-based 

representation of multisets. As opposed to the method 

employed by Namzul et al. (2013), which primarily relies on 

counting elements through explicit cardinality functions, our 

approach focuses on direct membership expressions to 

characterize multigroup structures. 

 

MATERIALS AND METHODS 

The methodology consists of the following key steps:  

 

Reformation of multigroup properties 

We systematically re-examine fundamental multigroup 

properties that were previously established using the 

cardinality approach. Each of these properties is reinterpreted 

in the dressed epsilon framework, ensuring that the new 

notation preserves the logical and structural integrity of the 

original formulations. 

 

Proof Synthesis 

For completeness, we construct new proofs of key multigroup 

results using Singh’s dressed epsilon notation. Where 

applicable, we reference previously established propositions 

to ensure coherence and logical continuity. The emphasis is 

on demonstrating that the dressed epsilon approach is not only 

valid alternative but also provides additional clarity and 

flexibility in extending multigroup theory. 

 

Definition of Terms  

Definition 1 (Multiset) 

Let 𝐷 be a set. A multiset 𝑀 over 𝐷 is a collection of elements 

from 𝐷, where repetitions are allowed. The set 𝐷 is called the 

ground set or generic set of the class of all multisets 

containing elements from 𝐷. Different representations of 

multisets exist (Singh et al., 2007). 

Definition 2 (Submultiset) 
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Let 𝐴 and 𝐵 be two multisets. 𝐴 is called a submultiset of 𝐵, 

written 𝐴 ⊆ 𝐵, if: 

∀𝑧∀𝑘(𝑧 ∈𝑘 𝐴 ⟹ 𝑧 ∈+
𝑛 𝐵)      (1) 

This means that every element in 𝐴 appears in 𝐵 at least as 

many times as it appears in 𝐴 (Singh, 2006). 

Definition 3 (Union) 

Let 𝑀 and 𝑁 be two multisets over a ground set 𝐷. The union 

of 𝑀 and 𝑁, denoted 𝑀 ∪ 𝑁, is the multiset defined by: 

𝑥 ∈𝑘 (𝑀 ∪ 𝑁) ⟺ 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 with 𝑘 =
max(𝑚, 𝑛).     (2) 

That is, the multiplicity of each element in the union is the 

maximum of its multiplicities in 𝑀 and 𝑁. 

Definition 4 (Intersection) 

Let 𝑀 and 𝑁 be two multisets over a ground set 𝐷. The 

intersection of 𝑀 and 𝑁, denoted 𝑀 ∩ 𝑁, is the multiset 

defined by: 

𝑥 ∈𝑘 (𝑀 ∩ 𝑁) ⟺ 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 with 𝑘 =
min(𝑚, 𝑛).     (3) 

That is, the multiplicity of each element in the intersection is 

the mininum of its multiplicities in 𝑀 and 𝑁. 

Definition 5 (Sum or Additive Union) 

Let 𝑀 and 𝑁 be two multisets over a ground set 𝐷. The sum 

(or additive union) of 𝑀 and 𝑁, denoted 𝑀 ⊎ 𝑁, is the multiset 

defined by: 

𝑥 ∈𝑘 (𝑀 ⊎ 𝑁) ⟺ 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 with 𝑘 = 𝑚 + 𝑛.  
     (4) 

That is, the multiplicity of each element in the sum is the total 

number of times it appears in in both 𝑀 and 𝑁.  

See Singh (2006), Singh et. al (2007) and Singh et al. (2008). 

Definition 6 Let 𝐴, 𝐵 be multisets. Define 𝐴 ∘ 𝐵 and 𝐴−1 as 

follows:  

𝑥 ∈𝑛 (𝐴 ∘ 𝐵)  ⟺

𝑥 ∈𝑛  ⋁{𝑦 ∈𝑚 𝐴 ∧ 𝑧 ∈𝑘 𝐵|𝑦, 𝑧 ∈ 𝑋, 𝑦𝑧 = 𝑥}.  (5) 

This is the membership condition. It states that an element 𝑥 

belongs to the multiset (𝐴 ∘ 𝐵) with multiplicity 𝑛 if and only 

if there exist elements 𝑦 from 𝐴 and 𝑧 from 𝐵 such that 𝑦𝑧 

equals 𝑥. 

