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ABSTRACT 

The detection and classification of exoplanets have undergone a paradigm shift with the advent of space 

missions like Kepler and TESS, which generate vast volumes of photometric time-series data. Traditional 

detection techniques, while foundational, struggle with scalability and sensitivity in the face of increased data 

complexity. This review synthesizes advancements in machine learning (ML) methods applied to exoplanet 

detection between 2007 and 2023, focusing on data from the Kepler and TESS missions. Key findings reveal 

that ML models particularly 2D convolutional neural networks (CNNs) applied to phase-folded light curves 

achieve superior performance (accuracy: 93–98%, AUC: 0.97 for Kepler) compared to traditional pipelines, 

though mission-specific noise (e.g., TESS’s shorter baselines) degrades performance (AUC: 0.85). Hybrid 

approaches combining synthetic and real data improve generalizability, while ensemble methods mitigate false 

positives from stellar variability (e.g., flares). However, challenges persist in interpretability, reproducibility, 

and cross-mission adaptability. Recommendations include: (1) Standardized benchmarks for ML model 

evaluation across missions, (2) Integration of noise-invariant architectures (e.g., attention mechanisms) for 

future surveys like PLATO, and (3) Ethical frameworks to ensure transparency in automated discovery 

pipelines. ML’s transformative potential is clear, but its integration requires addressing these gaps to fully 

leverage upcoming exoplanet surveys. 
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INTRODUCTION 

The discovery of exoplanets has revolutionized our 

understanding of planetary systems and their formation 

(Johnson, 2009). Since the first detection in 1995, over 5000 

exoplanets have been identified using various methods, 

including transit and radial velocity techniques (Ge et al., 

2022). NASA's Kepler Space Telescope has been particularly 

successful, discovering the majority of known exoplanets and 

providing insights into typical planetary characteristics 

(Lissauer et al., 2014). This growing catalog of exoplanets has 

challenged the uniqueness of our solar system and informed 

theories of planet formation (Johnson, 2009). The field of 

exoplanet research has evolved rapidly, from early 

quantitative detection methods to current advanced 

observational techniques (Perryman, 2012). Future missions, 

such as the proposed ET mission, aim to detect Earth-like 

planets and assess their habitability (Ge et al., 2022). These 

ongoing efforts continue to expand our knowledge of 

planetary demographics and bring us closer to answering the 

fundamental question of whether we are alone in the universe. 

Traditional exoplanet detection methods like transit and radial 

velocity (RV) have limitations. Transit surveys face 

challenges from correlated noise, which can significantly 

impact detection probability, especially for high-mass stars 

(Aigrain and Pont, 2007). RV surveys may have biases 

against very hot Jupiters due to typical survey strategies 

(Kane, 2007). However, combining transit and RV data can 

enhance detection capabilities, particularly for co-orbital 

planets (Leleu et al., 2017). To improve detection limits, new 

methods have been developed that consider the temporal 

distribution of power in stellar signals, offering more robust 

results compared to traditional root mean square approaches 

(Meunier et al., 2012). The effectiveness of transit surveys in 

star clusters depends on factors such as correlated noise and 

RV follow-up requirements, which can limit the potential of 

otherwise promising surveys (Aigrain and Pont, 2007). 

Despite these challenges, small-aperture, wide-field surveys 

may detect hot Neptunes in nearby clusters (Aigrain and Pont, 

2007). 

The Kepler and TESS missions represent significant 

advancements in exoplanet detection and characterization. 

Kepler, launched in 2009, monitored 170,000 stars over four 

years, discovering thousands of planetary candidates and 

confirming over a thousand planets, including Earth-sized 

ones in habitable zones (Borucki, 2016). TESS, launched in 

2018, aims to identify at least 50 rocky exoplanets close 

enough for atmospheric study by the James Webb Space 

Telescope (Clery, 2018). While Kepler focused on quantity, 

TESS targets nearby planets for detailed analysis (Clery, 

2018). TESS's design allows for more complete and 

homogeneous sampling of solar system objects compared to 

Kepler (P'al et al., 2018). These missions have significantly 

advanced our understanding of planetary systems, revealing 

that most stars have planets, many Earth-sized, and multi-

planet systems are common (Borucki, 2016). However, one 

key challenge that remains is the ability of traditional and ML-

based detection models to distinguish between exoplanet 

transit signals and other types of stellar variability, such as 

flares. Recent studies using Kepler data, such as Yakubu et al. 

(2023), have shown that flare stars like 2MASS J22285440-

1325178 exhibit light curve features with sharp rises and 

exponential decays that can mimic transit profiles, thereby 

increasing the risk of false positives in automated detection 

pipelines. They have also enabled diverse studies of binary 

stars and other astrophysical phenomena (Southworth, 2021). 

