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ABSTRACT 

This study assessed soil degradation and nutrient dynamics in seasonal wetland ecosystems under continuous 

rice cultivation in Atani and Odekpe, Anambra State, Nigeria. Soil samples were collected from rice fields and 

adjacent ≥ 5-year fallow (control) soils at two depths (0-15cm and 15-30 cm), and analyzed for selected soil 

physicochemical properties. Results showed high bulk density in the rice field (2.01 Mg/m3 at Atani), reduced 

organic carbon (1.07% at 15 – 30 cm in Odekpe), and high cadmium levels (0.38 mg/kg at 15-30 cm in Odekpe 

rice field). The soils showed moderate acidity across locations with pH values ranging from 5,45 to 6.00. The 

soil degradation index (SDI), computed as the weighted sum of normalized scores for eight degradation-

sensitive parameters, ranged from 0.231 (Odekpe control at 15-30 cm depth) to 0.438 (Odekpe control at 0-15 

cm depth). Rice fields showed inconsistent SDI values with depth, while control soils consistently had lower 

degradation at 15-30 cm depth. The findings showed that long-term rice cultivation, through agrochemicals 

use and tillage, significantly alters soil properties and increases degradation.  
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INTRODUCTION 

Soil degradation and nutrient depletion have always been 

critical global environmental concerns. There is no difference 

in seasonal wetland soils of Anambra state, where intensive 

rice production is practiced (Okafor et al., 2024). In Nigeria, 

wetland ecosystems play a pivotal role in food production 

(Sharma and Naik, 2024), particularly through rice cultivation 

(Lawler, 2001). Anambra State is known for its extensive 

temporary wetlands, especially at lowlands and across the 

plains of Niger and Omambala river which support 

continuous rice production (Agulue et al., 2020), which has 

significantly impacted soil quality, stability (Nweke et al., 

2023), and nutrient dynamics (Zou et al., 2024). Continuous 

cropping and high-yield expectations have escalated the use 

of agrochemicals, which have the potential to pollute 

underground water, which in many cases finds its way to 

domestic water use through boreholes (Mujahid et al., 2024). 

Research suggests that intensive agricultural practices, if 

unchecked, can lead to severe soil degradation (Bedolla-

Rivera et al., 2023), reduction in fertility, and consequent 

decline in crop yield (Haque et al., 2023). 

In wetland rice farming systems, particularly those in 

Anambra State, agrochemicals are often used without 

regulation, causing an imbalance in nutrient availability and 

disrupting soil health (Zhou et al., 2024). Studies reveal that 

frequent and irregular application of fertilizers and pesticides 

in rice production often leads to the build-up of toxic residues 

(Shah et al., 2024), soil acidity (Sharma et al., 2022), and 

reduced microbial activity (Ezeokoli et al., 2021), thereby 

threatening the sustainability of agricultural soils. Meanwhile, 

poor soil resource management practices, combined with the 

impacts of deforestation, have led to the gradual formation of 

savanna-like conditions where forested wetlands once thrived 

(Mandah et al., 2024). Deforestation not only contributes to 

biodiversity loss but also alters the microclimate and reduces 

the organic matter critical for maintaining soil structure and 

fertility. 

In Anambra State, there is a lack of dedicated soil monitoring 

and nutrient management frameworks, posing long-term risks 

to soil and environmental health and soil productivity. This, 

therefore, highlights the need to understand the dynamics of 

soil nutrients and soil degradation under continuous rice 

production, especially in temporary wetland ecosystems in 

Anambra State, where ecological stability is already fragile. 

Such insights are essential for making informed decisions on 

sustainable soil management that support both high 

productivity and environmental conservation. 

This study therefore, aims to assess soil degradation and 

nutrient dynamics in soils under continuous rice cultivation in 

Anambra's wetlands; the specific objectives were to evaluate 

the effects of continuous rice production on selected soil 

physicochemical properties; investigate the impact of 

agrochemical usage on cadmium and zinc content of the study 

areas, and evaluate certain soil degradation indices in the 

temporary wetland areas of Anambra state. 