𝑥 ∈𝑛 𝐴−1 ⟺ 𝑥−1 ∈𝑛 𝐴.      (6) 

In other words, an element 𝑥 belongs to the inverse multiset 

𝐴−1 with multiplicity 𝑛 if and only if 𝑥−1 belongs to 𝐴 with 

the same multiplicity. 

Definition 7 Let 𝑋 be a group. A multiset 𝐺 over 𝑋 is said to 

be a multigroup over 𝑋 if the count function 𝐺 or 𝐶𝐺 satisfies 

the following two conditions: 

𝑥 ∈𝑚 𝐺 ∧ 𝑦 ∈𝑛 𝐺 ⟹ 𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐺 ∀𝑥, 𝑦 ∈ 𝑋;` 
𝑥 ∈𝑛 𝐺 ⟹ 𝑥−1 ∈+

𝑛 𝐺 ∀𝑥 ∈ 𝑋;` 
For example, consider the cyclic group of order 4 𝑋 =
{𝑒, 𝑎, 𝑎2, 𝑎3} be the cyclic group of order 4, where 𝑎4 = 𝑒. Let 

the multiset 𝐺 = {𝑒, 𝑒, 𝑒, 𝑎, 𝑎, 𝑎2, 𝑎2, 𝑎3, 𝑎3} be a multiset 

over 𝑋. The membership conditions are given as follows: 

Multiplication conditions: 

For all 𝑥, 𝑦 ∈ 𝑋, we verify that the multiplication condition 

𝑥 ∈𝑚 𝐺 ∧ 𝑦 ∈𝑛 𝐺 ⟹ 𝑥𝑦 ∈+
(𝑚∧𝑛)

𝐺 ∀𝑥, 𝑦 ∈ 𝑋 (7) 

holds: 

𝑒𝑎 ∈2 𝐺, since 𝑎 ∈3 𝐺 and 𝑒 ∈3 𝐺, so 𝑒𝑎 = 𝑎 ∈+
(3∧3)

𝐺. 

𝑒𝑎2 ∈2 𝐺, since 𝑎2 ∈2 𝐺 and 𝑒 ∈3 𝐺, so 𝑒𝑎2 = 𝑎2 ∈+
(3∧2)

𝐺. 

𝑒𝑎3 ∈2 𝐺, since 𝑎3 ∈2 𝐺 and 𝑒 ∈3 𝐺, so 𝑒𝑎3 = 𝑎3 ∈+
(3∧2)

𝐺. 

𝑎𝑎2 ∈2 𝐺, since 𝑎 ∈3 𝐺 and 𝑎2 ∈2 𝐺, so 𝑎𝑎2 = 𝑎3 ∈+
(3∧2)

𝐺. 

𝑎𝑎3 ∈2 𝐺, since 𝑎 ∈3 𝐺 and 𝑎3 ∈2 𝐺, so 𝑎𝑎3 = 𝑒 ∈+
(3∧2)

𝐺. 

𝑎2𝑎2 ∈2 𝐺, since 𝑎2 ∈2 𝐺 so 𝑎2𝑎2 = 𝑒 ∈+
(2∧2)

𝐺. 

𝑎2𝑎3 ∈2 𝐺, since 𝑎2 ∈2 𝐺 and 𝑎3 ∈2 𝐺, so 𝑎2𝑎3 = 𝑎 ∈+
(2∧2)

𝐺. 

𝑎3𝑎3 ∈2 𝐺, since 𝑎3 ∈2 𝐺, so 𝑎3𝑎3 = 𝑎2 ∈+
(2∧2)

𝐺. 
Inversion condition 

For all 𝑥 ∈ 𝑋, we verify: 

𝑥 ∈𝑛 𝐺 ⟹ 𝑥−1 ∈+
𝑛 𝐺   (8) 

𝑎−1 = 𝑎3, and 𝑎3 ∈2 𝐺 ⟹ 𝑎−1 ∈+
2 𝐺 

(𝑎2)−1 = 𝑎2 ∈+
2 𝐺 

(𝑎3)−1 = 𝑎, and 𝑎 ∈2 𝐺 ⟹ (𝑎3)−1 ∈+
2 𝐺 

𝑒−1 = 𝑒, and 𝑒 ∈3 𝐺 ⟹ 𝑒−1 ∈+
3 𝐺 

Since both conditions hold, we conclude that 𝐺 is a 

multigroup over 𝑋. 