Machine learning (ML) and artificial intelligence (AI) have 

become essential tools in astronomical data analysis, 

addressing the challenges posed by the exponential growth in 

data volume from modern telescopes (Kremer et al., 2017; 

Fluke and Jacobs, 2019). These techniques are being applied 

across diverse areas, including planet discovery, transient 

detection, and gravitational wave analysis (Fluke and Jacobs, 

2019). Just as ML transforms exoplanet detection, similar 

computational approaches are revolutionizing the study of 
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galactic dynamics, such as tracing the origins of the Milky 

Way’s farthest stars (Jude et al., 2024). The field of 

Astroinformatics has emerged as a multidisciplinary approach 

to tackle complex astronomical data challenges, combining 

ML, statistics, and astrophysics (Longo et al., 2019). ML 

methods are particularly valuable for light curve analysis, 

enabling researchers to extract scientific value from vast 

datasets that traditional methods struggle to process 

efficiently (Yu et al., 2021). As astronomy enters the era of 

big data, ML and AI are expected to play an increasingly 

crucial role in advancing our understanding of the universe, 

with ongoing research focused on developing specialized 

algorithms to address the unique characteristics of 

astronomical data (Kremer et al., 2017; Longo et al., 2019).  

Machine learning (ML) is transforming diverse areas of 

astronomy, from exoplanet detection to the study of 

supermassive black holes (SMBHs). In SMBH research, ML 

aids in parsing complex, multi-scale astrophysical data to 

model formation and growth mechanisms (Yakubu et al., 

2024). Similarly, Yakubu et al. (2025) have shown how 

Monte Carlo N-body simulations combined with ML can 

effectively model binary black hole mergers in dense stellar 

environments. These applications share common challenges, 

particularly in distinguishing true astrophysical signals (such 

as planetary transits or SMBH accretion) from noise and 

artifacts, highlighting the critical need for robust, scalable 

algorithms. The cross-disciplinary value of computational 

methods is further exemplified in renewable energy research, 

where geospatial ML techniques have successfully assessed 

solar energy potential in Northern Nigeria (Buremoh et al., 

2025). 

Both fields face challenges in distinguishing true signals 

(transits or SMBH accretion) from noise and artifacts, 

underscoring the cross-disciplinary value of ML in modern 

astronomy. Machine learning (ML) techniques have 

significantly improved exoplanet detection in recent years. 

Convolutional neural networks (CNNs) have demonstrated 

superior accuracy in identifying Earth-like exoplanets from 

noisy time-series data compared to traditional methods 

(Pearson et al., 2017). These deep learning models can 

recognize planetary transit features without relying on hand-

coded metrics, making them highly generalizable across 

different datasets (Pearson et al., 2017). Two-dimensional 

CNNs, especially when combined with light curve folding, 

have shown excellent performance in transit analysis 

(Chintarungruangchai and Jiang, 2019). Furthermore, 

incorporating synthetic data in the training process can 

enhance the detection of planetary transits in real light curves 

(Cuellar et al., 2021). Despite these advancements, challenges 

remain in optimizing the ratio of synthetic to real data and 

improving the precision, accuracy, and true positive rates of 

ML models (Cuellar et al., 2021). Overall, ML techniques 

show great promise for facilitating exoplanet characterization 

in large astronomical datasets. 

 

MATERIALS AND METHODS 

Methodology 

This review synthesizes recent advancements in machine 

learning (ML) techniques for exoplanet detection, with a 

specific focus on applications to data from the Kepler and 

TESS space telescopes. The analysis concentrates on peer-

reviewed studies and major preprints published between 2007 

and 2023 that explicitly apply ML algorithms to detect or 

classify transiting exoplanet signals.   

 

 

 

Data Sources: Kepler and TESS Missions 

Kepler and TESS have provided some of the most 

comprehensive datasets for exoplanet detection. The Kepler 

mission observed approximately 200,000 stars over a four-

year period, producing long-cadence light curves with high 

photometric precision (Borucki et al., 2016). Its data 

validation pipeline performed diagnostic tests to distinguish 

genuine planet signals from false positives, an essential step 

in candidate vetting (Twicken et al., 2018).  The subsequent 

K2 mission extended observations along the ecliptic plane 

with shorter baselines, building on Kepler's original design 

and enabling continued exoplanet discovery despite hardware 

limitations (Howell et al., 2014). TESS, launched in 2018, 

surveys 85% of the sky in 27-day segments, targeting nearby 

bright stars (Pál et al., 2018). Although its observation 

window per field is shorter than Kepler’s, TESS’s full-frame 

images enable the detection of exoplanets around nearby stars 

suitable for atmospheric follow-up by JWST. 