 

MATERIALS AND METHODS 

Study Areas 

The study was carried out in continuous rice production 

lowland fields and adjacent 5-year-old fallow grasslands 

(control) in Atani, Ogbaru Local Government Area, and 

Odekpe, Anambra West Local Government Area, both in 

Anambra State. The study areas in Atani were located within 

6° 0' 21.38" N, 6° 0' 21.65" N and 6° 45' 50.86" E; 6° 45' 

51.42" E (Rice field); 6° 0' 17.56" N, 6° 0' 18.03" N and 6° 

45' 50.87" E; 6° 45' 51.71" E (control). The study areas at 

Odekpe were located within 6° 30' 8.27" N, 6° 30' 8.39" N 

and 6° 41' 18.24" E; 6° 41' 18.62" E (Rice fields); 6° 30' 7.91" 

N, 6° 30' 8.21" N and 6° 41' 17.46" E, 6° 41' 17.92" E 

(control). Atani has an annual mean temperature of 27° C and 

annual mean rainfall of 1331mm, while Odekpe has a mean 

annual temperature of 26° C and annual mean rainfall of 

1544mm. The study areas are usually saturated, stretching to 

late January, when a few patches of marshes, unlike the total 

submergence that is witnessed from late February till October. 

The areas have long become a derived savanna. 

 

Soil sampling 

Soils were randomly sampled in the rice fields, composited 

and replicated four (4 ×) times in each of active rice farms, as 
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well as active fallow farms (5 years fallow) which served as 

control, and at two depths (0 – 15 cm and 15 -30 cm), making 

a total of thirty-six (36) disturbed soil samples. The disturbed 

soils were sampled with a soil auger and hand trowel. 

Undisturbed soil samples (36) were collected with a core 

(5cm diameter × 10cm height), with the help of a plastic head 

hammer at two depths as well (0 – 15, 15 – 30 cm). The 

undisturbed soils were carefully airdried, sieved with 2mm 

sieved, and properly labeled before being taken to the 

laboratory for analysis. 

 

Laboratory Analysis 

The physicochemical properties that were analyzed in the 

laboratory were, particle size distribution (Percentage sand, 

silt and clay), bulk density (BD), moisture content (MC), soil 

structural stability index (SSSI), pH, total nitrogen (TN), 

electrical conductivity (EC), organic carbon (OC), 

exchangeable acidity (Al3+ and H+), exchangeable bases 

(Ca2+, Mg2+, K+, Na+) effective cation exchange capacity 

(ECEC), available phosphorus (Av. P), selected heavy metals 

(Zn, Cd).  

Particle size was determined using Bouyoucos method, as 

modified by Andres et al. (2014). 

Bulk density was determined by the core method (Grossman 

and Reinsch, 2002).  

 𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝐵𝐷) =
oven dry weight of soil

Volume
 (1) 

Soil pH, 1:2.5 (aqueous suspension) soil, and distilled water 

were determined using a high-precision pH meter, as 

described by Thomas (1994). 

Organic carbon was determined by the modified Walkley–

Black wet digestion/oxidation method described by 

Nelson and Sommers (1996). 

Total nitrogen was determined by the Micro Kjeldahl 

digestion method, as described by Allen (1989). 

Exchangeable acidity (Al3+ and H+) was determined 

titrimetrically as described by (Tan, 1998; Hesse, 1971). 

Exchangeable bases (Ca, Mg, K, and Na) were extracted in 

neutral normal ammonium acetate (1N-NH4OAc); Calcium 

and Magnesium were determined by Atomic Absorption 

Spectrophotometer, while Potassium and Sodium were 

determined using a flame photometer, as described by 

(Schollenberger and Simon, 1945).  

Effective cation exchange capacity was determined by the 

summation of Exchangeable bases and Exchangeable acidity. 

Available phosphorus was determined using the Bray (I) 

method (Bray and Kurtz, 1945). 

Selected heavy metals (Zn and Cd) were determined by 

double acid—nitric acid (HNO3) and Perchloric acid 

(HClO4) methods. The extracts were subjected to an atomic 

absorption Spectropotometer (AAS), using an appropriate 

hollow cathode lamp/wavelength (Watson and Isaac, 1990; 

Wright and Stuczynski, 1996). 

 

Soil Degradation Index 

Soil degradation index (SDI) was computed using the 

Weighted Average Method: 

SDI = Ʃ (Normalized parameter score × Weight of parameter) 

….      (2) 

SDI was evaluated and compared between the Rice field and 

the control sites at two depths for the two locations studied, 

on a scale of 0 – 1, 0 meaning less degradation, and 1 meaning 

high degradation. 

 

Statistical Analysis 

Data collected from the study were subjected to Analysis of 

variance (ANOVA) to determine the variation in soils of the 

rice field and control, as well as soil depths studied. 

Significant differences in the variations were determined 

using the least significant difference (LSD) at p ≤ 0.05. The 

statistical package used was Excel 2021. 

