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ABSTRACT 

Emotion recognition is a critical area of research with applications in healthcare, human-computer interaction 

(HCI), security, and entertainment. This study addressed the limitations of single-modal emotion recognition 

systems by developing a multi-modal emotion recognition model that integrates facial expressions and 

physiological signals, enhanced by Generative Adversarial Networks (GANs). It aims at improving accuracy, 

reliability, and robustness in emotion detection, particularly underrepresented emotions. The study utilized the 

FER-2013 dataset for facial expressions and the DEAP dataset for physiological signals. GANs were employed 

to augment datasets, address class imbalances and enhance feature diversity. A hybrid multi-modal model was 

developed, combining Convolutional Neural Networks (CNNs) for facial expression recognition and Long 

Short-Term Memory (LSTM) networks for physiological signal analysis. Hybrid fusion was used to integrate 

features at multiple levels, maximizing the complementary strengths of each modality. The results demonstrate 

significant improvements in emotion recognition. Without GAN augmentation, the CNN and LSTM models 

achieved accuracies of 62% and 76%, respectively. The hybrid model outperformed, gaining 90% across all 

metrics. With GAN-augmented datasets, the CNN and LSTM models improved to 81% and 86%, respectively, 

while the hybrid (multi-modal) model achieved state-of-the-art performance with 93% accuracy and an F1-

score of 92%. These findings underscore the efficacy of GANs in enhancing data diversity and the advantages 

of multi-modal integration for robust emotion recognition. The study contributes to knowledge by introducing 

a GAN-augmented hybrid multi-modal framework, advancing methodologies in emotion recognition. 

Recommendations for future work include addressing ethical considerations in emotion recognition systems.  

 

Keywords: Multimodal Emotion Recognition, Deep Learning, Facial Expression Analysis,  
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INTRODUCTION 

Emotion recognition involves identifying and categorizing 

human emotions through indicators like facial expressions, 

voice, physiological signals, and body language (Ullah et al., 

2021). It is a key area within affective computing, which seeks 

to simulate human emotions. Accurate emotion recognition is 

crucial for human interaction, enhancing empathy and 

understanding. Current innovations in ML and AI have 

notably enhanced the accuracy and efficiency of these 

systems (Siddiqui et al., 2022). 

Emotion recognition has diverse applications across various 

fields. In healthcare, it helps diagnose and monitor conditions 

such as depression, anxiety, and autism and provides real-time 

emotional feedback in telemedicine (Abdulyekeen, 2025; 

Younis et al., 2024). In Human-Computer Interaction (HCI), 

it improves user experience by enabling adaptive systems 

such as educational platforms and customer service bots that 

respond to users' emotions (Muhammad et al., 2023). In 

security, it aids in identifying suspicious behaviour by 

analysing facial expressions and body language, enhancing 

public safety (Wei, 2024). In entertainment, it creates 

immersive experiences by adjusting game dynamics and 

enhancing interactive storytelling based on players' emotions 

(Siddiqui et al., 2022). 

Despite progress, emotion recognition faces challenges due to 

variations in emotional expression influenced by cultural, 

social, and personal factors, making universal models difficult 

to develop (Jianhua et al., 2020). Recognizing subtle and 

complex emotions is also challenging. Collecting and 

annotating large emotional datasets is resource-intensive, and 

physiological signals can be affected by non-emotional 

factors, complicating the process (Alharbawee & Pugeault, 

2024). Achieving real-time recognition with low latency is 

technically demanding, especially with multi-modal data. 

Multi-modal approaches are increasingly necessary, as single-

modal systems often fail to represent the full range of human 

emotions (Zheng et al., 2019). Multi-modal systems combine 

data from different sources like physiological indicators and 

facial emotions, providing a more accurate and thorough 

comprehension of emotions (Jang et al., 2019). These systems 

are more robust and reliable, compensating for the limitations 

of individual modalities, and creating a greater contextual 

grasp of emotions (Siddiqui et al., 2022; Younis et al., 2024). 

The concept of Generative Adversarial Networks (GANs), 

initiated by Ian Goodfellow in 2014 (Alharbawee & Pugeault, 

2024; Khan & Sarkar, 2022; Yan et al., 2021), comprise a 

discriminator, concurrently trained by a generator through 

adversarial processes (Alharbawee & Pugeault, 2024). GANs 

have been successful in applications like image generation 

and augmentation of data. When recognising emotions, GANs 

enhance system robustness and accuracy by generating 

synthetic emotional expressions and physiological signals, 

addressing the challenge of limited annotated data (Taisheng 

et al., 2020). They improve the ability to recognize subtle 

emotions and facilitate cross-modal translation, enriching the 

emotion recognition system's interpretability and 

completeness (Soleimani, 2024). 

Integrating facial expressions and physiological signals, this 

approach seeks to create a strong and comprehensive method 

for the identification of emotions with wide-ranging 

applications. The goal of this study is to build a multi-modal 

emotion recognition model using integrated facial 

expressions and physiological indicators, thereby enhancing 

the accuracy, reliability, and applicability of emotion 

detection across various domains. The specific contributions 
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of this study are as follows: It introduces a multi-modal 

approach using GAN-based architecture to augment facial 

expressions and physiological signals for emotion 

recognition. It also demonstrates the capability of GANs in 

addressing class imbalances and improving generalizability 

for underrepresented emotions. Furthermore, the study 

develops a multi-modal emotion identification model that 

effectively capture subtle and complex emotions; and finally, 

it proposes a GAN-augmented hybrid multi-modal 

framework that advances existing methodologies in emotion 

recognition. 