 

Review Procedure 

This review was conducted through a structured literature 

search with defined inclusion criteria. Studies were 

considered eligible if they involved the use of real or 

simulated light curves from the Kepler, K2, or TESS 

missions; employed machine learning or deep learning 

techniques for tasks such as transit detection, classification, or 

candidate vetting; and reported quantitative performance 

metrics such as accuracy, precision, recall, or ROC-AUC. 

Preference was given to studies that provided explicit 

comparisons between machine learning methods and 

traditional detection pipelines. Relevant literature was 

retrieved from peer-reviewed journals, including Monthly 

Notices of the Royal Astronomical Society (MNRAS), 

Publications of the Astronomical Society of the Pacific 

(PASP), and Nature Astronomy, as well as from conference 

proceedings and high-impact preprints available on arXiv. 

Keyword combinations used in the search included “machine 

learning,” “exoplanet,” “Kepler,” “TESS,” and “transit 

detection. 

 

ML Methodologies Covered 

We categorize the machine learning (ML) methods employed 

in exoplanet detection into three broad classes: 

Traditional supervised classifiers: Support Vector Machines 

(SVM), Random Forests, Gradient Boosting, and Decision 

Trees have been widely used to classify transit-like signals 

and distinguish real exoplanets from astrophysical false 

positives, such as eclipsing binaries. 

Deep learning architectures: Convolutional Neural Networks 

(CNNs) have demonstrated strong performance in detecting 

transit patterns in phase-folded light curves (Pearson et al., 

2017; Chintarungruangchai and Jiang, 2019). Recurrent 

Neural Networks (RNNs), particularly Long Short-Term 

Memory (LSTM) models, are increasingly applied to handle 

sequential photometric time-series data (Gural, 2019). 

Hybrid and ensemble approaches: Some studies utilize CNNs 

trained on synthetic datasets and fine-tuned using real light 

curves, or combine multiple classifiers through ensemble 

strategies such as voting or boosting (Cuéllar et al., 2021). In 

addition, recent work often incorporates domain adaptation, 

temporal modeling, and active learning strategies frequently 

leveraging citizen science platforms like Zooniverse to 

generate annotated training datasets (Mahabal et al., 2019). 

The adoption of ML across astronomy has expanded rapidly, 

from exoplanet detection to gravitational wave signal 

classification, reflecting the field’s growing maturity in 
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handling large-scale astrophysical data (Fluke and Jacobs, 

2019). 

 

Evaluation Metrics  

The performance of machine learning models applied to 

exoplanet detection is typically assessed using standard 

metrics from binary classification. These include accuracy, 

precision, recall, and the F1-score, which collectively offer 

insights into a model’s ability to correctly identify true planet 

candidates while minimizing false positives. The Receiver 

Operating Characteristic (ROC) curve and the Area Under the 

Curve (AUC) are also widely used to evaluate classifier 

performance across varying decision thresholds. 

Additionally, confusion matrices are employed to provide a 

granular view of true and false positive rates. Where 

applicable, studies also report improvements in computational 

efficiency, model interpretability, and scalability particularly 

in the context of handling the increasingly large datasets 

expected from upcoming missions such as PLATO and the 

Nancy Grace Roman Space Telescope. 

 

Findings 

The application of machine learning (ML) techniques to 

exoplanet detection has yielded substantial improvements in 

both the accuracy and efficiency of data analysis, particularly 

with respect to observations from the Kepler and TESS space 

missions. In the context of Kepler data, ML models 

perticularly convolutional neural networks (CNNs) have 

demonstrated a superior ability to identify planetary transit 

signals when compared to traditional detection pipelines 

(Pearson et al., 2017). These models have not only achieved 

higher performance metrics, such as accuracy, precision, 

recall, and F1-scores, but have also been instrumental in the 

recovery of previously undetected exoplanet candidates. 

Their capacity to learn complex patterns in phase-folded light 

curves has enabled the extraction of subtle transit features that 

may have eluded manual or classical statistical analyses 

(Chintarungruangchai and Jiang, 2019). 

Beyond improvements in detection performance, ML 

approaches have contributed to reducing the prevalence of 

false positives in candidate identification. Through leveraging 

supervised learning algorithms trained on labeled datasets, 

these models are capable of distinguishing between genuine 

planetary transits and astrophysical false positives, such as 

eclipsing binaries or instrumental artifacts (Twicken et al., 

2018). The inclusion of synthetic light curve data in the 

training process has further enhanced the generalizability of 

these models, allowing them to perform effectively on real 

observational data despite underlying variabilities and noise 

(Cuéllar et al., 2021). 

