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ABSTRACT 

The application of artificial neural networks to solve complex linear and nonlinear problems such as predicting 

biomass higher heating value (HHV) requires meticulous choice of the number of layers and neurons per layer, 

the training algorithms, and the activation functions among other hyper-parameters. Although some studies 

have examined these hyper-parameters, the effects of different activation functions on biomass HHV prediction 

have not attracted credible research attention. This study, therefore, employs three distinct activation functions 

(logsig, tansig, and purelin) in artificial neural networks for biomass HHV prediction based on proximate 

analysis. A 3-10-1 network architecture was used and the variation of the hidden layer and output layer 

activation functions yielded nine models (M1-M9) whose performances were assessed and compared using 

statistical indices. The results showed that the best performance was observed by model M2 which utlized the 

logsig function in the hidden layer and the tansig function in the output layer. This model had the highest 

determination coefficient of 0.8814 and the lowest mean square error and mean absolute error of 0.0017 and 

0.0281 respectively. Understanding how these hyper-parameters influence biomass HHV prediction would 

guide the energy community to identify an optimal pathway to bioenergy production.  
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INTRODUCTION 

The increase in population is a global issue that gives rise to 

various phenomena, each having adverse effects on the world 

at large, one of which is increased fuel consumption on a 

substantial scale. The increasing world population has 

resulted in substantial global emissions, which can equally be 

attributed to rapidly advancing industry and excessive 

reliance on fossil fuels to generate electricity and heat. Thus, 

the need for alternative sources of fuel is pressing, now more 

than ever (Dashti et al., 2019; Dodo et al., 2024). 

Renewable energy sources, being sustainable and safe for the 

environment, are employed to slow down the rate at which 

fossil fuels are consumed. They include wind, solar, biomass, 

hydro, and tidal. Because of their availability and anticipated 

advantages for the local economy and environment, biomass, 

which can be defined as any combustible material, useable as 

fuels for the production of energy (heat and electricity) has 

continued to gain novel interest (Kujawska et al., 2023; 

Suryadevara et al., 2021). Thus, a variety of thermal, 

chemical, and biochemical processes can transform biomass 

into various types of biofuels, or it can be used directly in 

burners to produce heat and electricity (Dashti et al., 2019).  

Certain biomass characteristics are crucial to the design and 

functioning of energy generation or energy recovery systems 

derived from biomass. The most notable characteristic is the 

energy content of biomass, also referred to as the heating 

value. The heating value is described as the total heat liberated 

when one unit mass of fuel is burned entirely, including the 

latent heat stored in the vapourised water as the product of 

combustion. Therefore, fuel with greater heating value will 

produce relatively higher energy output (Dodo, Ashigwuike, 

& Abba, 2022; Jakšić et al., 2023). Heating value is reported 

in the literature as either lower heating value (LHV) or higher 

heating value (HHV). Basically, the HHV comprises heat of 

vaporization while the LHV excludes it when a unit mass of 

fuel is entirely combusted. The most widely used 

experimental method to determine the heating value involves 

the application of an adiabatic oxygen bomb calorimeter 

which measures the enthalpy change between the reactants 

and products. Meanwhile, despite its reliability, this approach 

has the drawbacks of being time-consuming and expensive 

(Adeleke et al., 2024; Yang et al., 2023). 

To address the drawbacks of the experimental procedures, 

alternative approaches that employ empirical models or 

artificial intelligence to predict the heating values of biomass 

have been developed by researchers. These techniques 

leverage either the proximate analysis or the ultimate analysis 

of the biomass substrates. However, biomass characteristics 

are nonlinear, making the empirical models incapable of 

capturing the features of the substrates entirely (Afolabi et al., 

2022; Dodo et al., 2024). Hence, the use of artificial 

intelligence techniques such as artificial neural networks, 

adaptive neuro-fuzzy inference systems, decision trees, etc. 

Thus, they possess the ability to effectively describe and 

capture complicated and complex features of any system 

(Veza et al., 2022). Furthermore, the proximate analysis-

based models are more widely utilized because of their lesser 

cost implications and ease of determination compared to the 

ultimate analysis-based models, (Veza et al., 2022; Xing et 

al., 2019). The proximate analysis utilizes known percentages 

of the fixed carbon (FC), volatile materials (VM), and ash. 