 

RESULTS AND DISCUSSION 

Selected soil properties 

The physicochemical properties of the studied soils are 

presented in Table 1a. The soils were predominantly silty clay 

across the studied soil, except at the rice field in Atani, which 

was silty loam, and clayey-loam at the topsoil of the control 

soil in Atani. Bulk density was highest (2.01 Mg/m3) at 0 – 15 

cm depth at Atani rice field, which could have been caused by 

compaction from farm machinery (Oduma et al., 2018); bulk 

density was higher in the studied soils than what a healthy 

seasonal wetland soil would be (0.9 – 1.30 Mg/m3) (Idris et 

al., 2019).  pH was moderately acidic across the studied soil, 

ranging from 5.45 (at the control soil in Atani) to 6.00 (at the 

control soil in Odekpe). The pH values could have been 

because of the hydromorphic nature of the soils and the 

prolonged history of use of inorganic fertilizers and 

agrochemicals in the soils (Grybos et al., 2009; Osinuga et al., 

2023). Organic carbon was higher at the rice fields than in the 

control soils, although the highest organic carbon was 

recorded at 0 – 15 cm soil depth in the control soil of Odekpe 

(2.22 %). The highest organic carbon in the topsoil of the 

control soil may have been caused by the accumulation of 

organic matter as a result of the hydromorphic nature of the 

soils (Steinmuller and Chambers, 2019). Aluminum was 

moderate across soils, ranging from 0.09 Cmol/kg to 1.11 

Cmol/kg; hydrogen was also moderate across soils. The pH 

levels of the soils would have influenced moderate levels of 

Aluminum and hydrogen in the soil. Calcium levels were low 

across soils except at the rice field, 0-15 cm depth (5.53 

Cmol/kg) and at the control soil, 0-15 cm depth (5.28 

Cmol/kg), all in Odekpe. The low calcium level would have 

been because of the acidification of those soils, as reflected in 

the pH. Magnesium levels in the soils were low to moderate, 

with control soil having the highest value of magnesium (3.03 

Cmol/kg) at 0-15 cm soil depth in Odekpe, whereas the lowest 

value of magnesium (1.21 Cmol/kg) was at the rice field, 0/15 

cm depth in Atani. Potassium was low across the studied soil, 

ranging from 0.24 Cmol/kg to 0.43 Cmol/kg. Sodium levels 

were generally lower, although it was higher at rice fields in 

both Atani (0.18 Cmol/kg) and Odekpe (0.22 Cmol/kg), more 

than in control soils in Atani (0.10 Cmol/kg) and Odekpe 

(0.17 Cmol/kg). The higher values of sodium concentration in 

the studied rice fields would have been caused by inorganic 

fertilizers and other chemical inputs (Mohammed et al., 

2024). Effective cation exchange capacity was low across 

soils except at the control soil, 15 – 30 cm depth (10.2 

Cmol/kg) in Odekpe, which was moderate. Available 

phosphorus was low across soils except in Odekpe, at the rice 

field, 0-15 cm soil (12.8 mg/kg), and at the control, 0-15 cm 

soil (12.1 mg/kg), which were moderate. The low phosphorus 

across soils would have been a reflection of the fixation of 

phosphorus by aluminum in acidic soils (Mesele et al., 2024). 

Cadmium concentration was within safe limits except at the 

rice field, 15 – 30 cm depth (0.38 mg/kg) in Odekpe, which 

was slightly above the FAO safe limit (WHO/FAO, 2001). 

The high cadmium recorded in the rice field must have been 

caused by inorganic fertilization and pesticide application 

(Grant and Sheppard, 2008; Khatun et al., 2022). Zinc 

concentrations were low across the studied soils, although it 

appears to be more in rice fields than in the control soils. The 

interaction and the mean significant difference of the studied 

soil properties are presented in Table 1b.  
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Table 1a: Physicochemical properties of the studied soil 

Location Land use Depth 

(cm) 

Sand Silt 

(gkg-1) 

Clay TC  BD 

(Mg/m3) 

pH OC 

(%) 

Al3+ H+ Ca2+ Mg2+ 

(Cmol/kg) 

K+ Na+ ECEC Av.P  Cd 

(mg/kg) 

Zn 

Atani Rice Field 0-15 271 571 158 SL 2.01 5.55 1.18 0.82 0.48 2.45 1.21 0.26 0.13 5.35 2.44 0.01 0.44 

