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ABSTRACT 

The rapid expansion of the Internet of Things (IoT) has vastly increased device connectivity but also expanded 

the attack surface. Resource constraints and heterogeneous protocols make traditional intrusion detection 

systems (IDS) inadequate: signature-based methods miss novel threats, and anomaly detectors yield high false 

positive rates. We propose a hybrid model integrating CNN, LSTM, and AdaBoost for robust IoT intrusion 

detection. Our two-stage pipeline begins with a hybrid CNN-LSTM model that automatically extracts spatial 

and temporal features from preprocessed network traffic. The CNN branch captures local attack patterns, while 

the LSTM branch models sequential traffic dependencies. We train on a combined UNSW-NB15 and RT-

IoT2022 dataset of 205,449 instances with 127 initial features. Rigorous preprocessing (missing-value 

imputation, one-hot encoding, Z-score normalization, correlation-based elimination) reduces inputs to a 20-

feature subset. In the second stage, we extract deep representations from the CNN-LSTM’s penultimate layer 

and input them to an AdaBoost classifier with decision-stump base learners. This ensemble adaptively weights 

features to boost accuracy while controlling computation. Experimental results show improved test 

performance: 99.70% accuracy, 99.90% precision, 99.78% recall, 99.84% F1-score, and a 2.43% false positive 

rate. These metrics outperform conventional IDS (e.g., [Churcher et al., 2021: 98.2% accuracy; Kumar et al., 

2021: 98.5% F1-score]). The model’s computational efficiency during training (64 steps/sec) suggests potential 

for scalability, though real-world deployment validation remains future work.  

 

Keywords: Internet of Things (IoT), Intrusion Detection System (IDS), Hybrid CNN–LSTM,  

AdaBoost Ensemble Learning, Spatiotemporal Feature Extraction 

 

INTRODUCTION 

The proliferation of the Internet of Things (IoT) is 

fundamentally reshaping societal and industrial landscapes, 

extending digital connectivity to billions of diverse physical 

objects, from smart home appliances to critical infrastructure 

components (Al-Fuqaha et al., 2015; Ibrahim et al., 2023; 

Jiang, 2022; Korneeva et al., 2021; Tiwari et al., 2024). While 

this hyper-connectivity drives innovation across sectors like 

healthcare, transportation, and manufacturing, it concurrently 

introduces an unprecedented attack surface (Obamehinti & 

Eguavoen, 2022; Stellios et al., 2018; Zarpelão et al., 2017). 

IoT ecosystems are inherently vulnerable due to the 

heterogeneity of devices, deployment of lightweight 

communication protocols, and significant constraints in 

computational power, memory, and energy resources 

(Mukhtar et al., 2023; Singh et al., 2024; Xiao et al., 2018). 

This creates a critical disparity between security requirements 

and the practical defensive capabilities of these devices, 

rendering the implementation of traditional, computationally 

intensive security protocols largely infeasible (Makhdoom et 

al., 2019; L. Xiao et al., 2018). 

Consequently, Intrusion Detection Systems (IDS) specifically 

designed for IoT environments are paramount for monitoring 

network activity and identifying malicious behaviour (Bakhsh 

et al., 2023; Heidari & Jabraeil Jamali, 2023; Moustafa et al., 

2023; Santhosh Kumar et al., 2023). However, conventional 

IDS approaches often struggle to provide adequate protection. 

Signature-based systems fail against novel or zero-day 

attacks, while anomaly-based systems relying on classical 

machine learning often require extensive feature engineering 

and suffer from high false positive rates when faced with the 

dynamic and complex traffic patterns characteristic of IoT 

networks (Zhang et al., 2022). 