Naturally, these percentage residues from the combustion of 

the biomass must sum up to a hundred (FC+VM+ash=100) 

(Jakšić et al., 2023).  

Artificial neural network (ANN) is an artificial intelligence 

technique for modeling linear and nonlinear variables and it 

has witnessed increased interest in applications regarding 

biomass research over time. Studies applying ANN for 

biomass HHV prediction employ either the proximate 

analysis approach, the ultimate analysis approach, or a 

combination of both. For example, Dodo et al. (2023) used an 

Artificial Neural Network (ANN) to develop proximate 

analysis-based biomass HHV prediction models, Brandić et 

al. (2022) employed an ultimate analysis approach to estimate 

the HHV of miscanthus using ANN, and Güleç et al. (2022) 

used ANN models trained by the combination of ultimate and 

proximate analyses. The data samples or species are another 

factor that influences the outcome of HHV prediction. For 
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instance, Yang et al. (2023) used ANN to predict the HHV of 

sewage sludge whereas Güleç et al. (2022), employed a 

dataset covering commercial fuels, industrial wastes, forest 

wastes (including branches and leaves) as well as energy 

crops and cereals. These studies have the limitations of being 

unsuitable for a broad range of biomass substrates such as 

agro residues and animal wastes. 

The architecture of the ANN has a great effect on the 

prediction accuracy even more than the number of data 

samples (Dodo, Ashigwuike, & Abba, 2022). Hence, 

researchers applying ANN for the prediction of biomass HHV 

have used various network architectures. This includes the 

selection of an appropriate number of layers and hidden 

neurons, the training algorithms, and activation functions. In 

the work of Dodo et al. (2022), the relation 𝑛 + 1 was applied 

to determine the number of hidden layers where 𝑛 stands for 

the number of input parameters, and (Matveeva & Bychkov 

2022) employed a trial-and-error method to select the optimal 

number of hidden layers between 1 and 6. The results of the 

study showed that overfitting occurs earlier as the number of 

hidden layers increases from one to six. In the same vein, 

Dodo et al. (2022) varied the number of hidden layer neurons 

from 1 and 20 using trial and error. The best performance was 

observed for the model with 15 hidden neurons using the 

trainbr algorithm which had a Nash-Sutcliffe’s efficiency 

(NSE) value of 0.9044.  

There are a handful of studies that explored different training 

algorithms to predict the biomass HHV. Güleç et al. (2022) 

performed a comparative analysis of thirteen different 

algorithms in ANN and found Levenberg-Marquardt (LM) 

and Bayesian regulation (BR) algorithms as the most suitable 

for HHV prediction. Veza et al. (2022) and Jakšić et al. (2023) 

developed ANN models trained using 11 and 12 different 

algorithms, respectively. They both ranked LM as the most 

accurate training algorithm in terms of its highest 

determination coefficient and the lowest mean square errors, 

root mean square error, and mean absolute percentage errors.  

One notable aspect of ANN modelling that has not attracted 

due diligence is the selection of optimal activation functions 

for hidden and output layers (Balarabe et al., 2019; Pokhrel, 

2024). Activation functions also known as the transfer 

functions define the properties of artificial neurons and can be 

any mathematical function. In a simple term, it is a 

mathematical depiction of the relationship between the input 

and output expressed in terms of spatial or temporal frequency 

(López et al., 2022). The functions which can be a step 

function, linear function, and nonlinear function (sigmoid) are 

chosen based on the problems that ANN needs to solve. A 

recent study by Laabid et al. (2023) examined the effects of 

three different activation functions on the response time of an 

ANN model. A 2-15-1 ANN architecture was employed while 

the hidden layer and output layer activation functions, 

respectively were selected from tansig, logsig, and purelin 

leading to nine different models. Thus, in every three models, 

the activation function of the hidden layer and that of the 

output layer were modified. The results showed the best 

performance belonging to the model which had the tansig 

function in both the hidden layer and the output layer. This 

study, however, used a dataset related to the elasticity of two 

distinct materials and not biomass HHV. In a nutshell, it is 

apparent from the review of related studies that the 

comparative study of different activation functions in 

artificial neural networks for biomass HHV prediction is 

limited. The activation function is a key component of neural 

networks that enables the network to learn and identify 

intricate patterns in input. Selecting the right activation 

function is crucial because it can influence the network's 

capacity to gather data and stop input data loss during forward 

propagation and gradient vanishing during backward 

propagation. Thus, it is vital to evaluate the prevalence of 

using different activation functions for biomass HHV 

prediction.  