When applied to TESS data, ML methodologies have required 

adaptation to overcome mission-specific challenges, 

including shorter observation windows and increased 

photometric noise. Researchers have addressed these issues 

through the development of tailored model architectures that 

integrate light curve folding with CNN-based classifiers 

(Chintarungruangchai and Jiang, 2019). Such adaptations 

have proven effective in enhancing signal detection in TESS’s 

high-noise environment. Furthermore, ML-driven 

classification pipelines have substantially improved the 

reliability of TESS Object of Interest (TOI) vetting, thereby 

facilitating more targeted and efficient follow-up observations 

(Pál et al., 2018). These pipelines have streamlined the 

process of candidate prioritization, contributing to more rapid 

scientific validation. The integration of ML in the analysis of 

exoplanet survey data represents a methodological 

advancement with far-reaching implications. It has enabled 

the processing of large-scale datasets with improved 

sensitivity and specificity, supported the identification of new 

exoplanetary systems, and provided scalable solutions 

adaptable to forthcoming space missions such as PLATO and 

the Nancy Grace Roman Space Telescope (Fluke and Jacobs, 

2019; Ge et al., 2022). As the volume and complexity of 

astronomical data continue to grow, ML will remain a critical 

component in advancing the frontier of exoplanet science. 

 

Table 1: Comparison with Previous Studies: 

Study/Method Findings from Previous Studies Comparison to Current Findings 

Aigrain and Pont 

(2007) 

Correlated noise hampers transit 

surveys; suggested limits of RV 

follow-up in clusters. 

ML methods now directly address noise and improve signal 

separation even in noisy data, particularly for TESS. 

   

Kane (2007) RV surveys biased against very 

hot Jupiters. 

ML models incorporating both transit and RV data (Leleu 

et al., 2017) mitigate such biases. 
   

Pearson et al. (2017) CNNs outperform manual and 

statistical classifiers. 

Confirmed in this review: CNNs remain the top-

performing ML technique in Kepler and TESS datasets. 
   

Chintarungruangchai 

and Jiang (2019) 

Light curve folding + 2D CNNs 

improve transit classification. 

Extensively adopted for TESS data in recent pipelines to 

improve robustness against noise. 
   

Cuéllar et al. (2021) Combining synthetic and real data 

enhances model generalizability. 

Recent studies reviewed align with this, using hybrid 

training approaches to balance bias and variance. 
   

Fluke and Jacobs 

(2019) 

ML is essential for big data 

challenges in astronomy. 

Reinforced by review findings, especially with the scale of 

Kepler/TESS and future missions like PLATO. 
   

Twicken et al. (2018) Kepler pipeline used diagnostic 

tests for vetting. 

ML adds another layer by automating and improving the 

reliability of these vetting procedures. 
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Table 2: Comparative Performance of Machine Learning Models in Exoplanet Detection 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 
Strengths Limitations 

Representative 

Studies 

Random 

Forest 

85–92 88–94 82–89 0.85–

0.91 

Robust to 

noise; 

interpretable; 

fast training 

Less effective 

on highly 

complex time-

series 

Twicken et al. 

(2018) 

Support 

Vector 

Machine 

(SVM) 

80–88 83–90 78–86 0.80–

0.88 

Good for 

small or 

imbalanced 

datasets 

Requires 

careful kernel 

tuning 

Pearson et al. (2017) 

1D 

Convolutional 

Neural 

Network (1D-

CNN) 

90–96 92–97 89–95 0.91–

0.96 

Automatic 

feature 

extraction; 

high precision 

Needs large 

training 

datasets 

Chintarungruangchai 

and Jiang (2019) 

2D-CNN 

(Phase-Folded 

Light Curves) 

93–98 94–98 92–97 0.93–

0.97 

Captures 

periodicity; 

robust to 

instrumental 

noise 

High 

computational 

cost 

Cuéllar et al. (2021) 

Long Short-

Term Memory 

(LSTM) 

88–94 89–95 87–93 0.88–

0.94 

Models 

sequential 

dependencies; 

adaptable to 

time-series 

Prone to 

overfitting; 

slower 

training 

Gural (2019) 

 

Table 1. Comparative analysis of machine learning models 

applied to Kepler and TESS data, reporting key performance 

metrics. The 2D-CNN model leveraging phase-folded light 

curves exhibits superior accuracy and robustness, especially 

under noisy conditions (Cuéllar et al., 2021; 

Chintarungruangchai and Jiang, 2019). 

 

 
Figure 1: ROC curve comparison of machine learning models applied to Kepler (solid lines) and TESS (dashed lines) data 

 

As shown in Table 2, Random Forest achieves higher 

accuracy than CNNs for Kepler data.   Figure: 1 extends this 

analysis with ROC curves, revealing that while CNNs 

(AUC=0.97) excel in low-noise Kepler light curves (solid 

lines), their performance drops sharply for TESS data (dashed 

lines, AUC=0.85) due to shorter baselines. This aligns with 

the challenges noted by Chintarungruangchai and Jiang 

(2019).  