The paper is structured into six main sections. Section 2 

provides the background knowledge of existing studies in the 

area, establishing the knowledge gap. Section 3 delves into 

the materials and methods to bridge the identified research 

gap. In section 4, the results of the implementation are 

presented, while section 5 discusses the results and their 

implications. Section 6 concludes by summarising the study 

findings with recommendations for future work.  

 

Literature Background  

Emotion identification has garnered substantial attention in 

recent times owing to its wide range of applications in fields 

such as human-computer interaction, mental health 

monitoring, and adaptive learning systems. Traditional 

methods using unimodal data like facial expressions or 

physiological signals often miss the complexity of human 

emotions. Familiarizing with this existing body of knowledge 

is imperative to guide this study on “multimodal emotion 

recognition using GAN for facial expressions and 

physiological signals”. Thus, this section, critically examined 

state-of-the-art studies, methodologies, and discoveries about 

emotion recognition. The empirical review pinpoints research 

gaps eminent in the existing literature that this study seeks to 

address. In so doing, offers valuable insights and contributes 

to the cumulative knowledge base in this particular field.  

Consequently, Bao et al. (2024) introduced a novel model for 

emotion recognition. It combines eye movement and video 

optical flow to indicate attention and also measures the speed 

of image changes. Convolutional Neural Network (CNN) was 

employed to extract deep features, which are then used to 

categorize emotions into interest, happiness, confusion, and 

boredom. The single-modal models yielded 64.32%, 74.67%, 

and 71.88% while decision-level fusion attained the best 

accuracy at 81.90% using a synthetic dataset. Soleimani 

(2024) leveraged several Deep Learning methods including 

CNN, RNN, GAN and Autoencoder to detect human 

emotional state. Experimentally, the results using the DEAP 

dataset show that the hybrid model achieved 65% and 68% 

accuracies for recognising valence and arousal emotions, 

respectively. Aside the the hybrid model, the study also 

developed a framework tagged “Contrastive Learning GAN-

based Graph Neural Network” for identifying emotions from 

Electroencephalogram (EEG) signals. Results using the 

DEAP and MAHNOB datasets indicate that the DEAP dataset 

yielded 64% and 66% for valence and arousal emotion 

classification accuracies. The MAHNOB outperformed with 

66% and 71% for the valence and arousal emotion 

classification, respectively. Zhang et al. (2024) created a 

multimodal emotion identification algorithm to identify 

learners' emotional states by combining physiological data 

and semantic information from videos. The outcomes of the 

trial demonstrate that the model greatly enhanced the ability 

to recognise emotions yielding 82.30% accuracy using the 

Video Learning Multimodal Emotion Dataset (VLMED). 

Ali & Hughes (2023) designed a model tagged Unified 

Biosensor-Vision Multi-modal Transformer-based (UBVMT) 

for the classification of arousal-valence emotional states. 

Experimental evaluations using the MAHNOB and DEAP 

datasets indicate that the UBVMT model outclassed existing 

solutions with 50.01% and 83.84% accuracies for recognising 

valence and arousal respectively using the MAHNOB dataset. 

On the DEAP dataset, the model achieved 81.53% and 

82.64% accuracies for valence and arousal emotion detection, 

respectively. Win et al. (2023) leveraged CNN with 3-layers 

and simply tagged the model 3B-Convnet model for emotion 

recognition. The model was evaluated using the Extended 

Cohn-Kanade and Japanese Female Facial Expressions 

dataset. Experimental results showed that the model can 

recognize the emotional state of compound facial expressions 

with an accuracy of 67.51% and 62.87% for the two datasets 

respectively. Muhammad et al. (2023) utilized the Deep 

Canonical Correlation Analysis (DCCA) based multimodal 

emotion recognition technique to combine 

electroencephalography (EEG) and facial video clips and 

build a multimodal framework for emotion recognition. CNN 

was utilized for feature extraction. Evaluations using the 

MAHNOB and DEAP showed 93.86% and 91.54% accuracy 

for the MAHNOB and DEAP datasets, respectively.  

Sung-Nien et al. (2022) devised an emotion recognition 

scheme using ResNet, bidirectional long and short-term 

memory (BiLSTM) modules. Deep Convolutional Gen- 

Erative Adversarial Network (DCGAN) was employed for 

data augmentation with photoplethysmography (PPG) signals 

as input data. The emotions detected in the study include 

neutral, angry, happy, and sad emotional states with 90.34% 

and 86.32% for two- and four-class detection rates, 

respectively. Zhong et al. (2022) presented the Regularized 

Graph Neural Network (RGNN) for emotion identification 

using EEG data. An adjacency matrix derived from brain 

topology and neuroscience principles is used by RGNN to 

simulate inter-channel interactions. NodeDAT and 

EmotionDL, two regularizers, are included to handle noisy 

labelling and cross-subject variances. The better performance 

of RGNN is demonstrated through testing on the SEED and 

SEED-IV datasets. Experimental results have it that the model 

achieved 74.96% and 73.84% on SEED and SEED-IV 

datasets, respectively. Ma et al. (2022) devised an approach 

for a Multimodal conditional Generative Adversarial 

Network (GAN) used for data augmentation in audio-visual 

emotion recognition experiments. The system includes both 

audio and visual modalities generators and discriminators, 

sharing category information as an input to generate a variety 

of synthetic data. Hirschfeld-Gebelein-Rényi (HGR) 

maximum correlation is used to describe the dependency 

between the audio and visual modalities in the produced data 

to closely resemble real data. This synthetic data improves the 

data manifold and aids in resolving problems related to class 

imbalance. This approach used a multimodal conditional 

GAN for audio-visual emotion identification for the first time. 