  15-30 275 570 155 SL 1.82 5.61 1.22 0.72 0.57 3.50 1.55 0.26 0.18 6.78 3.31 0.15 0.33 

 Control 0-15 260 359 381 CL 1.65 5.54 1.84 1.11 0.58 3.14 2.43 0.24 0.10 7.60 7.03 0.02 0.18 

  15-30 128 423 449 SC 1.70 5.45 0.93 0.73 0.50 2.01 1.76 0.24 0.12 5.36 1.57 0.02 0.48 

Odekpe Rice Field 0-15 89 403 508 SC 1.29 5.60 2.17 0.18 0.83 5.53 2.53 0.43 0.22 9.72 12.8 0.09 0.42 

  15-30 54 448 498 SC 1.88 5.80 1.07 0.09 0.75 3.18 1.78 0.28 0.19 6.27 5.22 0.38 0.52 

 Control 0-15 38 356 606 SC 1.39 6.00 2.22 0.19 1.05 5.28 3.03 0.42 0.23 10.2 12.1 0.12 0.45 

  15-30 17 400 583 SC 1.63 5.78 1.57 0.14 0.85 3.43 1.78 0.24 0.17 6.61 6.15 0.05 0.44 

TC= textural class, BD = bulk density, OC = Organic carbon, SL = Silty Loam, CL = Clay Loam, SC = Silty Clay, Al = Aluminum, H = Hydrogen, Ca = Calcium, Mg = Magnesium, K = 

Potassium, Na = Sodium, ECEC = Effective Cation Exchange Capacity, Av.P = Available Phosphorus, Cd = Cadmium, Zn = Zinc 

 

Table 1b: Interaction of Physicochemical properties of the studied soil 

Location Land use Depth (cm) Sand Silt 

(gkg-1) 

Clay BD 

(Mg/m3) 

pH OC 

(%) 

Al3+ H+ Ca2+ Mg2+ 

(Cmol/kg) 

K+ Na+ ECEC Av.P  Cd 

(mg/kg) 

Zn 

Atani Rice Field 0-15 271 571 158 2.01 5.55 1.18 0.82 0.48 2.45 1.21 0.26 0.13 5.35 2.44 0.01 0.44 

 15-30 275 570 155 1.82 5.61 1.22 0.72 0.57 3.50 1.55 0.26 0.18 6.78 3.31 0.15 0.33 

  LSD (0.05) NS NS NS NS NS NS 0.09 NS 0.54 NS NS 0.03 0.91 NS 0.03 NS 

 Control 0-15 260 359 381 1.65 5.54 1.84 1.11 0.58 3.14 2.43 0.24 0.10 7.60 7.03 0.02 0.18 

  15-30 128 423 449 1.70 5.45 0.93 0.73 0.50 2.01 1.76 0.24 0.12 5.36 1.57 0.02 0.48 

  LSD (0.05) 92.2 NS NS NS NS 0.44 0.09 NS 0.54 0.49 NS NS 0.91 2.36 NS 0.11 

                   

 Rice Field 0-15 271 571 158 2.01 5.55 1.18 0.82 0.48 2.45 1.21 0.26 0.13 5.35 2.44 0.01 0.44 

  Control 260 359 381 1.65 5.54 1.84 1.11 0.58 3.14 2.43 0.24 0.10 7.60 7.03 0.02 0.18 

  LSD (0.05) NS 67.9 84.5 0.26 NS 0.44 0.09 0.09 0.54 0.49 NS 0.03 0.91 2.36 NS 0.11 

 Rice Field 15-30 275 570 155 1.82 5.61 1.22 0.72 0.57 3.50 1.55 0.26 0.18 6.78 3.31 0.15 0.33 

  Control 128 423 449 1.70 5.45 0.93 0.73 0.50 2.01 1.76 0.24 0.12 5.36 1.57 0.02 0.48 

  LSD (0.05) 92.2 67.9 84.5 NS NS NS NS NS 0.54 NS NS 0.03 0.91 NS 0.03 0.11 

Odekpe Rice Field 0-15 89 403 508 1.29 5.60 2.17 0.18 0.83 5.53 2.53 0.43 0.22 9.72 12.8 0.09 0.42 

  15-30 54 448 498 1.88 5.80 1.07 0.09 0.75 3.18 1.78 0.28 0.19 6.27 5.22 0.38 0.52 

  LSD (0.05) NS NS NS 0.20 NS 0.29 NS NS 1.13 0.48 0.09 NS 1.60 3.13 0.13 NS 

 Control 0-15 38 356 606 1.39 6.00 2.22 0.19 1.05 5.28 3.03 0.42 0.23 10.2 12.1 0.12 0.45 