In response to these limitations, deep learning methodologies 

have gained significant traction, offering end-to-end learning 

capabilities that automatically extract hierarchical features 

from raw data (Eguavoen & Nwelih, 2024; Gamage & 

Samarabandu, 2020; Liu & Lang, 2019). Convolutional 

Neural Networks (CNNs) have demonstrated proficiency in 

capturing spatial correlations in network data (Ding & Zhai, 

2018; Li et al., 2020), while Recurrent Neural Networks 

(RNNs), particularly Long Short-Term Memory (LSTM) 

variants, excel at modelling the sequential and temporal 

dependencies inherent in network traffic flows (Kasongo, 

2023; Oliveira et al., 2021; Silivery et al., 2023). Hybrid 

architectures combining these models aim to leverage their 

complementary strengths; for instance, (Eguavoen et al., 

2024; Eguavoen & Nwelih, 2025; He et al., 2019) integrated 

LSTM with deep autoencoders, achieving notable accuracy 

on benchmark datasets. Furthermore, ensemble methods like 

XGBoost (Kumar et al., 2021; Lawal et al., 2020) and 

advanced techniques such as Graph Neural Networks (GNNs) 

(Lo et al., 2022; Q. Xiao et al., 2020) are being explored to 

enhance detection performance and capture complex 

relational information within network traffic. Studies using 

various machine learning classifiers on standard datasets like 

BoT-IoT have also yielded high performance metrics 

(Churcher et al., 2021; Sarhan et al., 2020). 

Despite these advancements, significant challenges persist. 

Many proposed deep learning models incur substantial 

computational overhead, hindering their deployment on 

resource-constrained IoT devices. Achieving robust 

generalization across diverse IoT deployments and varying 

attack scenarios remains difficult, and effectively balancing 

detection accuracy, particularly minimizing false positives, 

with computational efficiency is an ongoing research 

problem. There is a clear need for sophisticated, yet IDS 

model that can effectively learn complex spatiotemporal 

patterns in IoT traffic while remaining practical for real-world 

deployment. 
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This paper addresses these gaps by proposing a hybrid 

classifier model (CNN-LSTM with AdaBoost) classifier for 

robust and efficient intrusion detection in IoT networks. The 

model targets the network layer of IoT architectures, 

analysing packet-level traffic data. This research contributes 

a rigorously evaluated hybrid model optimized for the specific 

constraints and threat landscape of IoT environments, 

demonstrating its potential to significantly improve detection 

performance over existing approaches through the synergistic 

combination of deep feature representation and adaptive 

ensemble learning. 

 

MATERIALS AND METHODS 

This section outlines the systematic approach employed for 

the design and development of a hybrid deep learning-based 

Intrusion Detection System (IDS) tailored for Internet of 

Things (IoT) networks. The methodology encompasses data 

acquisition and preprocessing, feature engineering, model 

architecture design, feature extraction, classification, and 

performance evaluation. 

 

Dataset Acquisition and Preparation  

Two publicly accessible datasets, UNSW-NB15 and RT-

IoT2022, were integrated through vertical concatenation to 

create a comprehensive dataset for this study. 

 

UNSW-NB15 Dataset 

Developed at the University of New South Wales 

(https://research.unsw.edu.au/projects/unsw-nb15-dataset), 

accessed 18 February 2025), this dataset (Moustafa et al., 

2019) contains both normal network traffic and nine types of 

attack patterns (Fuzzers, Analysis, Backdoors, DoS, Exploits, 

Generic, Reconnaissance, Shellcode, Worms). It includes 48 

features per entry, with 175,341 training instances and 82,332 

testing instances. Details regarding the composition are 

referenced from Table 1.    

 

Table 1: Composition of the UNSW-NB15 dataset 

 Training Set Testing Set 

Normal  56,000  37,000  

Anallysis 2000 667 

Backdoor 1746 583 

Dos 12,264 4089 

Exploits 33,393 11,132 

Fuzzers 18,184 6062 

Generic 40,000 18,871 

Reconnaissance  10,491  3496 

Shellcode  1133 378 

Worms 130 44 

Total  175,341  82,332 

 

RT-IoT2022 Dataset 

This dataset (Sharmila & Nagapadma, 2023) provides real-

time IoT network traffic, incorporating data from various 

devices (e.g., ThingSpeak-controlled LEDs, Wipro smart 

lights, MQTT temperature monitors) and attack scenarios like 

SSH Brute-Force, DDoS (Hping, Slowloris), and Nmap 

scans. Traffic characteristics were captured using Zeek and 

Flowmeter. It comprises 123,117 instances across 83 features. 