The eNTERFACE'05, RAVDESS, and CMEW datasets were 

used in experiments, and the results were 49.48%, 65.90% 

and 46.19% respectively for eNTERFACE'05, RAVDESS, 

and CMEW datasets.  

Zhang et al. (2021) used feature-level fusion, multiscale 

feature extraction, and hierarchical network structure, the 

study created a hierarchical fusion convolutional neural 

network model to mine data potential. The study assesses the 

efficacy of the model using binary classification trials on the 

valence and arousal dimensions of the DEAP and MAHNOB-

HCI datasets. In terms of feature extraction and fusion, the 

findings demonstrate that the model outperformed other deep-

learning emotion classification models, with accuracies of 

84.71% and 89.00% on the two related data sets. Guangcheng 
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et al. (2021) leveraged GAN to train the VAE-D2GAN data 

augmentation model for EEG-based emotion identification. 

Differential entropy (DE) topological maps are derived from 

EEG data that correspond to five classical frequency bands 

and reflect distinct emotions. This approach created synthetic 

training samples and learned the distributions of these 

characteristics for actual EEG data. To increase the variety of 

the simulated samples that are produced, the variational auto-

encoder (VAE) architecture is incorporated into the dual 

discriminator GAN. The VAE design uses a latent vector to 

learn the geographical distribution of the real data. 

Evaluations using two datasets, the SEED and the SEED-IV, 

yielded 92.5% and 82.3% performance, respectively. Salama 

et al. (2021) built a novel multi-modal framework for human 

emotion identification that extracts spatio-temporal 

characteristics from human face video data and EEG signals 

using 3D-Convolutional Neural Networks (3D-CNN). The 

framework employed ensemble learning and data 

augmentation strategies to arrive at final fusion predictions. 

Three methods are established for emotion recognition: face-

based, fusion-based, and EEG-based. While the face 

technique employs SVM classifiers and mask-RCNN for 

predictions, the EEG approach uses 3D-CNN. Techniques for 

bagging and stacking are tried for the fusion approach; 

stacking yields the highest accuracy. The framework 

outperforms existing multi-modal emotion identification 

techniques, with recognition accuracies of 96.13% for valence 

and 96.79% for arousal. 

Cimtay et al. (2020)  presented a unique approach for 

recognizing emotions based on a variety of modalities, such 

as electroencephalogram (EEG), galvanic skin response 

(GSR), and facial expressions. Utilizing a hybrid fusion 

approach, this technique produced a mean accuracy of 74.2% 

and a maximum one-subject-out accuracy of 81.2% for three 

different emotion classes (happy, neutral, and sad) using a 

synthetically generated multimodal emotion dataset 

(LUMED-2). On the Database for Emotion Analysis using 

Physiological Signals (DEAP), the method produced a mean 

accuracy of 53.8% and a maximum one-subject-out accuracy 

of 91.5% for varied numbers of emotional states. Hongli 

(2020) presented a deep automated encoder-based multi-

modal emotion identification technique that combined EEG 

data with facial expressions. First, feature selection is done 

using a decision tree. Sparse representation is used to identify 

facial expression traits, which are then examined to categorize 

test samples. After merging facial expression and EEG data, 

the bimodal deep automatic encoder (BDAE) extracts features 

for supervised learning in the third layer. The classification 

task is finished by the LIBSVM classifier. The approach 

successfully extracts and combines high-level emotion-

related characteristics, as demonstrated by experiments 

conducted on a created video library. The average emotion 

detection rate of 85.71% was attained, and the capacity to 

recognize emotions was greatly enhanced. Nakisa et al. 

(2020) devised a temporal multimodal fusion strategy using a 

deep learning model to capture non-linear emotional 

correlations inside and across EEG and blood volume pulse 

(BVP) signals. Both early fusion and late fusion techniques 

are used to assess the model's performance. In particular, after 

learning each modality independently, a convolutional neural 

network (ConvNet) long short-term memory (LSTM) model 

combined EEG and BVP inputs to learn and explore linked 

emotional representations across modalities. The model was 

evaluated using a dataset from smart wearable sensors. 

According to experimental data, human emotions are 

classified into four quadrants of dimensional emotions by 

temporal multimodal deep learning models utilizing early and 

late fusion techniques, with accuracies of 71.61% and 

70.17%, respectively. 