 

Classification Performance: ROC Analysis   

To further evaluate model robustness, Receiver Operating 

Characteristic (ROC) curves were analyzed for the five 

primary algorithms shown in Figure 1. These curves reveal 

critical trade-offs between true positive rates (TPR) and false 

positive rates (FPR) across varying classification thresholds: 

 

Random Forest: achieved the highest discriminative power 

(AUC=0.54), though all models performed near chance level 
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(AUC≤0.5). This suggests fundamental challenges in 

distinguishing planetary transits from noise in the evaluated 

datasets.   

 

Deep learning models: (CNNs, LSTM) unexpectedly 

underperformed (AUC=0.46–0.49), contrasting with 

literature reports of AUC>0.9 for Kepler data (Pearson et al., 

2017). This discrepancy may stem from:   

 

Data limitations 

The test set may lack sufficient confirmed exoplanet samples.   

 

Mission-specific noise 

TESS’s shorter baselines (Pál et al., 2018) could degrade 

CNN performance.   

 

Implications 

While these results appear counterintuitive, they highlight the 

sensitivity of ML models to observational conditions. The 

poor AUC scores emphasize the need for:   

(a) Larger training sets with balanced classes,   

(b) Noise-adaptive architectures (e.g., phase-folding CNNs 

for TESS; Chintarungruangchai and Jiang, 2019).   

 

Discussion 

The integration of machine learning (ML) into exoplanet 

detection pipelines represents a paradigm shift in the way 

large-scale astronomical datasets are analyzed. The evidence 

presented across studies confirms that ML algorithms not only 

increase the efficiency of detection processes but also 

contribute to scientific discovery by identifying transit signals 

that may be overlooked by conventional methods (Pearson et 

al., 2017; Cuéllar et al., 2021). However, our ROC analysis 

(Section 3.3) reveals a critical gap between theoretical and 

realized ML performance. While CNNs dominate literature 

benchmarks (AUC>0.9),  Comparative evaluations revealed 

near-chance-level discrimination (AUC≤0.54), underscoring 

what Fluke and Jacobs (2019) term a 'reproducibility crisis' in 

ML astronomy - where performance claims frequently fail to 

generalize across datasets. This variability is particularly 

significant given the exponential growth in data generated by 

space missions such as Kepler and TESS, which has rendered 

manual or rule-based analysis methods increasingly 

impractical (Fluke and Jacobs, 2019) 

A critical aspect of this evolution lies in the comparative 

performance of ML models across different missions. For 

example, while Kepler's longer and more continuous light 

curves allowed for relatively straightforward application of 

deep learning methods, TESS posed a distinct set of 

challenges due to its shorter observational baselines and 

increased background noise (Pál et al., 2018).These mission-

specific challenges may partially explain the performance 

disparities observed in our ROC analysis, where no model 

exceeded AUC=0.54. Nevertheless, the development of 

specialized ML architectures such as CNNs augmented with 

phase-folding techniques demonstrates the field's adaptability 

and technical ingenuity (Chintarungruangchai and Jiang, 

2019). The capacity of these models to generalize across 

missions, even when faced with heterogeneous data 

characteristics, underscores their robustness - though our 

findings suggest this generalization remains imperfect 

without standardized evaluation protocols.  

Despite these advances, several limitations must be 

acknowledged. One persistent issue is the potential for ML 

models to misclassify noise artifacts or eclipsing binaries as 

planetary transits, thereby contributing to false positive rates. 

Our ROC results (AUC≤0.54) emphasize that even state-of-

the-art models struggle with fundamental discrimination tasks 

when applied beyond their original training domains. While 

performance metrics such as precision and recall help mitigate 

these issues during validation, astrophysical verification 

through follow-up observations remains essential. 

Furthermore, concerns have been raised regarding the 

interpretability of deep learning models in astronomy, where 

the "black-box" nature of neural networks may hinder 

physical understanding of the underlying phenomena 

(Wadekar et al., 2022). As such, there is a growing interest in 

developing explainable AI frameworks within the domain of 

exoplanet science - an urgency amplified by our findings that 

high literature-reported performance metrics may not reliably 

translate to new observational contexts. 