Therefore, this study aims to compare the performance of 

three different activation functions in feedforward 

backpropagation neural networks (FBNN) for biomass energy 

content prediction. The FBNN architecture implemented 

consists of three inputs from the proximate analysis, one 

output (HHV), and one hidden layer comprising ten hidden 

neurons. The three activation functions, namely purelin, 

logsig, and tansig were varied between the hidden layer and 

the output layer to identify the function capable of providing 

optimal performance. It is hoped that this study will serve as 

a paradigm for determining the energy content (HHV) of 

biomass economically and accurately. 

 

MATERIALS AND METHODS 

This study performed the comparative performance analysis 

of three activation functions, namely, tangent sigmoid, 

purelin, and log-sigmoid in FBNN for biomass HHV 

prediction based on proximate analysis. The HHV in MJ/kg 

and the proximate analysis variables comprising volatile 

matter (VM), fixed carbon (FC), and ash in wt.% were 

obtained from the published literature works (Estiati et al., 

2016; Gunamantha, 2016; Nhuchhen & Salam, 2012; Phichai 

et al., 2013; Qian et al., 2018; Uzun et al., 2017).  

 

Data pre-processing 

The experimental datasets made of 474 instances of the HHV, 

FC, VM, and ash were normalized following eq. (1) to a range 

of 0–1 to enhance pattern recognition and the ANN's capacity 

to deliver superior results.  

𝑋𝑛 =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑖𝑛𝑚𝑎𝑥
    (1) 

where Xn is the normalised experimental parameter, Xi is the 

original experimental parameter, Xmax and Xmin are the 

maximum and minimum values of the experimental datasets 

respectively. 

Next, an FBNN architecture for prediction was carefully 

developed after which the three activation functions were 

varied between the hidden and output layers, giving rise to 

nine models. For training, testing, and validation, the ANN 

toolboxes and their MATLAB counterparts use a 60:20:20 

data division. According to the standard calibration of 

training-testing data, this could be folded into 60:40. The most 

prevalent data calibration in the scientific literature is either 

70:30 or 75:25 based on the assumption that prediction 

models operate better with a bigger pool of training data 

(Dodo et al., 2024). Therefore, in this study, the partitioning 

applied was 80:20 for training and testing data respectively. 

The performances of the models developed were then 

assessed using a correlation-based metric and two error-based 

metrics. The steps followed for the implementation of the 

study are presented in a simple flowchart in Fig 1. 
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Figure 1: Flowchart of the methodology 

 

FFNN implementation  

An artificial neural network is a biologically inspired 

computer algorithm based on machine learning (Qamar & 

Baqar, 2023; Shehu & Belgore, 2023). In artificial neural 

networks, there are two types of connections between nodes 

known as the network topology. One is a one-way connection 

with no loopback. The other is a loop-back connection in 

which the output of the nodes can be the input to previous or 

same-level nodes. Based on the type of connections, the two 

types of network topology are feedforward networks and 

recurrent neural networks (Dastres et al., 2021), as shown in 

Fig. 2.  

 

 
Figure 2: (a) Feedforward network topology (b) Recurrent network topology 

 

In this study, the feed-forward backpropagation neural 

network (FFNN) was used due to its simplicity and 

effectiveness. The network design, including the number of 

hidden layers and neurons in each layer, the training 

algorithm, and the activation functions must be specified by 

the user when building the FFNN model. The neural network 

configuration used in this study is 3-10-1 as depicted in Fig. 

3. It comprised three input neurons for FC, VM, and ash, ten 

neurons for a hidden layer (HN1-HN10), and a neuron for the 

output variable (HHV). The training algorithm employed was 

Levenmberg-Marquadrth (trainlm) due to its exceptional 

predictive performance (Dodo et al., 2023). The activation 

functions considered in this study include logarithmic 

sigmoid (logsig), hyperbolic tangent sigmoid (tansig), and 

linear (purelin).  
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Figure 3: Schematic of a 3-10-1 FFNN architecture 

 

Activation functions 

An activation function also called transfer function is a 

mathematical depiction of the relationship between the input 

and output expressed in terms of spatial or temporal frequency 

(López et al., 2022). Typically, three traditional differentiable 

and monotonic activation functions are used for the evolution 

of the FFNN architecture in conjunction with the LM learning 

algorithm. These suggested, well-known, and efficient 

activation functions are logarithmic-sigmoid (logsig), 

hyperbolic tangent-sigmoid (tansig), and linear (purelin) 

(Nandi et al., 2020).    