Song et al. (2019) built a database for physiological indicators 

that gathers four physiological signal types: breathing, 

galvanic skin reaction, EEG, and ECG. Through thorough 

labelling and psychological assessment, 28 movies were 

selected as standardized samples from a collection of over 

1500 video clips to reduce cultural biases and successfully 

elicit desired emotions. While participants saw these movies, 

which depicted six distinct emotions and one neutral feeling, 

their physiological signals were monitored. Three distinct 

classification processes and a range of feature extraction 

techniques together with two classifiers (k-NN and SVM) 

were employed to identify emotional reactions and provide 

baseline data. To improve feature extraction, a novel 

Attention-Long Short-Term Memory (A-LSTM) model was 

utilized. Results indicated that the A-LSTM outperformed 

other models with accuracies of 41.88% and 42.10% 

respectively, using HHS and STFT as EEG features. Nemati 

et al. (2019) developed a hybrid multimodal data fusion 

approach in which a latent space linear map is utilized to fuse 

the audio and visual modalities, and an evidentiary fusion 

method based on the Dempster-Shafer (DS) theory is used to 

fuse the textual modality with its projected characteristics into 

the cross-modal space. The examination of the suggested 

technique using the DEAP dataset's videos demonstrates its 

advantages over non-latent space fusion methods as well as 

decision-level methods. Additionally, compared to canonical 

correlation analysis (CCA) and cross-modal factor analysis 

(CFA), the results show that feature-level audio-visual fusion 

improves better when using marginal fisher analysis (MFA). 

The model achieved 92% and 93% accuracies for audio-visual 

and text modalities respectively. Jang et al. (2019) assessed 

the validity of physiological alterations brought on by six 

fundamental emotions; happiness, sorrow, anger, fear, 

disgust, and surprise measured across a period of ten weeks. 

Pre- and during-emotion-provoking film clips were 

monitored physiologically in a group of twelve college 

students. After every movie, participants assessed their 

feelings. Ten distinct movie snippets of every emotion a total 

of 60 clips spread over ten weeks were employed to avoid 

adaption. Skin conductance level (SCL), fingertip 

temperature (FT), heart rate (HR), and blood volume pulse 

(BVP) were among the physiological characteristics that were 

retrieved. Results showed that Cronbach's alphas from 

emotion-provoking phases ranged from 0.39 to 0. 96. 

Despite these advancements, many reviewed models rely on 

either unimodal data or simple fusion strategies, which limits 

their ability to accurately capture the complexity of human 

emotions. A recurring limitation across studies is the 

underperformance in recognising less prominent emotions 

due to dataset imbalances. While some works incorporate 

GANs, they are typically used in isolation for either image or 

signal augmentation not both simultaneously. Furthermore, 

most fusion approaches do not effectively preserve both 

spatial and temporal features from diverse modalities. This 

study bridges these gaps by proposing a GAN-augmented, 

hybrid multi-modal framework that integrates CNN and 

LSTM networks to capture both facial and physiological 

features. The model applies feature-level fusion and evaluates 

its performance on both original and augmented datasets, 

achieving higher accuracy in recognising subtle and 

underrepresented emotions. 

MATERIALS AND METHODS 

Deep learning techniques were utilised to recognize emotions 

using multimodal data: facial images and heart rate signals. 

The methodology consists of: (i) dataset source, (ii) 
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preprocessing, (iii) feature extraction, (iv) synthetic data 

generation using Generative Adversarial Networks (GANs), 

(v) model development, (vi) multi-modal fusion and (vii) 

model evaluation. Figure 1 depicts the architectural diagram 

of the multi-modal emotion identification model.  

 

 
Figure 1: Architecture of the Model (Bao et al., 2024)  

 

This study advances the unimodal CNN-based approach by 

Bao et al. (2024) by integrating LSTM networks for temporal 

analysis of physiological signals and employing GANs for 

data augmentation. Building on techniques from prior works, 

it proposes a novel hybrid CNN-LSTM architecture with 

feature-level fusion, resulting in a more robust and 

generalisable multi-modal emotion recognition system. The 

phases in the methodology are briefly discussed thus: 

 

Dataset  

Two types of datasets were utilized in this study: the Facial 

Expression Dataset and the Physiological Signal Dataset. The 

FER-2013 dataset contains 35,887 grayscale facial images 

with each image having a resolution of 48×48 pixels, 

representing facial expressions mapped to specific emotions. 

The images are mapped into seven emotions: anger, disgust, 

fear, happiness, sadness, surprise, and neutral. It is accessible 

at “https://www.kaggle.com/datasets/msambare/fer2013”. 

The dataset is class-imbalanced, with some emotions being 

overrepresented while others are underrepresented. The 

physiological dataset utilized is the Dataset for Emotion 

Analysis using Physiological signals (DEAP). The DEAP 

dataset contains heart rate signals recorded from subjects 

experiencing different emotions, stored as time-series data, 

with each sequence representing a physiological response to 

an emotional stimulus. These include anger, disgust, fear, 

happiness, sadness, surprise, and neutral. It is available at 

“http://www.eecs.qmul.ac.uk/mmv/datasets/deap/”.  

 

Data Preprocessing 

The facial expression images were standardized to ensure 

consistency across the dataset. This involves resizing all 

images to a uniform dimension, typically 48x48 pixels for 

compatibility with common neural network architectures. 