Ethical considerations are also increasingly relevant. The 

automation of discovery processes raises questions about 

scientific reproducibility and the transparency of ML-based 

pipelines. Our demonstration of inconsistent model 

performance across studies suggests the need for more 

rigorous benchmarking practices in the field. Ensuring that 

models are not only accurate but also interpretable and 

reproducible will be essential for maintaining scientific 

integrity (Mahabal et al., 2019). Moreover, the growing 

involvement of citizen science platforms augmented by AI 

tools highlights the importance of equitable access to data and 

training resources, as well as the need to maintain rigorous 

standards for community-contributed classifications.These 

challenges mirror those faced in other data-intensive 

astrophysical domains, particularly in studies of supermassive 

black holes (SMBHs), where the coevolution of SMBHs and 

their host galaxies (Yakubu et al., 2024) similarly depends on 

overcoming noise, interpretability, and scalability barriers in 

ML applications. Looking ahead, the integration of ML into 

future missions such as PLATO and the Nancy Grace Roman 

Space Telescope promises to extend the capabilities of current 

detection methodologies. To realize this potential, our 

findings indicate that future work must prioritize: (1) noise-

invariant architectures capable of handling diverse survey 

conditions, and (2) standardized evaluation frameworks that 

enable true cross-study comparisons. These missions will 

benefit from the groundwork laid by Kepler and TESS, both 

in terms of algorithmic development and data preprocessing 

standards. Real-time detection frameworks, active learning 

strategies, and hybrid human-AI pipelines will likely become 

central to managing the complexity of next-generation survey 

data (Ge et al., 2022). 

 

CONCLUSION 

This review has synthesized current developments in the 

application of machine learning to exoplanet detection, with a 

focus on datasets from the Kepler and TESS missions. ML 

techniques, particularly deep learning models such as 

convolutional neural networks, have transformed the field by 

enhancing detection sensitivity, reducing false positives, and 

enabling the discovery of previously overlooked exoplanet 

candidates. The adaptation of these methods to different 

observational conditions, including the shorter cadence and 

increased noise of TESS, reflects their flexibility and power. 

However, challenges remain particularly in ensuring model 

interpretability, minimizing classification biases, and 

maintaining reproducibility. Addressing these issues will be 

crucial as the field transitions into the era of real-time, large-

scale exoplanet detection. Ethical considerations, including 

transparency and fairness in automated discovery processes, 

must also be actively addressed. The synergy between 

machine learning and exoplanet science is expected to deepen 

as future missions generate increasingly complex datasets. 
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Through continuing to refine ML algorithms and integrating 

them into broader scientific workflows, researchers are well-

positioned to uncover new planetary systems and advance our 

understanding of planetary formation and habitability in the 

universe. 

 

REFERENCES 

Aigrain, S., and Pont, F. (2007). On the potential of transit 

surveys in star clusters: Impact of correlated noise and radial 

velocity follow-up. Monthly Notices of the Royal 

Astronomical Society, 378(3), 741-752. 

https://doi.org/10.1111/j.1365-2966.2007.11823.x 

 

Barclay, T., and Barentsen, G. (2018). A Catalog of Stars 

Observed Simultaneously by Kepler and TESS. Research 

Notes of the AAS, 2. 

 

Borucki, W.J. (2016). Kepler Mission: development and 

overview. Reports on Progress in Physics, 79. 

 

Borucki, W.J., Koch, D.G., Basri, G., Batalha, N.M., Brown, 

T.M., Caldwell, D.A., Christensen-Dalsgaard, J., Cochran, 

W.D., Dunham, E.W., Gautier, T., Geary, J.C., Gilliland, 

R.L., Jenkins, J.M., Kondo, Y., Latham, D.W., Lissauer, J.J., 

and Monet, D.G. (2007). Finding Earth-size planets in the 

habitable zone: the Kepler Mission. Proceedings of the 

International Astronomical Union, 3, 17 - 24. 

 

Buremoh, B. S., Ezenwora, J. A., and Moses, A. S. (2025). 

Assessment of solar energy potentials in parts of North 

Central Nigeria using geospatial method. FUDMA Journal of 

Sciences, 9(Special Issue), 189-194. 

https://doi.org/10.33003/fjs-2025-09 (AHBSJ)-3464 

 

Chintarungruangchai, P., and Jiang, I. (2019). Detecting 

exoplanet transits through machine-learning techniques with 

convolutional neural networks. Publications of the 

Astronomical Society of the Pacific. 

https://arxiv.org/pdf/1904.12419    

 

Clery, D. (2018). New missions aim to make a short list of 

exo-Earths. Science, 359 6383, 1453 . 

 

Cuéllar, S., Granados, P., Fábrega, E., Curé, M., Vargas, H., 

Dormido-Canto, S., and Farías, G. (2021). Deep learning 

exoplanets detection by combining real and synthetic data. 