 

Purelin 

The Purelin is a linear function that is usually applied to tasks 

involving regression and function approximation and is 

commonly used in the output layer of a neural network 

(Reyes-Téllez et al., 2020). It is expressed mathematically in 

eq. (2) and graphically in Fig. 4. 

𝐹(𝑥) = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥   (2) 

 

 
Figure 4: Purelin activation function 

 

Log-sigmoid 

Log-sigmoid (logsig) can also be referred to as a unipolar 

sigmoid activation function. This function in mathematics 

produces a sigmoidal curve, which is a typical curve for its S-

shape (Lederer, 2021; Rasamoelina et al., 2020). This 

activation function takes the input which may have values 

between plus and minus infinity and compresses the output 

into the range 0 to 1. It is frequently employed in multilayer 

networks trained using the backpropagation process, partly 

because of the function's differential nature. Mathematically, 

it is expressed in eq. (3) and its graph is shown in Fig. 5. 

𝐹(𝑥) = 𝑙𝑜𝑔 𝑠 𝑖𝑔(𝑥) = (1 − 𝑒−𝑥)−1  (3)    

 

 
Figure 5: Log-sigmoid activation function 

 

Tangent sigmoid 

The Hyperbolic tangent sigmoid (tansig) activation function 

is comparable to a bipolar sigmoid in the context of neural 

networks, with an output that falls between -1 and +1 

(Lederer, 2021; Rasamoelina et al., 2020). Mathematically, 

this function is expressed as the ratio between the hyperbolic 

sine and cosine functions, which is a hyperbolic tangent as 

seen in eq. (4) and its graph is depicted in Fig. 6. 

𝐹(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
2

1+𝑒−2𝑥 − 1  (4) 
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Figure 6: Tan-Sigmoid activation function 

 

For the hidden layer and the output layer, the activation 

function was varied to find the combination that yielded the 

best results. The different combinations of the three activation 

functions across the hidden layer and the output layer yielded 

nine models labeled M1-M9 as shown in Table 1. 

 

Table 1: Models based on the variation of activation function 

FFNN Model Hidden layer activation function  Output layer activation function 

M1 Logsig  Logsig 

M2 Logsig Tansig 

M3 Logsig Purelin 

M4 Tansig Logsig 

M5 Tansig Tansig 

M6 Tansig Purelin 

M7 Purelin Logsig 

M8 Purelin Tansig 

M9 Purelin Purelin 

 

Performance evaluation 

An assessment of the performance of the M1-M9 for the 

training and testing phases was carried out by employing three 

evaluation metrics, namely, determination coefficient (R2), 

mean square error (MSE), and mean absolute error (MAE). 

These metrics are expressed in eqs. (5)-(7).  

𝑅2 = 1 −
(𝐻𝐻𝑉𝑒(𝑖)−𝐻𝐻𝑉𝑝(𝑖))

2

(𝐻𝐻𝑉𝑒(𝑖)−𝐻𝐻𝑉𝑒(𝑖))
2   (5) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝐻𝐻𝑉𝑒(𝑖) − 𝐻𝐻𝑉𝑝(𝑖))

2𝑛
𝑖=1      (6) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐻𝐻𝑉𝑒(𝑖) − 𝐻𝐻𝑉𝑝(𝑖)|𝑛

𝑖=1   (7) 

𝐻𝐻𝑉𝑒(𝑖), 𝐻𝐻𝑉𝑒(𝑖),  𝐻𝐻𝑉𝑝(𝑖),and𝑛,respectively denote the 

mean of experimental𝐻𝐻𝑉, experimental𝐻𝐻𝑉, 

predicted𝐻𝐻𝑉, and number of data instances. 

RESULTS AND DISCUSSION 

In this study, biomass HHV prediction models based on 

moisture-free proximate analysis (ash, VM, and FC) were 

developed using three activation functions varied between the 

hidden and output layers of an FFNN leading to nine different 

models (M1-M9). The aim was to examine which activation 

functions perform optimally for this application. The results 

in terms of the three evaluation metrics (R2, MSE, and MAE) 

after varying the activation functions according to Table 1 

were obtained for the training and testing phases and 

presented in Table 2. The visualizations and analyses carried 

out in this section cover both the training and testing phases.  