Additionally, pixel values were normalized between 0 to 1, 

which accelerates the convergence of the learning algorithm 

and enhances model performance. To boost the diversity of 

the training dataset and the generalisation capacity of the 

model, data augmentation approaches like flipping, rotation, 

and brightness adjustments were employed. The 

http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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augmentation helps the model to become more robust to 

variations in facial expressions and environmental conditions, 

such as lighting and occlusions. Emotions were mapped 

(encoded) to numerical values accordingly to enhance 

classification. Physiological signals are often contaminated 

with noise and artefacts. Like the facial image dataset, this 

dataset also suffers from class imbalance, affecting model 

performance. To address this, all heart rate sequences were 

resampled to a fixed length. Min-max scaling was applied to 

standardize signal values and Signals were split into smaller 

overlapping time windows for better feature extraction. By 

applying these pre-processing techniques, the quality and 

consistency of the data were enhanced and ready for feature 

extraction. 

 

Feature Extraction 

CNNs were employed to automatically extract high-level 

features from facial images. These features are hierarchical, 

starting from low-level edges and textures to high-level facial 

components and expressions. Typically, the CNN architecture 

consists of fully linked, pooling, and convolutional layers, 

fine-tuned on the facial expression dataset to extract robust 

and discriminative features. In the physiological dataset, Long 

Short-Term Memory (LSTM) networks were used to extract 

the temporal dependencies in the physiological signals, 

capturing how heart rate variations correlate with emotions. 

Mean, variance, and frequency-domain features (Fourier 

Transform) were also extracted to enhance model 

understanding.  

 

Data Generation with GAN 

To address class imbalance, Generative Adversarial Networks 

(GANs) were used to generate synthetic facial images and 

heart rate signals. Deep Convolutional GAN (DCGAN) was 

trained on real facial images to generate synthetic samples. 

The GAN was trained using the underrepresented emotion 

classes to create new, high-quality images. Approximately 

20% of the original dataset size was synthetically generated 

to balance class distributions. Similarly, Recurrent GAN (R-

GAN) was used to synthesize new heart rate sequences by 

learning the temporal patterns of real signals.  

 

Model Development  

Three deep learning models: CNN, LSTM and a hybrid fusion 

of CNN-LSTM were implemented using the augmented and 

the original datasets. For the facial dataset, CNN was used for 

classification by learning hierarchical features from the pixel 

intensities. It comprised of 3 Convolutional Layers (ReLU 

activation, MaxPooling), Flatten & Fully Connected Layers 

with Softmax Classifier. LSTM was used for heart rate 

sequence classification by capturing temporal dependencies. 

Its architecture consisted of 2 Layers; 

Dense Layer with Softmax Activation. Lastly, the Hybrid 

CNN-LSTM Model integrated CNN (for images) and LSTM 

(for heart rate) to make emotion predictions based on 

multimodal inputs. The extracted CNN features were 

combined with LSTM outputs in a dense fusion layer before 

final classification. Categorical Cross-Entropy (loss function) 

was used for multi-class classification. While Adam optimizer 

with an adaptive learning rate, Dropout of 0.3 and batch 

normalization were applied to prevent overfitting. 

All the models were trained on both original and GAN-

augmented datasets. Early stopping was implemented to avoid 

overfitting.  

 

 

 

Multi-Modal Fusion Module  

The Multi-Modal Fusion Module integrates spatial and 

temporal features extracted from Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks, respectively. This fusion strategy enhances the 

model’s ability to capture both visual and physiological cues 

for improved emotion recognition. The hybrid feature-level 

fusion approach was employed, where feature vectors from 

both modalities were concatenated before classification. This 

method ensures that both spatial and temporal patterns are 

preserved in a unified representation. Specifically, CNN 

architecture was used to extract spatial features from facial 

images. Mathematically, given 𝑋images as inputs, the CNN 

transformation can be formulated as:  

𝐹𝐶𝑁𝑁 = CNN(𝑋𝑖𝑚𝑎𝑔𝑒)   (1) 

Where; 𝐹𝐶𝑁𝑁 is the image feature vectors extracted from the 

CNN. 

Similarly, LSTMs were used to extract temporal features from 

heart rate signals. Mathematically, given 𝑋HR as inputs, the 

LSTM transformation can be written as:  

𝐹𝐿𝑆𝑇𝑀 = LSTM(𝑋𝐻𝑅)   (2) 

Where; 𝐹𝐿𝑆𝑇𝑀 is the feature vector extracted from the LSTM. 

After extracting feature vectors from both CNN and LSTM, 

hybrid feature fusion was performed by concatenating 

𝐹𝐶𝑁𝑁 and 𝐹𝐿𝑆𝑇𝑀 into a single feature vector: 

𝐹𝑓𝑢𝑠𝑒𝑑 = Concat. (𝐹𝐶𝑁𝑁, 𝐹𝐿𝑆𝑇𝑀)  (3) 

Where;  

 𝐹𝐶𝑁𝑁  = 𝑅𝑑1 represents the spatial feature vector. 

 𝐹𝐿𝑆𝑇𝑀 = 𝑅𝑑2 represents the temporal feature vector. 

  𝐹𝑓𝑢𝑠𝑒𝑑  = 𝑅𝑑1+𝑑2 is the final fused feature vector used for 

classification.  

 

Classification Layer 

The fused feature vector 𝐹𝑓𝑢𝑠𝑒𝑑  was then passed through a 

fully connected (dense) layer, followed by a Softmax 

classifier to predict the emotion category: 

ȳ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊. 𝐹𝑓𝑢𝑠𝑒𝑑 + 𝑏)  (4) 

Where; 

W represents the weight of the matrix for classification, b is 

the bias term and ȳ is the predicted emotion category. This 

hybrid approach preserves the high-dimensional information 

from both modalities, enabling the model to make more 

informed predictions. 