Details regarding the composition are referenced from Table 

9 in the source document.   The combined dataset featured 127 

initial features and was split into 164,359 training samples 

(80%) and 41,090 test samples (20%), totalling 205,449 

instances. 

 

Table 2: Composition of the RT-IoT2022 dataset class labels 

No. 
Attack Patterns Normal Patterns 

Attack Type Count Normal Traffic Type Count 

1 DOS_SYN_Hping 94,659 Amazon-Alexa 86,842 

2 ARP_poisioning 7,750 MQTT 8,108 

3 NMAP_UDP_SCAN 2,590 Thing_speak 4,146 

4 NMAP_XMAS_TREE_SCAN 2,010 Wipro_bulb_Dataset 253 

5 NMAP_OS_DETECTION 2,000   

6 NMAP_TCP_scan 1,002   

7 DDOS_Slowloris 534   

8 Metasploit_Brute_Force_SSH 37   

9 NMAP_FIN_SCAN 28   

 
Data Preprocessing  

A multi-step preprocessing pipeline was applied: 

Missing Value Imputation 

Columns identified as entirely missing (id, dur, state) were 

assessed for removal. Partially missing columns (e.g., idle.avg, 

fwd_init_window_size) had missing values imputed, with null 

values replaced by zeros after encoding.  

Target Variable Standardization 

The original multi-class labels (22 unique classes) were binarized 

into '0' (normal) and '1' (attack) using label encoding to simplify 

the classification task. 

 

Encoding and Normalization 

Categorical features (proto, service, etc.) were transformed using 

one-hot encoding. Numerical features were standardized using Z-

score normalization (Z= 
𝑋−μ

σ
 ), scaling each feature to zero mean 

and unit variance. A summary of these steps is presented in Table 

3 in the source document.    

https://research.unsw.edu.au/projects/unsw-nb15-dataset
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Table 3: Data Preprocessing Summary 

Step Description 

Missing Value Imputation Fill missing values with mean or zero after encoding 

Target Standardization Rename and binarize attack labels 

One-Hot Encoding Convert categorical variables to binary indicator variables 

Standardization Normalize numerical features using Z-score normalization 

 

Feature Selection and Optimization  

To reduce dimensionality and redundancy, a systematic 

feature selection process was implemented: 

 

Correlation-Based Elimination 

Pearson correlation analysis was performed on the training 

data. Using the upper triangle of the correlation matrix, 43 

features exhibiting high correlation (coefficient > 0.9) were 

removed, reducing the feature count from 266 (post-

encoding) to 223.    

 

Mutual Information (MI) Selection 

Mutual information was calculated between the remaining 

223 features and the binarized target variable. Features were 

ranked based on their MI scores, with the top 10 features 

highlighted in Table 4. 

 

Table 4: Top 10 Features by Mutual Information 

Rank Feature Name Mutual Information Score 

1 fwd_pkts_payload.max 0.145 

2 fwd_subflow_bytes 0.144 

3 flow_pkts_payload.avg 0.141 

4 fwd_pkts_payload.tot 0.140 

5 id.resp_p 0.122 

6 fwd_pkts_payload.min 0.121 

7 flow_pkts_payload.min 0.110 

8 fwd_header_size_tot 0.110 

9 fwd_header_size_min 0.096 

10 bwd_pkts_payload.max 0.087 

 

Final Subset Selection 

A hybrid approach combining correlation elimination and MI 

ranking resulted in a final subset of 20 key features. This 

subset included informative forward traffic metrics, inter-

arrival time features, and flow duration/activity metrics, 

achieving a 92% reduction in dimensionality.    

 

Sequence Reshaping 

The selected 20 features (k=20) were reshaped into a 

sequence format suitable for temporal modelling. Each 

sample was treated as a sequence with a single time step, 

resulting in input dimensions of (N,1, k), where N is the 

number of samples.   

 

Hybrid CNN-LSTM Architecture 

A hybrid architecture combining Convolutional Neural 

Network (CNN) and Long Short-Term Memory (LSTM) 

components was designed to jointly learn spatial and temporal 

patterns from IoT network traffic. As illustrated in Figure 1, 

the model comprises two parallel branches: 

 

CNN Branch 

A 1D Convolutional layer (16 filters, kernel size=1) followed 

by MaxPooling extracts localized spatial features (e.g., packet 

headers, payload sizes). 

