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Abstract

Pertussis is a highly contagious respiratory disease that is easily prevented by immunisation. The
risk of whooping cough is particularly high for neonates. However, due to a lack of vaccinations
against pertussis, the disease is still widespread in several nations, particularly in the wake of
the COVID-19 pandemic. In this paper, a deterministic mathematical model that describes the
transmission dynamics of pertussis for assessing the impact of booster vaccines and isolation was
proposed. The model comprises two equilibrium points, the DFE (disease free equilibrium point)
and the EEP (endemic equilibrium point), as demonstrated by the determination of the solution’s
positivity and boundedness as well as the presence of disease equilibria in the mathematical analysis
section. It was discovered that if Rc < 1, the DFE is both locally and globally asymptotically stable.
The endemic equilibrium point, has been shown to be globally asymptotically stable if the basic
reproduction number is greater than unity and ω = ψ = ϕ1 = v = δ = 0. This has been determined
using a nonlinear Lyapunov function of the Go-Volterra type. Sensitivity analysis demonstrates
that isolation and vaccine rates are highly sensitive in lowering the control reproduction number.
Numerical simulation of model (1) shows that the isolation rate of affected people and booster are
crucial parameters for managing pertussis in a community.

Keywords: Pertussis, Booster vaccine, Isolation, Reproduction number, Stability analysis.

INTRODUCTION

Pertussis is a highly contagious respiratory disease
that is easily prevented by immunisation. The risk
of whooping cough is particularly high for neonates
(Surmann et al., 2024). Symptoms include runny nose,
nasal congestion, and sneezing in addition to a cough
that resembles a ”whoop” The bacteria that causes
pertussis, commonly referred to as whooping cough, is
Bordetella pertussis. The illness mostly impacts the
upper respiratory tract and is highly transmissible
(Surmann et al., 2024). Even in countries with
high vaccination rates, whooping cough, commonly
known as pertussis, is a major public health concern
and cause of infant mortality worldwide (Korppi,
2013). Most pertussis-related deaths occur in infants
younger than 12 months who have not received all
or some of the recommended vaccinations against
the disease. Additionally, adults and teenagers are
also susceptible to the infection, emphasizing the

importance of vaccination for all age groups to prevent
further transmission and mortality (Pesco et al., 2014).
According to WHO estimates, there are 40–50 million
cases of whooping cough year, and between 297,000
and 409,000 people die from the disease. Ninety
percent of instances take place in low-income nations
(Suleman and Riaz, 2020). A report published in 2014
revealed that pertussis affected an astounding 24.1
million people worldwide, resulting in the tragic loss
of approximately 160,700 children under the age of five
(WHO, 2024). The first known outbreak of pertussis
was reported in France in 1578, and the disease has
since caused significant health crises around the world.
One notable example occurred in Cape Town in 1947,
where the whooping cough outbreak claimed the lives
of 107 people, demonstrating the devastating impact
of this illness on communities (Butt, 2023). It was
widely used in various European nations by the 1600s.
(Suleman and Riaz, 2020). Approximately 100,000
cases of pertussis were reported annually prior to the
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wP vaccination being implemented in England and
Wales in 1957 (Pesco et al., 2014). There was an
epidemic in Israel, the United States, and Ireland at
the beginning of 2010. More than 10,000 cases of
whooping cough were recorded in California in 2014,
making it the largest outbreak since 1947 (Butt, 2023).

The whooping cough Bacteria can spread readily via
the air from one person to another. Tiny bacterial
particles may be released by an infected individual
when they cough or sneeze. Other people then inhale
the germs (CDC, 2022). It also spreads when people
often interact or share breathing spaces, such when
a baby is placed on your chest (CDC, 2022). The
initial symptoms typically appear seven to 10 days
after infection. They include coughing, runny nose,
and low-grade fever, which typically develops into
a hacking cough and whooping (hence the name
whooping cough). Convulsions and brain damage
are rare side effects, however pneumonia is a very
prevalent one (WHO, 2022).

The cornerstone of medical treatment for cases of
pertussis is supportive care, while antibiotics may
be helpful. This treatment eliminates the organism
from secretions, which lowers communicability and
may alter the course of the disease if initiated early.
Antibiotics such as azithromycin, clarithromycin,
and erythromycin are recommended. Additionally,
trimethoprim-sulfamethoxazole can be used. All close
contacts of an individual with pertussis should receive
an antibiotic that effectively combats the infection,
regardless of their age or level of immunisation (NCDC,
2011). The major strategy for preventing pertussis is
vaccination. In various countries throughout the 1950s,
diphtheria-tetanus-pertussis (DTP) was introduced as
the main vaccine during the first year of life, marking
the beginning of mass immunisation. Deaths and the
prevalence of illness have dropped by more than 90%
(Freitas et al., 2011). According to WHO guidelines,
the first dose should be administered as early as six
weeks of age, and the second and third doses should be
given four to eight weeks apart, or ten to fourteen and
fourteen to eighteen weeks, respectively. A booster
dose is recommended, ideally during the second year
of life. Later in life, further booster doses may be
required based on the local epidemiology (WHO,2022).