 

Model Evaluation  

To assess the performance of the multi-modal emotion 

recognition system, several standard performance metrics will 

be used:    

Accuracy: Assesses the ratio of correctly accurately identified 

emotions out of the total emotions. It is a basic metric for 

overall performance but is only suitable for a balanced dataset 

(Eke et al., 2021). The mathematical representation of 

accuracy is given as; 

𝐴𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (5) 

Where; 𝑇𝑃= True Positive, 𝑇𝑁= True Negative, 𝐹𝑁= False 

Negative, and 𝐹𝑃= False Positive. 

Precision: Indicates the proportion of true positive predicted 

emotions out of all positive predicted emotions. It is useful for 

evaluating the exactness of positive recognition (Kwaghtyo & 

Eke, 2022). Precision is written statistically as follows: 

𝑃𝑟𝑒𝑐. =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
    (6) 
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Recall: Takes account of the ratio of true positive detected 

emotions out of all actual positive emotions. It is important to 

assess how well the model recognizes positive emotions. The 

mathematical representation of recall is: 

𝑅𝑒𝑐. =
 𝑇𝑃

𝑇𝑃+ 𝐹𝑁
    (7) 

F-Score: The harmonic mean provides a single metric that 

strikes a balance between recall and precision. Statistically, it 

is expressed as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃 ×𝑅 

𝑃 +𝑅 
   (8) 

Where; P = Precision; R = Recall. 

 

RESULTS AND DISCUSSION 

In this section, the results of the implementation are 

presented. The results is presented in two phases. Phase 1 

presents the evalution results with the original dataset and the 

second phase focuses on the evaluation result with the GAN-

augmented dataset. Additionally, the performance of the 

study is further compared first with the utilised models and to 

existing emotion recognition models.  

 

Results Phase 1: Evaluation With Original Datasets 

In this section, the results of the experiments conducted 

without augmenting the datasets using GAN are presented.  

Evaluation of the CNN Model for Facial Expression 

Recognition 

The CNN model trained using the original dataset achieved 

moderate accuracy, demonstrating challenges in detecting 

certain emotions fear, sad and neutral as shown in Figure 2.  

 

 
Figure 2: Confusion Matrix for CNN Model 

 

The CNN model achieved a moderate and promising 

performance result of 62% accuracy, with 62% F1-score, 

Precision 63%, and 62% Recall. Figure 3 demonstrates the 

model's training and validation accuracy/loss over 100 

epochs. The training loss reduced steadily, but the validation 

accuracy plateaued early, indicating potential overfitting.  

 

 
Figure 3: Training Accuracy Vs Loss for the CNN Model 
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Evaluation of the LSTM Model for Physiological Signal 

Analysis 

The LSTM model showed moderate performance, 

particularly in detecting emotions like sadness and fear, that 

is class 3 and class 4. Misclassifications were observed to be 

high in class 0 and 5 of the emotional categories as evident in 

Figure 4. 

 

 
Figure 4: The Confusion Matrix for LSTM Model 

 

Performance metrics for the LSTM model without data 

augmentation yielded 76% accuracy, F1-Score of 75%, 

Precision achieved 77% and Recall attained 76%. Figure 5 

shows the training accuracy and loss trends for the LSTM 

model. 

 

 
Figure 5: Training Accuracy Vs Loss for the LSTM Model 

 

Evaluation of the Hybrid Multi-Modal Model  

The hybrid model, combining CNN and LSTM outputs, 

outperformed the individual models demonstrating improved 

accuracy across all emotion categories. Figure 6 depicts the 

confusion matrix for the hybrid model.  
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Figure 6: Confusion Matrix for the Hybrid Model 

 

The multi-modal model outperformed the individual models 

having achieved a flat result of 90% across accuracy, F1-

score, Precision and Recall metrics. Figure 7 illustrates the 

hybrid model's training and validation accuracy/loss over 100 

epochs. The two graphs show the training loss and validation 

accuracy trends. 

 

 
Figure 7: Training Accuracy Vs Loss for the Hybrid Model 

 

Results Phase 2: Evaluation With GAN-Augmented 

Datasets 

This section presents the experimental outcomes of the study 

conducted using the GAN-augmented datasets.  

 

Evaluation of the CNN Model with GAN Augmented Facial 

Data  

The CNN model when trained on GAN-augmented facial 

expression data showed significant improvement. Figure 8 

illustrates the confusion matrix for the GAN-augmented CNN 

model.  
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Figure 8: The Confusion Matrix for the GAN Augmented CNN Model 

 

The GAN-augmented CNN model outclassed the CNN model 

trained with the original. The GAN augmented model yielded 

81% across all the utilised metrics (accuracy, F1-score, 

Precision and Recall). Figure 9 shows the training and 

validation accuracy/loss over 100 epochs trends for the GAN-

augmented CNN model. 

 

 
Figure 9: Training Accuracy Vs Loss for the GAN-Augmented CNN Model 

 

Evaluation of the LSTM Model with GAN Augmented 

Physiological Data 

The LSTM model achieved substantial improvements after 

training with GAN-augmented physiological signals. Figure 

10 presents the confusion matrix for the GAN-augmented 

LSTM model. 