  15-30 17 400 583 1.63 5.78 1.57 0.14 0.85 3.43 1.78 0.24 0.17 6.61 6.15 0.05 0.44 

  LSD (0.05) NS NS NS 0.20 NS 0.29 NS 0.21 1.13 0.48 0.09 0.03 1.60 3.13 NS NS 

                   

 Rice Field 0-15 89 403 508 1.29 5.60 2.17 0.18 0.83 5.53 2.53 0.43 0.22 9.72 12.8 0.09 0.42 

  Control 38 356 606 1.39 6.00 2.22 0.19 1.05 5.28 3.03 0.42 0.23 10.2 12.1 0.12 0.45 

  LSD (0.05) 35.5 NS 27.7 NS 0.26 NS NS NS NS 0.48 NS NS NS NS NS NS 

 Rice Field 15-30 54 448 498 1.88 5.80 1.07 0.09 0.75 3.18 1.78 0.28 0.19 6.27 5.22 0.38 0.52 

  Control 17 400 583 1.63 5.78 1.57 0.14 0.85 3.43 1.78 0.24 0.17 6.61 6.15 0.05 0.44 

  LSD (0.05) 35.5 46.6 27.7 0.20 NS 0.29 NS NS NS NS NS NS NS NS 0.13 NS 

TC= textural class, BD = bulk density, MC = moisture content, OC = Organic carbon, SSSI = soil structural stability index, SL = Silty Loam, CL = Clay Loam, SC = Silty Clay, Al = Aluminum, 

H = Hydrogen, Ca = Calcium, Mg = Magnesium, K = Potassium, Na = Sodium, ECEC = Effective Cation Exchange Capacity, Av.P = Available Phosphorus, Cd = Cadmium, Zn = Zinc 
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Atani rice field (between 0 -15 cm and 15-30 cm depth): Sand 

content remained similar between depths (271 gkg-1 at 0-15 

cm and 275 gkg-1 at 15-30 cm). Silt and clay content also did 

not show any significant difference (p ≤ 0.05). bulk density 

was slightly lower at 15 – 30 cm (1.82Mg/m3) compared to 

2.01 Mg/m3 at 0 – 15 cm, but the difference was not 

significant. The minimal texture variation suggests similar 

depositional history and limited pedogenic differentiation at 

depth. Soil pH increased slightly at 15 – 30 cm (5.61 

compared to 5.55), although with no significant difference (p 

≤ 0.05), possibly due to reduced leaching of basic cations at 

depth. Ca2+ was significantly higher (p ≤ 0.05) at 15 – 30 cm 

(3.50 Cmol/kg) compared to 2.45 Cmol/kg at 0-15 cm. ECEC 

increased with depth and showed a significant difference 

(6.78 Cmol/kg) at 15 – 30 cm, likely due to the accumulation 

of clay minerals at depth. Available phosphorus increased 

from 2.44 mgkg-1 at 0-15 cm to 3.31 mgkg-1 at 15 -30 cm, 

though no significant difference. Cadmium (Cd) was 

significantly higher at 15-30cm (0.15 mgkg-1), indicating 

potential accumulation from agrochemicals leaching 

downwards. 

Atani control soil (between 0-15cm and 15-30cm depth): 

Sand content was significantly lower at 15 – 30cm (128 gkg-

1). The decline suggests an eluviation-illuviation process 

where finer particles accumulate at depth. Soil pH remained 

similar at both depths. Organic carbon decreased significantly 

at 15-30cm (0.93 %), suggesting organic matter depletion at 

depth due to limited biological activity. ECEC was 

significantly lower at 15-30cm (5.36 Cmol/kg), indicating 

reduced nutrient retention capacity, likely due to decreased 

organic matter. Available phosphorus was significantly lower 

at 15-30 cm (1.57 mg/kg), indicating leaching. Cd remained 

similar at both depths (0.02 mg/kg), showing minimal 

mobility in the control soils. 

0-15 cm depth in Atani (between rice fields and control soil): 

The rice field had significantly higher silt content (571 gkg-1) 

than the control (359 gkg-1) but significantly lower clay 

content (158 gkg-1). Bulk density was significantly higher in 

rice fields (2.01 Mg/m3), indicating compaction from 

continuous cropping as well as machinery activities. Organic 

carbon was significantly lower in rice fields (1.18 %) than in 

control soil (1.84 %), showing organic matter depletion from 

continuous cropping.  