Over the years mathematical models play a vital role
in studying the dynamics of infectious diseases such
as (Ibrahim et al., 2025), (Andrawus et al., 2024a),
(Andrawus et al., 2024b), (Mustapha et al., 2023) and
(Ochieng, 2025).

Many Mathematical models have been proposed to
study the dynamics of pertussis. Few researchers
developed mathematical models incorporating booster
vaccine in studying pertussis among are; (Rozenbaum
et al., 2012), (Pesco et al., 2013) and (Gillooly et al.,
2016) . In addition researchers ignored the impact
of isolation in controlling the spread of pertussis.

Therefore in this research we proposed a model that
incorporating both booster vaccine and isolation in
controlling the spread of pertussis in the society.

MODEL FORMULATION

The total human population denoted by N(t) at
time t is subdivided into seven subgroups, namely:
susceptible unvaccinated S(t), susceptible vaccinated,
V (t), exposed E(t), mildly infected M(t), severely
infected I(t), isolated J(t) and recovered individuals
R(t).

N(t) = S(t) +V (t) +E(t) +M(t) + I(t) + J(t) +R(t)

With parameter π as the recruitment rate, susceptible
unvaccinated individuals can acquire pertusiss
infection either by direct contact through inhalation
of infectious droplets produced during coughing
or sneezing or indirect with surface or object
contaminated with bacteria. The exposed individual
may either progress to infectious mild or severe class
at the rates α1α2 and α1(1 − α2). The infected
mild progresses to severe at the rate η and recovered
naturally at the rate τ1. Infected severe are isolated
at the rate γ. The pertussis-induced mortality rate
for infected severe and isolated individuals is denoted
by δ, while the natural death rate of the whole classes
is represented by µ.

dS

dt
= (1− p)Π + ωV − (λ+ ψ + µ)S,

dV

dt
= pΠ+ ψS − (θλ+ ω + v + µ)V,

dE

dt
= λS + θλV − (α1 + µ)E,

dM

dt
= α1α2E − (η + ϕ1 + µ)M,

dI

dt
= α1(1− α2)E + ηM − (γ + µ+ δ)I,

dJ

dt
= γI − (ϕ2 + µ+ δ)J,

dR

dt
= ϕ1M + ϕ2J + vV − µR.

(1)

. Where

λ =
β(M + ξI)

N

THEORETICAL ANALYSIS OF THE MODEL

Boundedness and Positivity of Solution

If a solution to a system of equations is bounded, it is
said to exist. As a result, the state variables’ solution
set must be bounded. Furthermore, the system (1)
must always have a positive solution, hence we asserted
the following theorem:

Theorem 1 The model (1) can be solved for all t > 0
if the solution begins and stays in the positive invariant
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Figure 1: Schematic diagram representing the structure of model (1). Arrows denote the transitions between
compartments with associated expressions indicating the per capita transition rates.

set G, which is defined as follows:

G =

{
(S(t), V (t), E(t),M(t), I(t), J(t), R(t))

∈ R7
+ : N ≤ Π

µ

}
. (2)

Proof 1 System (1) added together yields the over all
population change:

dN

dt
=
dS

dt
+
dV

dt
+
dE

dt
+
dM

dt
+
dI

dt
+
dJ

dt
+
dR

dt
,

dN

dt
= π − µN − δ(I + J),

dN

dt
+ µN ≤ π

N(t) =≤ Π

µ
+

(
N0 −

Π

µ

)
e−µt

We discovered that:
if N0 ≤ Π

µ thenN(t) ≤ Π
µ , Accordingly, the solution

stayed in area M if the starting population was smaller
than the carrying capacity.
if N0 >

Π
µ , that is, if the initial population exceeds the

carrying capacity Π
µ , which suggests that the initial

solutions are not located in area G, then N(t) > Π
µ , for

all t > 0, but limt → ∞N(t) = Π
µ The first solution

eventually enters G, as demonstrated by this. Because
all of the solutions outside of area G are eventually
drawn into G and the solution of the system (1) with
beginning conditions in G for any time t > 0, G
is positively invariant and draws all of the system’s
initial solutions.

Pertussis Free Equilibrium Point

If there is no pertussis in the community, the
model system (1) has a disease-free equilibrium ϵ0.
By solving the noninfected classes and setting the
infection classes and the right-hand sides of the system
of equation (1) to zero, one can analytically ascertain
this equilibrium:
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Table 1: Interpretation of the state variables and parameters used in the model (1).