 

LSTM Branch 

An LSTM layer (16 units) models sequential dependencies in 

traffic flows (e.g., timing between packets). 

Outputs from both branches are concatenated (Vector C in 

Table 5) and passed through dense layers for feature fusion. 

This design enables the model to capture both attack 

signatures (via CNN) and behavioural anomalies (via LSTM). 

 

Output Layer 

A final Dense layer with a sigmoid activation function 

performed the binary classification.    
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Figure 1: Hybrid CNN-LSTM Architecture Model 

 

Table 5: functional parameters output of the Hybrid CNN-LSTM Model 

 
 

Implementation Layer in IoT  

The model operates at the network layer of IoT architectures, 

processing traffic flows (e.g., MQTT, HTTP) directly from 

IoT devices. This layer was chosen to analyse packet-level 

data for real-time monitoring, aligning with IoT security 

frameworks that prioritize network-layer intrusion detection. 

Training The hybrid CNN-LSTM model was compiled using 

the Adam optimizer (learning rate η=1×10−3, β1=0.9, β2

=0.999) and binary cross-entropy loss function to optimize 

the classification task. Training was conducted for 20 

epochs with a batch size of 64 and a validation split of 20% to 

monitor overfitting. The choice of 20 epochs was based on 
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early convergence observed in validation accuracy (plateau 

after epoch 15, as shown in Figure 1)  

 

Algorithm 1 (Training Pseudocode) 

1. Initialize CNN-LSTM weights using He normal 

initialization.  

2. For each epoch:  

a. Forward propagate input sequences through CNN and 

LSTM branches.  

b. Concatenate outputs and compute predictions via 

sigmoid activation.  

c. Calculate loss using binary cross-entropy.  

d. Backpropagate gradients and update weights via 

Adam optimizer.  

e. Validate on 20% hold-out data to compute validation 

accuracy. 

3.Terminate training if validation loss stabilizes 

(patience=3 epochs). 

 

L2 regularization (λ = 0.001) was applied to dense layers to 

mitigate overfitting. The complete training workflow is 

illustrated in Algorithm 1 (above) and aligns with established 

practices for hybrid deep learning models [He et al., 2019]. 

Feature Extraction and Final Classification Features were 

extracted from the penultimate dense layer of the trained 

hybrid CNN-LSTM model. These extracted feature vectors, 

capturing fused spatial and temporal information, served as 

input for a final classification stage using an AdaBoost 

classifier. The AdaBoost model employed Decision Trees 

(max_depth = 1) as weak base estimators, aggregating them 

using the formula  

𝐹(𝑥) = ∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1     (1).   

 

Performance Evaluation Model performance was assessed 

using standard classification metrics 

Accuracy is the proportion of cases that were accurately 

predicted in all instances. If the dataset is unbalanced, it could 

be misleading (Israni, 2019). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
 (2) 

Precision calculates the percentage of positively predicted 

cases that were accurately predicted out of all positively 

predicted instances. When false positives are essential, it is 

helpful (Israni, 2019). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
   (3) 

Recall shows the percentage of real positive cases that the 

model accurately predicted. It is helpful when there is a 

possibility of false negatives (Israni, 2019). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
   (4) 

The F1 score is the harmonic mean of the Precision and 

Recall. It is helpful in situations where there is an unequal 

distribution of classes because it offers a single metric that 

addresses both issues (Israni, 2019). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 𝑋  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
   (5) 

False Positive Rate (FPR): quantifies the proportion of 

negative instances incorrectly classified as positive by a 

model. Mathematically, it is defined as: 

𝐹𝑃𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
   (6) 

 

RESULTS AND DISCUSSION 

This section details the experimental outcomes of the 

proposed hybrid deep learning-based Intrusion Detection 

System (IDS), followed by an analysis and interpretation of 

these findings. 