 

Soil degradation Index 

Parameter that was considered in their order of degradation 

capability seasonal floodplains were cadmium (Cd), organic 

carbon (OC), pH, zinc (Zn), available phosphorus (Av.P), 

potassium (K), calcium (Ca), and magnesium (Mg). The 

average weighting of these properties which must be equal to 

1, was presented in Table 2.  

 

Table 2: Average weight of soil properties in this study 

Soil properties Cd OC pH Zn Av.P K Ca Mg 

Average weight 0.25 0.20 0.15 0.15 0.10 0.06 0.05 0.04 

Cd = cadmium, OC = organic carbon, Zn = zinc, Av.p = available phosphorus, K = potassium, Ca = calcium, Mg = magnesium 

Soil parameters that were considered for SDI, were given normalized scores, which was presented in Table 3. Normal score 

apportioned was on a scale of 0 – 1 based on the distance of their analytical values or concentrations from the optimal range 

(WHO/FAO, 2001; Zondo, 2021).  

 

Table 3: Normalized score for soil parameters considered for SDI 

Location Land use Soil depth (cm) pH OC Ca Mg K Av.P Cd Zn 

Atani Rice field 0-15 0.74 0.30 0.49 0.40 0.33 0.08 0.01 0.009 

  15-30 0.75 0.31 0.70 0.52 0.33 0.11 0.21 0.007 

 Control 0-15 0.74 0.46 0.63 0.81 0.30 0.23 0.03 0.004 

  15-30 0.73 0.23 0.40 0.59 0.30 0.05 0.03 0.011 

Odekpe Rice field 0-15 0.75 0.54 1.00 0.84 0.54 0.43 0.13 0.009 

  15-30 0.77 0.27 0.64 0.59 0.35 0.17 0.54 0.011 

 Control 0-15 0.80 0.56 1.00 1.00 0.53 0.40 0.17 0.01 

  15-30 0.77 0.39 0.69 0.59 0.30 0.21 0.07 0.01 

OC = organic carbon, Ca = calcium, Mg = magnesium, K = potassium, Av.P = available potassium, Cd = cadmium, Zn = zinc. 

 

SDI of the seasonal wetland soils at two locations (Atani and 

Odekpe), two land uses (Rice field, Control soil), and two soil 

depths (0-15 cm and 15-30cm), are represented in Figure 1. 

Higher SDI indicates greater soil degradation. 

In Atani, the SDI for the rice field was 0.264 at 0-15 cm depth, 

and 0.316 at 15-30 cm depth, while the control soils showed 

higher degradation at 0-15 cm depth (0.317), but lower SDI at 

15-30 cm depth (0.231). In Odekpe, rice field had SDI of 

0.413 at 0-15cm, and 0.40 at 15-30cm depth, both of which 

were slightly lower than the control’s SDI at 15 cm depth 

(0.438), but much higher than the 15-30 cm depth (0.206). 

Control soils at both Atani and Odekpe maintained a 

consistent pattern of less SDI at the 15-30 cm depth, while 

rice fields at both locations showed inconsistent SDI. The 

higher SDI values at control soils in 0-15 cm depth may have 

been caused by surface level disturbances (Wang et al., 2024). 

In contrast, the inconsistent SDI at rice fields may have been 

caused by tillage operations, fertilizer, and agrochemical use 

(Nath et al., 2023). 
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Figure 1: Soil degradation Index of the studied soils at two soil depths 

 

CONCLUSION 

From the study, it was shown that continuous rice farming 

impacted soil quality, increasing bulk density and reducing 

organic carbon, particularly in the 0-15 cm soil depth. Bulk 

density in rice fields was as high as 2.01 Mg/m3 (Atani, 0-15 

cm), and organic carbon was lower in rice fields compared to 

control soils. Cadmium concentration remained within safe 

limits in most studied soils, except in Odekpe rice field at 15 

– 30 cm depth (0.38mg/kg). zinc was generally low, but 

higher in the rice field than control soils. Soil degradation 

index (SDI) values were higher in rice fields (0.413 in 

Odekpe, 0-15 cm) than in control soils, particularly at 0-15 

cm, indicating more intense degradation. Control soils 

consistently showed lower SDI at 15-30 cm depth (0.231 in 

Atani, 0.206 in Odekpe), reflecting protection from soil 

surface disturbance and better subsurface resilience. In 

contrast, rice fields showed an inconsistent SDI pattern. 
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