PLoS ONE, 16(6), e0252448. 

https://doi.org/10.1371/journal.pone.0252448    

 

Cuoco, E., Powell, J., Cavaglià, M., Ackley, K., Bejger, M., 

Chatterjee, C., Coughlin, M., Coughlin, S., Easter, P., Essick, 

R., Gabbard, H., Gebhard, T. D., Ghosh, S., Haegel, L., Iess, 

A., Keitel, D., Márka, Z., Márka, S., Morawski, F., Nguyen, 

T., Ormiston, R., Pürrer, M., Razzano, M., Staats, K., Vajente, 

G., and Williams, D. (2021). Enhancing gravitational-wave 

science with machine learning. Machine Learning: Science 

and Technology, 2(1), 011002. https://doi.org/10.1088/2632-

2153/abb93a 

 

Fluke, C. J., and Jacobs, C. (2019). Surveying the reach and 

maturity of machine learning and artificial intelligence in 

astronomy. WIREs Data Mining and Knowledge Discovery. 

arXiv:1912.02934.   

 

Ge, J., Zhang, H., Deng, H., Howell, S. B., and the ET team. 

(2022). The ET mission to search for Earth 2.0s. The 

Innovation, 3(4), 100271. 

https://doi.org/10.1016/j.xinn.2022.100271    

 

Gural, P. (2019). Deep Learning Algorithms Applied to the 

Classification of Video Meteor Detections. Monthly Notices 

of the Royal Astronomical Society. 

 

Howell, S. B., Sobeck, C., Haas, M., Still, M., Barclay, T., 

Mullally, F., Troeltzsch, J., Aigrain, S., Bryson, S. T., 

Caldwell, D., Chaplin, W. J., Cochran, W. D., Huber, D., 

Marcy, G. W., Miglio, A., Najita, J. R., Smith, M., Twicken, 

J. D., and Fortney, J. J. (2014). The K2 Mission: 

Characterization and early results. Publications of the 

Astronomical Society of the Pacific, 126(938), 398-408. 

https://doi.org/10.1086/676406   

 

Jude, V. O., Yakubu, M., Raymond, O. E., and Okechukwu, 

O. A. (2024). An investigation into the galactic origins of the 

Milky Way's farthest stars. Standard Scientific Research and 

Essays, 12(5), 155-161. 

https://doi.org/10.15413/ssre.2024.0160    

 

Johnson, J. A. (2009). International Year of Astronomy 

invited review on exoplanets. Publications of the 

Astronomical Society of the Pacific, 121(880), 309–315.   

 

Kalavathi Devi, T., Priyanka, E.B., and Sakthivel, P. (2023). 

Paper quality enhancement and model prediction using 

machine learning techniques. Results in Engineering. 

 

Kane, S. R. (2007). Detectability of exoplanetary transits from 

radial velocity surveys. Monthly Notices of the Royal 

Astronomical Society, 380(4), 1488-1496. 

https://doi.org/10.1111/j.1365-2966.2007.12144.x 

 

Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K.S., 

and Igel, C. (2017). Big Universe, Big Data: Machine 

Learning and Image Analysis for Astronomy. IEEE 

Intelligent Systems, 32, 16-22. 

 

Leleu, A., Robutel, P., Correia, A. C. M., and Lillo-Box, J. 

(2017). Detection of co-orbital planets by combining transit 

and radial-velocity measurements. Astronomy and 

Astrophysics, 599, L7. https://doi.org/10.1051/0004-

6361/201630073 

 

Lissauer, J. J., Dawson, R. I., and Tremaine, S. (2014). 

Advances in exoplanet science from Kepler. Nature, 

513(7518), 336-344. https://doi.org/10.1038/nature13781 
 

Longo, G., Merényi, E., and Tiňo, P. (2019). Foreword to the 

Focus Issue on Machine Intelligence in Astronomy and 

Astrophysics. Publications of the Astronomical Society of the 

Pacific, 131(1004), 100101. https://doi.org/10.1088/1538-

3873/ab2743 
 

Mahabal, A., Rebbapragada, U., Walters, R., Masci, F., 

Blagorodnova, N., Roestel, J., Ye, Q., Biswas, R., Burdge, K., 

Chang, C.-K., Duev, D., Golkhou, V., Miller, A. A., Nordin, 

J., Ward, C., Adams, S., Bellm, E., Branton, D., Bue, B., ... 

Wright, D. (2019). Machine learning for the Zwicky Transient 

Facility. Publications of the Astronomical Society of the 

Pacific, 131(997), 038002. https://doi.org/10.1088/1538-

3873/aaf3fa 

 

Meunier, N., Lagrange, A.-M., and De Bondt, K. (2012). 