 

Results 

Model Training Performance  

The hybrid CNN-LSTM model was trained over 20 epochs 

using training and validation data, respectively. The training 

process demonstrated rapid convergence and high accuracy 

levels. As illustrated in Figure 2, both training and validation 

accuracy curves showed significant improvement within the 

initial epochs.  

 

 
Figure 2: Training and Validation Accuracy over Epochs 

 

Training accuracy increased from approximately 98.6% to 

99.7% within the first two epochs, while validation accuracy 

mirrored this trend, reaching a peak of approximately 99.6% 

by epoch 15. Although training accuracy remained slightly 

higher than validation accuracy, the close alignment indicates 

good generalization. The rapid initial convergence suggests 

the efficiency of the Adam optimizer (learning rate 

η=1×10−3), while the plateauing accuracy after epoch 5 

aligns with expected deep learning behaviour, supporting the 

potential use of early stopping to optimize training time. The 

stability and high accuracy achieved validate the 

architecture's ability to capture relevant spatiotemporal 

patterns in network traffic for distinguishing between benign 

and malicious activities. 
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Classification Performance with AdaBoost  

Following feature extraction using the trained CNN-LSTM 

model's penultimate layer, an AdaBoost classifier (with 

Decision Tree base estimators, max_depth=1) was trained on 

the extracted features. 

 

Training and Computational Performance 

Computational Efficiency 

Training required 8 seconds for 164K samples (64 steps/sec). 

While this indicates scalability, real-time deployment on IoT 

devices requires further optimization (e.g., pruning). 

Evaluation Metrics: The performance of the AdaBoost 

classifier on the unseen test set is summarized in Table 6. The 

key metrics achieved were: Accuracy: 99.70% Precision: 

99.90% Recall (Sensitivity): 99.78% F1-Score: 99.84% False 

Positive Rate (FPR): 2.43%  

 

Table 6: AdaBoost classifier Evaluation Metrics 

Metric Value 

Accuracy 99.70% 

Precision 99.90% 

Recall 99.78% 

F1-Score 99.84% 

False Positive Rate 2.43% 

 

Confusion Matrix: The confusion matrix presented in Figure 3 visually confirmed the classifier's effectiveness, showing strong 

separation between normal and attack classes with minimal misclassifications.  

 
Figure 3: Confusion Matrix of the AdaBoost Classifier 

 

Metric Analysis 

The high accuracy (99.7%) confirms the model's overall 

reliability in distinguishing attack types. The excellent 

precision (99.9%) indicates very few false positives, crucial 

for reducing unnecessary security alerts.  

The high recall (99.8%) demonstrates the model's capability 

to identify nearly all actual attack instances, minimizing the 

risk of undetected threats. Specificity, calculated as (True 

Negatives / (True Negatives + False Positives)), was 97.6% 

(derived from the FPR of 2.43%), indicating a high rate of 

correctly identifying normal traffic, although slightly lower 

than other metrics, suggesting a potential prioritization 

towards detecting attacks. The F1-Score (0.998) reflects a 

balanced performance between precision and recall.  

 

Attack Types Tested  

The model was evaluated on 22 attack types from the UNSW-

NB15 and RT-IoT2022 datasets, including DDoS (Hping, 

Slowloris), SSH Brute-Force, and Nmap scans (XMAS, FIN, 

UDP). The hybrid architecture achieved a 99.78% recall for 

attack detection and 97.6% specificity for normal traffic, 

demonstrating robustness across diverse threats. 

 

Discussion  

The results strongly support the efficacy of the proposed 

hybrid CNN-LSTM feature extractor combined with an 

AdaBoost classifier for intrusion detection in IoT networks. 

The model achieved rapid convergence during training and 

demonstrated high performance on the test set, characterized 

by an accuracy of 99.70% and an F1-Score of 99.84%. 

The high precision (99.90%) and recall (99.78%) are 

particularly noteworthy. High precision minimizes false 

alarms, reducing operational burden, while high recall ensures 

that most malicious activities are detected, enhancing security 

posture. The low False Positive Rate (2.43%) further 

corroborates the model's ability to correctly identify benign 

traffic, although the specificity of 97.6% suggests a slight 

trade-off, potentially favouring sensitivity (recall) to ensure 
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threats are not missed. This balance is often desirable in 

security applications. 