 

Table 2: Models performance evaluation  

FFNN Model 
Training phase Testing phase 

R2 MSE MAE R2 MSE MAE 

M1 0.484434 0.007527 0.050395 0.316517 0.017584 0.081262 

M2 0.881413 0.001731 0.028107 0.816413 0.004723 0.046794 

M3 0.875093 0.001823 0.029103 0.841223 0.004085 0.042616 

M4 0.472093 0.007707 0.054261 0.267929 0.018835 0.087050 

M5 0.822980 0.002584 0.034771 0.825501 0.004489 0.050097 

M6 0.843125 0.002290 0.031426 0.866297 0.003440 0.042605 

M7 0.370370 0.009192 0.066920 0.284628 0.018405 0.088722 

M8 0.814973 0.002701 0.037051 0.831285 0.004341 0.048668 

M9 0.808911 0.002790 0.037646 0.843263 0.004032 0.047609 

 

Prediction accuracy of the models 

The models M1 to M9 were assessed based on three 

evaluation metrics: R2, MSE, and MAE. Values obtained for 

the training and testing phases are presented in Table 2 and 

from an analysis of the table, the best-performing model, 

based on the results for the training phase can be identified as 

M2. This model was able to produce predicted HHVs which 

have a high correlation with experimental HHVs, hence the 

high coefficient of determination of 0.8814. The closer the 

value of the error metrics is to 0 the better the performance of 

the model, which means the low MSE and MAE values; 

0.001731 and 0.0281 respectively, attained by model M2 are 

also indicators of good performance. 
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Model M7 however, had the weakest performance in the 

training phase. Generally, an R2 value above or equal to 0.7 is 

considered highly satisfactory, while any value below that 

range is said to be unsatisfactory (Dodo et al., 2023). Model 

M7 had an R2 value of 0.3704, which is marginally below the 

acceptable value, indicating a substantial underperformance 

and an incompatibility of the activation function combination 

used therein. The high MSE and MAE values of 0.009192 and 

0.06692 respectively compared to M2 also point to the 

inefficiency of the model. 

In the testing phase, the best model was M6 which achieved 

the highest R2 value of 0.8663 and the lowest MSE and MAE 

values of 0.00344 and 0.04261 respectively. Meanwhile, 

model M4 had the poorest performance. The model had an R2 

value of 0.267929, the highest MSE value of 0.018835, and 

the second-highest MAE value of 0.08705. 

Fig. 7 depicts scatter plots of experimental against predicted 

HHV for all nine models for a combination of the training and 

testing phase data. The models with good performances, 

hence, high R2 values have the data points clustered close to 

the line of best fit while models with poor performance have 

data points scattered away from the line of best fit.  
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Figure 7: Scatter plots for various models (a) M1; (b) M2; (c) M3; (d) M4; (e) M5; (f) M6; (g) M7; (h) M8; (i) M9 

 

Models performance comparison 

Out of the nine models (M1-M9), six were able to accurately 

predict the HHV while three were inaccurate in prediction. 

The models M1, M4, and M7 were unable to deliver 

satisfactory results having training phase R2 values of 0.4844, 

0.472, and 0.3704 respectively with similarly low testing 

phase R2 values of 0.3165, 0.2679, and 0.2846. These models 

have in common, the fact that they all utilized the logsig 

function in the output layer, which implies the function is not 

a good choice as the output layer activation function.  

However, the opposite effect is noted when the logsig 

function was utilized in the hidden layer as evident from 

models M2 and M3. These models had the best and second-

best performances respectively in terms of all three evaluation 

metrics used when considering the training phase. Similarly, 

when considering the testing data phase, the two models had 

good R2, MSE, and MAE values in comparison with the other 

seven models that had the sixth and third-best performances 

respectively. Therefore, it is evident that the logsig function 

has exceptional performance in the hidden layer but produces 

unsatisfactory results when utilized in the output layer.    