 

RESULTS AND DISCUSSION  

Throughout this section, we let 𝑋 be a group and 𝑒 be the 

identity element of X. Also throughout the rest of the paper 

we denote by 𝑀𝐺(𝑋) the set of all multigroups over a group 

𝑋: 

We now prove the following propositions in the sense of 

Singh’s dressed epsilon notation. 

Proposition 1 Let 𝐴 𝑎𝑛𝑑 𝐵 be multisets. Then 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵)  ⟺ 𝑥 ∈𝑛  ⋁ (𝑦 ∈𝑚 𝐴 ∧ 𝑦−1𝑥 ∈𝑘 𝐵)𝑦∈𝑋    

     (9) 

⟺ 𝑥 ∈𝑛 ⋁ (𝑥𝑦−1 ∈𝑚 𝐴 ∧ 𝑦 ∈𝑘 𝐵)𝑦∈𝑋 , ∀𝑥 ∈ 𝑋   (10) 

Proof 

By definition, 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵)  ⟺

𝑥 ∈𝑛  ⋁{𝑦 ∈𝑚 𝐴 ∧ 𝑧 ∈𝑘 𝐵|𝑦, 𝑧 ∈ 𝑋, 𝑦𝑧 = 𝑥}.  (11) 

This means 𝑥 appears in (𝐴 ∘ 𝐵) exactly 𝑛 times if there exists 

elements 𝑦, 𝑧 ∈ 𝑋 such that: 

𝑦 appears in 𝐴 at least 𝑚 times, 𝑧 appears in 𝐵 at least 𝑘 times 

and 𝑦𝑧 = 𝑥. Substituting 𝑧 = 𝑦−1𝑥 since 𝑦𝑧 = 𝑥, we can 

rewrite 𝑧 as:  

𝑧 = 𝑦−1𝑥.       (12) 

Thus, the condition becomes: 𝑦 ∈𝑚 𝐴 and 𝑦−1𝑥 ∈𝑘 𝐵. 

Taking the supremum over all possible 𝑦, we get: 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵)  ⟺ 𝑥 ∈𝑛  𝑥 ∈𝑛 ⋁ (𝑦 ∈𝑚 𝐴 ∧ 𝑦−1𝑥 ∈𝑘 𝐵)𝑦∈𝑋 . 

     (13) 

Alternatively, taking the supremum over all 𝑦: 

⟺ 𝑥 ∈𝑛 ⋁ (𝑥𝑦−1 ∈𝑚 𝐴 ∧ 𝑦 ∈𝑘 𝐵)𝑦∈𝑋 , ∀𝑥 ∈ 𝑋   (14) 

Therefore,  

𝑥 ∈𝑛 (𝐴 ∘ 𝐵)  ⟺ 𝑥 ∈𝑛  𝑥 ∈𝑛 ⋁ (𝑦 ∈𝑚 𝐴 ∧𝑦∈𝑋

𝑦−1𝑥 ∈𝑘 𝐵) ⟺ 𝑥 ∈𝑛 ⋁ (𝑥𝑦−1 ∈𝑚 𝐴 ∧ 𝑦 ∈𝑘 𝐵)𝑦∈𝑋 , ∀𝑥 ∈ 𝑋 

     (15) 

Proposition 2 For any multiset 𝐴  

(𝐴−1)−1 = 𝐴       (16) 

Proof 

By definition, the inverse of 𝐴 satisfies: 

𝑥 ∈𝑛 𝐴−1 ⟺ 𝑥−1 ∈𝑛 𝐴.      (17) 

This means that 𝑥 appears in 𝐴−1 exactly 𝑛 times if and only 

if its inverse 𝑥−1 appears in 𝐴 exactly 𝑛 times. 