The feature extraction process, leveraging the synergy 

between CNNs (for local pattern recognition) and LSTMs (for 

temporal dependency modelling), proved effective in 

generating a rich feature representation from the network 

traffic data. The subsequent classification by AdaBoost, 

known for its effectiveness in boosting weak learners, 

capitalized on these features to achieve robust classification. 

The computational performance observed during training and 

validation suggests the system is scalable and potentially 

suitable for real-time deployment scenarios, processing a 

large volume of samples efficiently. 

Compared to traditional IDS methods, the hybrid deep 

learning approach demonstrates significant advantages in 

handling the complexity and dynamics of modern network 

traffic, especially within diverse IoT environments. The 

ability to learn intricate patterns automatically reduces the 

need for manual feature engineering inherent in many 

conventional systems. 

Despite the promising results, certain limitations exist. The 

computational overhead associated with deep learning 

models, even with efficient implementations, might pose 

challenges for deployment on highly resource-constrained 

IoT devices. While combining two datasets aimed to improve 

data diversity, further validation across a wider range of real-

world network environments and evolving attack vectors is 

essential to confirm the model's generalizability. Future 

research directions should include exploring model 

optimization techniques like pruning or quantization to reduce 

computational demands and investigating feature importance 

analysis to potentially refine the feature set further and 

enhance interpretability. 

In summary, the developed hybrid deep learning IDS presents 

a significant advancement, offering high accuracy, reliability, 

and efficiency in detecting network intrusions within IoT 

settings. The findings highlight the potential of combining 

deep learning feature extraction with ensemble methods like 

AdaBoost for building next-generation security frameworks. 

 

CONCLUSION 

This study addressed the critical challenge of securing 

heterogeneous and resource-constrained Internet of Things 

(IoT) environments against increasingly sophisticated cyber 

threats. Traditional Intrusion Detection Systems (IDS) often 

fall short due to the unique characteristics of IoT traffic and 

the limitations of conventional signature-based or anomaly-

based methods. To overcome these limitations, we proposed 

and evaluated a novel hybrid deep learning framework 

integrating a Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) architecture for effective 

feature extraction, coupled with an AdaBoost classifier for 

robust intrusion detection. 

The methodology involved meticulous data preprocessing 

and feature selection using a combined dataset (UNSW-NB15 

and RT-IoT2022) to ensure relevance and reduce 

dimensionality. The hybrid CNN-LSTM model was designed 

to synergistically capture both localized spatial patterns and 

temporal dependencies within network traffic data. Features 

extracted from this deep learning model were subsequently 

used to train an AdaBoost classifier. 

Comparison with Existing Methods 

The results demonstrated the exceptional performance of the 

proposed system. The model achieved rapid convergence 

during training and yielded outstanding classification metrics 

on the test set, including an accuracy of 99.70%, precision of 

99.90%, recall of 99.78%, and an F1-score of 99.84%, with a 

low False Positive Rate (FPR) of 2.43%. These results 

significantly outperform traditional approaches outperforms 

[Li et al., 2020: 98.1% accuracy] and [Kasongo, 2023: 99.2% 

F1-score] on similar datasets which highlight the model's 

ability to reliably distinguish between benign and malicious 

activities while maintaining a crucial balance between 

minimizing false alarms and ensuring high detection rates for 

actual threats. Furthermore, the system exhibited 

commendable computational efficiency and scalability, 

suggesting its potential applicability in real-time scenarios. 

In conclusion, this research successfully demonstrates that 

combining deep feature extraction using a hybrid CNN-

LSTM architecture with an adaptive ensemble classifier like 

AdaBoost provides a powerful and effective solution for IoT 

intrusion detection. The framework effectively handles the 

complexities of IoT network traffic, offering high accuracy, 

reliability, and efficiency. While acknowledging limitations 

such as computational overhead for some edge devices and 

the need for broader generalization testing, this work presents 

a significant advancement towards developing robust, next-

generation IDS tailored for the specific challenges of the IoT 

landscape. Future work will focus on model optimization for 

resource-constrained environments and further validation 

across diverse datasets and attack vectors. 
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