Models M6 and M5 were able to produce satisfactory results 

as well as had the third and fourth best training phase 

performances respectively in terms of the three evaluation 

metrics and also maintained similar comparative performance 

against other models in the testing phase. These two models 

utilized the tansig function in the hidden layer and their 

performance in both the training and testing phases leads to 

the inference that after the logsig function, the tansig performs 

best in the hidden layer. Finally, among the models which had 

accurate HHV predictions, models M8 and M9 had the fifth 

and sixth-best performances respectively when considering 

the training phase but had comparatively better performances 

when considering the testing phase where they had the second 

and fourth-best performances in terms of all three evaluation 

metrics. These models employed the purelin function in the 

input layer, thus, it can be inferred that the purelin function 

has the third-best performance among the three activation 

functions in the hidden layer.  

The ranking of the models in the training phase is M2, M3, 

M6, M5, M8, M9, M1, M4, and M7 in descending order of 

prediction accuracy while the ranking of the models in the 

testing phase is M6, M9, M3, M8, M5, M2, M1, M7, and M4 

in descending order of prediction accuracy. It is worth noting 

that logsig was the only activation function with unacceptable 

performance when utilized in the output layer and no other 

model recorded unsatisfactory performance except M1, M4 

and M7 which had this common feature. This can be 

attributed to the fact that, unlike linear functions whose output 

has infinite range(−∞,  ∞), the input values usually respond 

only slightly to changes in the input values near either end of 

the function, and sigmoidal functions compress the output 

values to a smaller range (Szandała 2021). This suggests that 

a slight gradient will exist at this location. As a result, a 

vanishing gradient issue arises, which is felt in the direction 

of the curve's near-horizontal activation functions on each 

side. Depending on how it is utilised until the gradient 

approaches the floating-point value restrictions, the network 

may either learn extremely slowly in this scenario or refuse to 

learn at all. This can be observed in scatter plots for models 

M1, M4, and M7 in Fig. 7. 

The relative performance of each model in terms of R2, MSE, 

and MAE are shown in Figs. 8-10. In the radar plot for R2, the 

farther a point is from the centre, the higher the value, and the 

better the performance of that model. Hence it can be seen 

from Fig. 8 that models M2, M3, M5, M6, M8, and M9 had 

good prediction accuracy based on their high R2 values for 

both training and testing phases. When considering error 

metrics like the MSE and MAE, however, the higher the 

value, the more inaccurate the model is. Therefore, from an 

examination of Figs. 9 and 10, it is evident that for both the 

training and testing phases, models M1, M4, and M7 do not 

deliver accurate results. Furthermore, the relationship 

between each of the predicted HHVs of each model and the 

experimental HHVs for the testing and training phases can be 

observed in Fig. 11. Variables having close symmetrical 

resemblance in a box plot indicate that the correlation 

between the values of those variables is high. In Fig. 11, 

models M2, M3, M5, M6, M8, and M9 have relatively similar 

symmetry to the HHV, indicating a good correlation between 

the predicted HHVs of these models and the experimental 

HHVs.  
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Figure 8: R2 for M1 to M9 (a) Training phase (b) Testing phase 

 

 
Figure 9: MSE for M1 to M9 (a) Training phase (b) Testing phase 

 

 
Figure 10: MAE for M1 to M9 (a) Training phase; (b) Testing phase 
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Figure 11: Predicted HHV for M1-M9 vs. Experimental HHV (a) Training phase (b) Testing phase. 

 

CONCLUSION 

In this study, a performance comparison of three different 

activation functions (logsig, tansig, and purelin) in FFNN to 

predict the HHV of a wide range of biomass substrates as a 

function of the proximate analysis was conducted. This was 

achieved by modifying the activation functions of the output 

and hidden layers of a 3-10-1 FFNN architecture, leading to a 

total of nine investigated models (M1-M9). The optimal 

performance is credited to model M2 which used the logsig 

function in the hidden layer and the tansig function in the 

output layer. This model had the highest R2 value of 0.8814 

and the lowest MSE and MAE values of 0.0017 and 0.0281 

respectively. Meanwhile, the logsig activation function has 

the weakest performance when set as the output layer 

activation function but has the best performance when used as 

the hidden layer activation function based on all three 

evaluation metrics R2, MSE, and MAE. This implies that, to 

implement FFNN for biomass HHV prediction using 

proximate analysis, the tansig should be prioritised as the 

output layer activation function followed by the purelin while 

for the hidden layer activation function, preference should be 

given to the logsig, then tansig and purelin in that order. 

Future studies may focus on employing these activation 

functions to predict biomass HHV as a function of the 

ultimate analysis. 
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