Taking the inverse of 𝐴−1, we get 

𝑦 ∈𝑚 (𝐴−1)−1 ⟺ 𝑦−1 ∈𝑚 𝐴−1.    (18) 

Since (𝑦−1)−1 = 𝑦, it follows that: 

𝑦 ∈𝑚 (𝐴−1)−1 ⟺ 𝑦 ∈𝑚 𝐴      (19) 

Thus, (𝐴−1)−1 = 𝐴 

Proposition 3 For any multiset 𝐴, 𝐵  

𝐴 ⊆ 𝐵 ⟹ 𝐴−1 ⊆ 𝐵−1   (20) 

Proof 

Suppose 𝑥 ∈𝑛 𝐴 ⟺ 𝑥 ∈𝑚 𝐵 for some 𝑚 ≥ 𝑛. 
By the definition of the inverse multiset, 𝑥 ∈𝑛 𝐴−1 ⟺
𝑥−1 ∈𝑛 𝐴 

Since 𝐴 ⊆ 𝐵, we substitute 𝑥−1 in the inclusion condition: 

𝑥−1 ∈𝑛 𝐴 ⟹ 𝑥−1 ∈𝑚 𝐵, for some 𝑚 ≥ 𝑛.  

Using the definition of 𝐵−1, lwe get 

𝑥 ∈𝑛 𝐴−1 ⟹ 𝑥 ∈𝑚 𝐵−1, for some 𝑚 ≥ 𝑛.  

Thus, every element in 𝐴−1 appears in 𝐵−1 at last as many 

times. Thus, 

𝐴−1 ⊆ 𝐵−1  
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Proposition 4 For any family of multisets  𝐴𝑖  

(⋃ 𝐴𝑖𝑖∈𝐼 )−1 = ⋃ 𝐴𝑖
−1

𝑖∈𝐼    (21) 

Proof 

The union of multisets can be defined as 

𝑥 ∈𝑛 ⋃ 𝐴𝑖𝑖∈𝐼 ⟺ 𝑥 ∈𝑚 𝐴𝑗  for some 𝑗 ∈ 𝐼, where 𝑚 ≥ 𝑛  

Taking the inverse of the union, we use the definition of the 

inverse operations: 

𝑥 ∈𝑛 (⋃ 𝐴𝑖𝑖∈𝐼 )−1 ⟺ 𝑥−1 ∈𝑛 ⋃ 𝐴𝑖𝑖∈𝐼     (22) 

Using the definition of union, we substitute: 

𝑥−1 ∈𝑛 ⋃ 𝐴𝑖𝑖∈𝐼 ⟺ 𝑥−1 ∈𝑚 𝐴𝑗  for some 𝑗 ∈ 𝐼, where 𝑚 ≥

𝑛.      (23) 

Applying the inverse definition again, we get: 

𝑥 ∈𝑛  𝐴𝑗
−1 for some 𝑗 ∈ 𝐼.    (24) 

Since this must hold for some 𝑗, it follows that: 

𝑥 ∈𝑛 ⋃ 𝐴𝑖
−1

𝑖∈𝐼         (25) 

Proposition 5 For any family of multisets  𝐴𝑖  

(⋃ 𝐴𝑖𝑖∈𝐼 )−1 = ⋃ 𝐴𝑖
−1

𝑖∈𝐼       (26) 

Proof: 

By the definition of multiset intersection, an element 𝑥 

belongs to ⋂ 𝐴𝑖𝑖∈𝐼  at least  

𝑛 times if and only if it belongs to every 𝐴𝑖 at least 𝑛 times. 