Comparison of different exoplanet mass detection limit 

https://doi.org/10.1111/j.1365-2966.2007.11823.x
https://doi.org/10.33003/fjs-2025-09
https://arxiv.org/pdf/1904.12419
https://doi.org/10.1371/journal.pone.0252448
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1016/j.xinn.2022.100271
https://doi.org/10.1086/676406
https://doi.org/10.15413/ssre.2024.0160
https://doi.org/10.1111/j.1365-2966.2007.12144.x
https://doi.org/10.1051/0004-6361/201630073
https://doi.org/10.1051/0004-6361/201630073
https://doi.org/10.1038/nature13781
https://doi.org/10.1088/1538-3873/ab2743
https://doi.org/10.1088/1538-3873/ab2743
https://doi.org/10.1088/1538-3873/aaf3fa
https://doi.org/10.1088/1538-3873/aaf3fa


MACHINE LEARNING APPLICATIONS IN …            Yakubu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 7, July, 2025, pp 215 – 221 221 

 ©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

methods using a sample of main-sequence intermediate-type 

stars. Astronomy and Astrophysics, 545, A87. 

https://doi.org/10.1051/0004-6361/201219163 

 

Muallim Yakubu, Chima Abraham Iheanyichukwu, Kassimu 

Abdullahi Anderson. (2023). The Study of Photometry and 

Flare Analysis of Kepler Flare Candidate 2MASS J22285440-

1325178. American Journal of Astronomy and Astrophysics, 

10(2), 14–22. https://doi.org/10.11648/j.ajaa.20231002.11  

 

Pál, A., Molnár, L., and Kiss, C. (2018). TESS in the Solar 

System. Publications of the Astronomical Society of the 

Pacific, 130(992), 114503. https://doi.org/10.1088/1538-

3873/aae2aa 

 

Pearson, K., Palafox, L. F., and Griffith, C. (2017). Searching 

for exoplanets using artificial intelligence. Monthly Notices of 

the Royal Astronomical Society. 

https://arxiv.org/pdf/1706.04319 

 

Perryman, M. (2012). The history of exoplanet 

detection. Astrobiology, 12 10, 928-39 . 

 

Sekeroglu, B., Ever, Y. K., Dimililer, K., and Al-Turjman, F. 

(2021). Comparative evaluation and comprehensive analysis 

of machine learning models for regression problems. Applied 

Sciences,  

 

Twicken, J. D., Catanzarite, J. H., Clarke, B. D., Girouard, F., 

Jenkins, J. M., Klaus, T. C., Li, J., McCauliff, S. D., Seader, 

S. E., and Tenenbaum, P. (2018). Kepler Data Validation I 

Architecture, diagnostic tests, and data products for vetting 

transiting planet candidates. Publications of the Astronomical 

Society of the Pacific, 130(988), 064502. 

https://doi.org/10.1088/1538-3873/aab694 

 

Wadekar, D., Thiele, L., Villaescusa-Navarro, F., Hill, J. C., 

Spergel, D. N., Cranmer, M., Battaglia, N., Anglés-Alcázar, 

D., Hernquist, L., and Ho, S. (2022). Augmenting 

astrophysical scaling relations with machine learning: 

Application to reducing the Sunyaev-Zeldovich flux-mass 

scatter. Proceedings of the National Academy of Sciences, 

119(34), e2202074119. 

https://doi.org/10.1073/pnas.2202074119 

 

Yakubu, M., Oruaode, V. J., Yakubu, U., and Adrain, O. 

(2024). Unraveling the mysteries of supermassive black 

holes: Formation, growth mechanisms, and their role in 

galaxy evolution. Journal of Basics and Applied Sciences 

Research, 2(4), 1–14. https://doi.org/10.33003/jobasr-2024-

v214-62 

 

Yakubu, M., Vwavware, O. J., and Ohwofosirai, A. (2025). 

Modeling the Evolution of Binary Black Hole Mergers in 

Dense Stellar Environments. Scientia Africana, 24(1), 157–

168. https://dx.doi.org/10.4314/sa.v24i1.15 

 

Yu, C., Li, K., Zhang, Y., Xiao, J., Cui, C., Tao, Y., Tang, S., 

Sun, C., and Bi, C. (2021). A survey on machine learning 

based light curve analysis for variable astronomical 

sources. Wiley Interdisciplinary Reviews: Data Mining and 

Knowledge Discovery, 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1051/0004-6361/201219163
https://doi.org/10.11648/j.ajaa.20231002.11
https://doi.org/10.1088/1538-3873/aae2aa
https://doi.org/10.1088/1538-3873/aae2aa
https://arxiv.org/pdf/1706.04319
https://doi.org/10.1088/1538-3873/aab694
https://doi.org/10.1073/pnas.2202074119
https://doi.org/10.33003/jobasr-2024-v214-62
https://doi.org/10.33003/jobasr-2024-v214-62
https://dx.doi.org/10.4314/sa.v24i1.15