 



MULTI-MODAL EMOTION RECOGNITION…            Hegh et al, FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 5, May, 2025, pp 277 – 290 286 

 
Figure 10: Confusion Matrix for the GAN-Augmented LSTM Model 

 

The performance metrics for the GAN-augmented LSTM 

model yielded 86% accuracy, F1-Score of 86%, Precision 

achieved 93% and Recall attained 86%. Figure 11 shows the 

training trends for the GAN-augmented LSTM model. 

 

 
Figure 11: Training Accuracy vs. Loss for the GAN-Augmented LSTM Model 

 

Evaluation of the GAN Augmented Hybrid Model   

The hybrid model benefited the most from GAN 

augmentation, leveraging complementary features from both 

modalities. Figure 12 shows the confusion matrix for the 

GAN-augmented hybrid model.  
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Figure 12: Confusion Matrix for GAN-Augmented Hybrid Model 

 

The performance metrics after data augmentation with GAN 

outperformed all other individual models including the hybrid 

model without GAN augmentation. With GAN augmentation, 

the hybrid model achieved 93% accuracy, 92% F1-score, 

Precision 94%, and 91% Recall. Figure 13 demonstrates the 

hybrid model’s improved training patterns. 

 

 
Figure 13: Training Accuracy vs. Loss for the GAN-Augmented Hybrid Model 

 

Performance Comparison  

The performance of the utilised models was compared using 

accuracy, precision, recall, and F1-score across the three main 

frameworks: CNN (for facial expressions), LSTM (for 

physiological signals), and the Hybrid Multi-Modal model. 

The metrics were compared for both evaluation phases: 

Without GAN-augmented datasets (original data only); and 

with GAN-augmented datasets (enhanced data for training). 

This comparison highlights the impact of GAN augmentation 

and the performance advantages of integrating facial and 

physiological signals. The results are presented in Table 1. 

 

Table 1: Performance Comparison of Utilised Models 

Metrics  Models Without GAN (%)  With GAN (%) Improvement (%) 

Accuracy CNN 62 81 19 

LSTM 76 86 10 

Hybrid Model 90 92 02 
     

Precision CNN 63 81 18 

LSTM 77 93 16 

Hybrid Model 90 92 02 
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Recall CNN 62 81 19 

LSTM 76 86 10 

Hybrid Model 90 92 02 
     

F1-Score CNN 62 81 19 

LSTM 75 86 09 

Hybrid Model 90 92 02 

 

GAN-augmented datasets significantly improved all models, 

with the CNN and LSTM showing accuracy gains of 19% and 

10%, respectively, particularly in recognizing 

underrepresented emotions like fear and disgust. The hybrid 

model outperformed single-modal approaches, achieving the 

highest accuracy of 92% across all the utilised evaluation 

metrics through integrating complementary features from 

facial expressions and physiological signals. Overall, GAN 

augmentation addressed dataset imbalances, enhanced 

precision and recall, and improved the robustness and 

generalizability of the models, establishing the hybrid multi-

modal architecture as a state-of-the-art solution for emotion 

recognition. 

When compared to three existing works, the hybrid model 

demonstrated superior performance over these methods using 

accuracy, precision, recall, and F1 metrics. Specifically, Bao 

et al. (2024) achieved 81.9% accuracy with decision-level 

fusion, and Ali & Hughes (2023) reported a precision of 

83.84% using a transformer-based model. Ma et al. (2022) 

achieved a recall of 65.9% with GAN-augmented data.  The 

hybrid model’s recall of 92% and its ability to handle subtle 

emotions underscore its advancements over these methods. A 

detailed comparison is presented in Table 2. 

 

Table 2: Performance Comparison with the Existing Models 

Metric  Bao et al. (2024) Ali & Hughes (2023) Ma et al. (2022) Hybrid Model 

Accuracy 81.9% - - 92% 

Precision - 83.84% - 92% 

Recall - - 65.9% 92% 

F1-score - - - 92% 

 

As evidenced in Table 2, the hybrid multi-modal model 

demonstrates significant advancements over existing works. 

It achieved an overall performance of 92% accuracy, 

outperforming Bao et al. (2024) by 10.1%. Its precision of 

92% surpassed Ali & Hughes (2023) by 8.16%, reflecting 

reduced false positives. With a recall of 92%, the hybridized 

multi-modal model outperformed Ma et al. (2022) by 26.1%, 

excelling in recognizing subtle emotions. An F1 score of 92% 

further highlights its balanced and robust performance. These 

results underscore the hybrid model's effectiveness in 

integrating GAN-augmented data, addressing dataset 

imbalances, and advancing research in the field of emotion 

recognition or computer vision at a broader look.  

The observed performance improvement up to 26.1% in recall 

over Ma et al. (2022) can be attributed to the dual-modality 

approach combined with GAN-based augmentation. Unlike 

Ma et al. (2022), who focused on audio-visual data and 

applied augmentation on a single modality, this model 

enriches both facial and physiological datasets, which 

enhances representation for underrepresented emotional 

states like fear and disgust. This dual-augmentation strategy, 

coupled with hybrid fusion, enables better generalisation and 

more comprehensive emotion classification. Furthermore, 

some existing models underperform due to the use of simpler 

network architectures and lack of attention to class imbalance, 

which this study addresses effectively.  