That is: 

𝑥 ∈+
𝑛 ⋂ 𝐴𝑖𝑖∈𝐼 ⟺ ∀𝑖 ∈ 𝐼, 𝑥 ∈+

𝑛 𝐴𝑖     (27) 

Appling the definition of multiset inversion: 

𝑥 ∈+
𝑛 𝐴𝑖

−1 ⟺ 𝑥−1 ∈+
𝑛 𝐴𝑖 .      (28) 

Using this on the left hand side: 

𝑥 ∈+
𝑛 (⋂ 𝐴𝑖𝑖∈𝐼 )−1 ⟺ 𝑥−1 ∈+

𝑛 ⋂ 𝐴𝑖𝑖∈𝐼     (29) 

By the definition of intersection: 

𝑥−1 ∈+
𝑛 ⋂ 𝐴𝑖𝑖∈𝐼 ⟺ ∀𝑖 ∈ 𝐼, 𝑥 ∈+

𝑛 𝐴𝑖    (30) 

Applying the inversion to 𝐴𝑖: 

∀𝑖 ∈ 𝐼, 𝑥−1 ∈+
𝑛 𝐴𝑖 ⟺ ∀𝑖 ∈ 𝐼, 𝑥 ∈+

𝑛 𝐴𝑖
−1    (31) 

Proposition 6 For any two multisets  𝐴, 𝐵,  
(𝐴 ∘ 𝐵)−1 = 𝐵−1 ∘ 𝐴−1     (32) 

Proof 

An element 𝑥 belongs to 𝐴 ∘ 𝐵 exactly 𝑛 times if and only if 

there exists elements 𝑦, 𝑧 ∈ 𝑋 such that 𝑦𝑧 = 𝑥 and: 

𝑥 ∈𝑛  𝐴 ∘ 𝐵 ⟺ ⋁ (𝑦 ∈𝑛 𝐴 ∧ 𝑧 ∈𝑛 𝐵).𝑦,𝑧∈𝑋,𝑦𝑧=𝑥   (33) 

Applying the definition of multiset inversion: 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵)−1 ⟺ ⋁ (𝑦 ∈𝑛 𝐴 ∧ 𝑧 ∈𝑛 𝐵).𝑦,𝑧∈𝑋,𝑦𝑧=𝑥   

Applying the inversion property: 

𝑦 ∈𝑛 𝐴 ⟺ 𝑦−1 ∈𝑛 𝐴−1, 𝑧 ∈𝑛 𝐵 ⟺ 𝑧−1 ∈𝑛 𝐵−1. (34) 

Therefore, 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵)−1 ⟺ ⋁ (𝑦−1 ∈𝑛 𝐴−1 ∧𝑦,𝑧∈𝑋,𝑧−1𝑦−1=𝑥

𝑧−1 ∈𝑛 𝐵−1).    (35) 

In other words, 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵)−1 ⟺ ⋁ (𝑢 ∈𝑛 𝐴−1 ∧ 𝑣 ∈𝑛 𝐵−1).𝑢,𝑣∈𝑋,𝑢𝑣=𝑥  

     (36) 

which  is exactly the definition of : 

𝑥 ∈𝑛 (𝐵−1 ∘ 𝐴−1)      (37) 

Hence,  
(𝐴 ∘ 𝐵)−1 = 𝐵−1 ∘ 𝐴−1   (38) 

Proposition 7 For any three multisets  𝐴, 𝐵, C, 
(𝐴 ∘ 𝐵) ∘ 𝐶 = 𝐴 ∘ (𝐵 ∘ 𝐶)   (39) 

Proof 

By the definition of multiset multiplication, an element 𝑥 

belongs to 𝐴 ∘ 𝐵 exactly 𝑛 times if and only if there exists 

𝑦, 𝑧 ∈ 𝑋 such that 𝑦𝑧 = 𝑥 and  

𝑥 ∈𝑛  𝐴 ∘ 𝐵 ⟺ ⋁ (𝑦 ∈𝑛 𝐴 ∧ 𝑧 ∈𝑛 𝐵).𝑦,𝑧∈𝑋,𝑦𝑧=𝑥  (40) 

Applying this to (𝐴 ∘ 𝐵) ∘ 𝐶 we have: 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵) ∘ 𝐶 ⟺ ⋁ (𝑤 ∈𝑛 𝐴 ∘ 𝐵 ∧ 𝑣 ∈𝑛 𝐶).𝑤,𝑣∈𝑋,𝑤𝑣=𝑥    
     (41) 

Expanding 𝑤 ∈𝑛 𝐴 ∘ 𝐵: 
𝑥 ∈𝑛 (𝐴 ∘ 𝐵) ∘ 𝐶 ⟺ ⋁ (𝑦 ∈𝑛 𝐴 ∧𝑤,𝑣∈𝑋,𝑤𝑣=𝑥 𝑦,𝑧∈𝑋,𝑦𝑧=𝑤

𝑧 ∈𝑛 𝐵 ∧ 𝑣 ∈𝑛 𝐶).      (42) 

Since 𝑦𝑧 = 𝑤 and 𝑤𝑣 = 𝑥, we substitute 𝑦𝑧 for 𝑤: 
𝑥 ∈𝑛 (𝐴 ∘ 𝐵) ∘ 𝐶 ⟺ ⋁ (𝑦 ∈𝑛 𝐴 ∧ 𝑧 ∈𝑛 𝐵 ∧𝑦,𝑧,𝑣∈𝑋,(𝑦𝑧)𝑣=𝑥

𝑣 ∈𝑛 𝐶).     (43) 

Considering that multiplication in groups is associative: 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵) ∘ 𝐶 ⟺ ⋁ (𝑦 ∈𝑛 𝐴 ∧ 𝑧 ∈𝑛 𝐵 ∧𝑦,𝑧,𝑣∈𝑋,𝑦(𝑧𝑣)=𝑥

𝑣 ∈𝑛 𝐶).      (44) 

𝑥 ∈𝑛 (𝐴 ∘ 𝐵) ∘ 𝐶 ⟺ ⋁ (𝑦 ∈𝑛 𝐴 ∧ 𝑞 ∈𝑛 𝐵 ∘ 𝐶).𝑦,𝑞∈𝑋,𝑦𝑞=𝑥    

     (45) 
(𝐴 ∘ 𝐵) ∘ 𝐶 = 𝐴 ∘ (𝐵 ∘ 𝐶)     (46) 

Proposition 8 For any multigroup 𝐴 over a group 𝑋, we have 

(𝑒 ∈𝑚 𝐴 ⟹ 𝑥 ∈𝑘 𝐴 ∀𝑥 ∈ 𝑋)  ⟹ 𝑚 ≥ 𝑘   (47) 

Proof 

Since 𝐴 is a multigroup over 𝑋, it satisfies the multiplication 

condition: 

𝑥 ∈𝑘 𝐴 ∧ 𝑦 ∈𝑛 𝐴 ⟹ 𝑥𝑦 ∈+
(𝑛∧𝑘)

𝐴.    (48) 

Choose 𝑦 = 𝑥−1 and from the Inverse condition 𝑥 ∈𝑘 𝐴 ⟹
𝑥−1 ∈+

𝑘 𝐴 ∀𝑥 ∈ 𝑋; 
 we get: 

𝑥 ∈𝑘 𝐴 ∧ 𝑥−1 ∈+
𝑘 𝐴 ⟹ 𝑒 ∈+

𝑘 𝐴.   (49) 

It follows that : 

(𝑥 ∈𝑘 𝐴 ∧ 𝑥−1 ∈𝑚 𝐴 ⟹ 𝑒 ∈𝑚 𝐴) ⟹ 𝑚 ≥ 𝑘.  (50) 

Hence,  

(𝑒 ∈𝑚 𝐴 ⟹ 𝑥 ∈𝑘 𝐴 ∀𝑥 ∈ 𝑋)  ⟹ 𝑚 ≥ 𝑘  (51) 

Proposition 9 For any multigroup 𝐴 over a group 𝑋, 

(𝑥 ∈𝑝 𝐴 ⟹ 𝑥𝑛 ∈𝑞 𝐴 ∀𝑥 ∈ 𝑋)  ⟹ 𝑞 ≥ 𝑝  (52) 

Proof 

The proof is by induction on 𝑛. The statement is true for 𝑛 =
1 since 

(𝑥 ∈𝑝 𝐴 ⟹ 𝑥1 ∈𝑞 𝐴 ∀𝑥 ∈ 𝑋) ⟹ 𝑞 = 𝑝 ⟹ 𝑞 ≥ 𝑝  
     (53) 

Suppose it is true for 𝑘. That is, 

(𝑥 ∈𝑝 𝐴 ⟹ 𝑥𝑘 ∈𝑞 𝐴 ∀𝑥 ∈ 𝑋) ⟹ 𝑞 ≥ 𝑝 … … … … (𝑖)  

Consider the multiplication condition: 

𝑥 ∈𝑝 𝐴 ∧ 𝑥𝑘 ∈𝑞 𝐴 ⟹ 𝑥𝑥𝑘 ∈+
(𝑝∧𝑞)

𝐴.  