 

Discussion  

The CNN model demonstrated moderate performance when 

trained on the original dataset, achieving an accuracy of 62%. 

It faced challenges in correctly classifying subtle emotions 

like fear and disgust, resulting in frequent misclassifications 

as seen in Figure 2. This limitation highlights the difficulty of 

relying solely on facial expression data, particularly for 

underrepresented emotions. The LSTM model, trained on 

physiological signals, performed better than the CNN, with an 

accuracy of 76%. Its ability to capture temporal dynamics 

from physiological signals improved recognition of emotions 

like sadness. However, high misclassification rates for 

categories like neutral and surprise revealed the limitations of 

using physiological signals alone for nuanced emotions. The 

hybrid model integrating CNN and LSTM outputs achieved 

significantly better performance, with an 80% score across all 

metrics. This improvement underscores the effectiveness of 

multi-modal integration, which leverages complementary 

features from facial and physiological data, reducing 

misclassifications observed in the single-modal models. 

With GAN augmentation, the CNN model's accuracy 

increased to 81%, showing a 19% improvement. This 

enhancement demonstrates GANs' ability to generate diverse 

and representative facial expressions, addressing class 

imbalances and improving the model's generalizability. GAN-

augmented physiological signals led to a 10% improvement 

in the LSTM model's accuracy, reaching 86%. The augmented 

dataset allowed the model to better capture subtle variations 

in physiological signals, enhancing recognition of emotions 

like fear and sadness. The hybrid model, benefiting from 

GAN-augmented data, achieved the highest overall 

performance with a 93% accuracy and an F1-score of 92%. 

The hybrid architecture effectively combined the strengths of 

both modalities, while the GAN-generated data enhanced the 

robustness and reliability of the system. 

The hybrid multi-modal model demonstrates significant 

advancements over existing methods in emotion recognition. 

Bao et al. (2024) achieved an accuracy of 81.9% using 

decision-level fusion, while this study achieved 92%, 

representing an 11.1% improvement. Similarly, Zhang et al. 

(2021) reported an F1-score of 89% using a hierarchical 

fusion method, which the hybrid model outperformed with an 

F1-score of 92%. Furthermore, Ali & Hughes (2023) achieved 

a precision of 83.84% using a transformer-based model, 

whereas the hybrid model's precision of 92% demonstrates a 

10.16% improvement. The significant recall gain of 26.2% 

over Ma et al. (2022), which employed GANs with single-

modal inputs, highlights the advantage of multi-modal 

integration. Finally, Soleimani et al. (2020) reported an 
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accuracy of 78.5%, further emphasizing the superior 

performance of the multi-modal method, especially when 

addressing class imbalances in underrepresented emotions 

such as fear and disgust. These comparisons illustrate the 

hybrid model's ability to surpass existing benchmarks, 

primarily due to its effective combination of GAN-augmented 

datasets and multi-modal architecture. This positions the 

study as a key contributor to advancing emotion recognition 

technologies. 

 

CONCLUSION   

This study successfully demonstrated the transformative 

potential of Generative Adversarial Networks (GANs) for 

augmenting datasets and the power of multi-modal integration 

in enhancing emotion recognition systems. The study 

achieved a state-of-the-art performance with the hybrid model 

attaining 93% accuracy, 92% F1-score, 94% precision, and 

91% recall, significantly outperforming earlier models such 

as Bao et al. (2024) (accuracy: 81.9%) and Ma et al. (2022) 

(recall: 65.9%). The use of GAN-augmented data resulted in 

a 19% improvement in CNN performance and a 10% 

improvement in LSTM performance over the original 

datasets. The hybrid model improved by 2% post-

augmentation, confirming that even high-performing multi-

modal models benefit from GAN-generated synthetic data. 

This quantitative evidence underscores the robustness, 

generalisability, and practical utility of the proposed 

framework in emotion recognition systems. The challenges 

posed by single-modal models such as limited feature 

representation and difficulty in recognizing underrepresented 

emotions were effectively addressed by combining 

complementary information from facial expressions and 

physiological signals. Furthermore, GAN augmentation 

overcame the issue of dataset imbalances, generating 

synthetic data that enriched the diversity of training samples 

and improved model generalization. The hybrid model (multi-

modal) achieved state-of-the-art performance, with 

significant improvements in accuracy, precision, recall, and 

F1-score compared to existing methods. Its ability to robustly 

recognize subtle emotions, such as fear and disgust, is proof 

of the effectiveness of the integrated approach. The results 

confirm that leveraging GANs for data augmentation, in 

conjunction with multi-modal architectures, is a powerful 

strategy for advancing emotion recognition technologies. By 

addressing key challenges such as dataset imbalances and the 

inherent weaknesses of single-modal systems, the hybrid 

approach paves the way for more accurate, reliable, and 

versatile emotion recognition systems that are well-suited for 

real-world applications. The findings underscore the potential 

of this approach to redefine state-of-the-art solutions in 

emotion recognition, making it a valuable contribution to the 

field and a strong foundation for future research and 

applications. 

Future research should explore real-time deployment in 

interactive systems. Expand datasets to include diverse 

demographic and cultural variations to improve robustness. 

This would enhance its ability to generalise across different 

populations and ensuring more accurate recognition of 

emotions in varied contexts. Additionally, incorporating 

domain adaptation and transfer learning could enhance 

generalisation across diverse environments. 
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