Since 𝑞 ≥ 𝑝 from (𝑖), we get: 

𝑥 ∈𝑝 𝐴 ∧ 𝑥𝑘 ∈𝑞 𝐴 ⟹ 𝑥𝑘+1 ∈+
𝑝

𝐴 … … … … . (𝑖𝑖)  

Considering 𝑥𝑘+1 ∈𝑞 𝐴 and from the LHS of (ii), it follows 

that 𝑞 ≥ 𝑝. 

Hence,  

𝑥 ∈𝑝 𝐴 ⟹ 𝑥𝑘+1 ∈𝑞 𝐴 ⟹ 𝑞 ≥ 𝑝    (54) 

Thus: 

𝑥 ∈𝑝 𝐴 ⟹ 𝑥𝑛 ∈𝑞 𝐴 ⟹ 𝑞 ≥ 𝑝   (55) 

Proposition 10 For any multigroup 𝐴 over a group 𝑋, 

𝑥 ∈𝑝 𝐴 ⟹ 𝑥−1 ∈𝑞 𝐴 ⟹ 𝑞 = 𝑝    (56) 

Proof 

Let us apply the inverse condition to both 𝑥 and 𝑥−1: 

𝑥 ∈𝑝 𝐴 ⟹ 𝑥−1 ∈+
𝑝

𝐴 ∀𝑥 ∈ 𝑋;  (57) 

and 

𝑥−1 ∈𝑞 𝐴 ⟹ (𝑥−1)−1 ∈+
𝑞

𝐴 ∀𝑥−1 ∈ 𝑋;  (58) 

This implies  

𝑥 ∈𝑝 𝐴 ⟹ 𝑥−1 ∈+
𝑝

𝐴 ∀𝑥 ∈ 𝑋;     (59) 

and 

𝑥−1 ∈𝑞 𝐴 ⟹ 𝑥 ∈+
𝑞

𝐴 ∀𝑥−1 ∈ 𝑋;   (60) 

It follows that 𝑝 = 𝑞. 
Proposition 11 For any multigroup 𝐴 over a group 𝑋, 

𝐴 = 𝐴−1     (61) 

Proof 

We apply the inverse condition to 𝑥: 

𝑥 ∈𝑛 𝐴 ⟹ 𝑥−1 ∈+
𝑛 𝐴 ∀𝑥 ∈ 𝑋;    (62) 

This means that if 𝑥 belongs to 𝐴 exactly 𝑛 times, then its 

inverse 𝑥−1 belongs to 𝐴 at least 𝑛 times. Hence 𝐴 ⊆ 𝐴−1. 

Similarly applying the inverse condition to 𝑥−1, we get 𝐴−1 ⊆
𝐴. It follows that 𝐴 = 𝐴−1. 
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CONCLUSION 

In this work, we have demonstrated the effectiveness of 

Singh’s dressed epsilon notation in analyzing multigroups. By 

utilizing the notations ∈𝑛, ∈+  and ∈+
𝑛  we have been able to 

express membership in multisets and multigroups in a way 

that preserves structural clarity. One of the key advantages of 

this approach is its ability to seamlessly extend classical set-

theoretic results to multisets and multigroups while 

maintaining conceptual and notational coherence. Our results 

show that operations such as union, intersection, sum, and 

inverse in multigroups can be elegantly captured. Overall, 

Singh’s dressed epsilon notation offers a rigorous yet intuitive 

foundation for multiset and multigroup analysis, bridging the 

gap between classical set theory and non-Cantorian 

frameworks. The idea is to have a powerful tool that enhances 

both theoretical exploration and practical applications in 

multigroup theory, algebraic structures, and related 

mathematical disciplines. 
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