Variable Description

N Total population
S Susceptible unvaccinated individuals
V Susceptible vaccinated individuals
E Exposed individuals
M Infected mild individuals
I Infected severe individuals
J Isolated individuals
R Recovered individuals

Parameter Description

Π Per ca pita birth rate
p A proportion of birth or immigrant who are vaccinated with first dose
ψ Vaccine coverage
ω Vaccine wining rate
µ Natural mortality rate
β Effective contact rate
θ Reduction risk of infection
α1 Progression rate of exposed individuals to mild and severe infectious compartment
α2 Fraction of exposed individuals that are mild
η Progression rate of mild infectious to severe infectious compartment
γ Isolation rate
ϕ1 Recovery rates of infectious mild individuals due to treatment
ϕ2 Recovery rates of isolated individuals due to treatment
δ Pertussis induced death rate
ξ Modification parameter due to reduced infectiousness of severe individuals
v booster vaccine dose

ϵ0 =
(
S0, V 0, E0,M0, I0, J0, R0

)

S0 =
((1− p)m2 + pω)Π

m1m2 − ω ψ
, (3)

V 0 =
((1− p)ψ +m1p)Π

m1m2 − ω ψ
, (4)

R0 =
((1− p)ψ +m1p) vΠ

µ(m1m2 − ω ψ)
), (5)

(
E0,M0, I0, J0

)
= (0, 0, 0, 0).

Where
m2 = ψ + µ,m3 = ω + v + µ.

Reproduction Number

The model’s reproduction number, or threshold
parameter, is determined by applying the

next-generation matrix technique R0 = ρ(V1V
−1
2 )

as in (Ibrahim et al., 2025) and (Andrawus et
al., 2024a) where ρ is the spectral radius or the
dominant eigenvalue of the matrix V1V−1

2 The matrix
for newly introduced infection terms linearized at
the disease-free equilibrium is denoted by V1. On
the other hand, matrix V2 represents the remaining
transition terms.

V1 =


0

β (S0+θ V 0)
N0

ξ β (S0+θ V 0)
N0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (6)

V2 =


m3 0 0 0

−α1α2 m4 0 0

−α1(1− α2) −η m5 0

0 0 −γ m6

 (7)
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V−1
2 =


m3

−1 0 0 0

α1 α2

m3m4
m4

−1 0 0

α1 (η α2−m4 α2+m4)
m3m4m5

η
m4m5

m5
−1 0

γ α1 (η α2−m4 α2+m4)
m3m4m5m6

γ η
m4m5m6

γ
m5m6

m6
−1

 (8)

V1V−1
2 =



β (V 0θ+S0)α1 (η ξ α2−m4 ξ α2+m4 ξ+m5 α2)

N0m3m4m5

β (V 0θ+S0)(η ξ+m5)

N0m4m5

ξ β (V 0θ+S0)
N0m5

0

0 0 0 0

0 0 0 0

0 0 0 0

 (9)

where m3 = α1 + µ,m4 = η + ϕ1 + µ,m4 = γ + µ +
δ,m5 = ϕ2 + µ+ δ. To determine the eigenvalues of
the matrix V1V−1

2 We utilize the det(V1V−1
2 −Y I) = 0

where the eigenvalues are represented by Y. (10)
calculates the eigenvalues as follows:

0

0

0

(θ V 0+S0)α1 β (((η−m4)ξ+m5)α2+ξm4)

N0m4m3m5

 (10)

The control reproduction number, or dominant
eigenvalue, can be found as follows:

Rc =
βα1

(
S0 + θ V 0

)
((η −m4)α2ξ +m5α2 +m4ξ)

N0m4m3m5
.

(11)

Substituting (3), (4) and (5) into (11), we obtain

Rc =
βµα1[(1− p)(m2 + ψθ) + p(ω +m1θ)]((η −m4)α2ξ +m5α2 +m4ξ)

m3m4m5[µm2 + ψ(µ+ v)]
. (12)

Epidemiological Interpretation of Rc : Here, Rc

is interpreted as the number of susceptible individuals
produced by pertussis infected during the entire
infections period in a community with the presence of
booster vaccine and isolation.

Local Stability of Pertussis Free Equilibrium

A system is considered locally asymptotically stable
when a small disruption has no effect on its
equilibrium state. Thus, the condition where a
small number of illnesses will not result in a bigger

outbreak is known as a locally asymptotically stable
pertussis-free equilibrium. This requirement is
satisfied mathematically if all of the (1) eigenvalues
of the linearized system have negative negative real
components. This is relevant to the following Theorem
(2).

Theorem 2 The pertussis-free equilibrium(PFE) ϵ0,
of the model (1), is locally-asymptotically stable (LAS)
in G if Rc < 1, and unstable if Rc > 1.

Proof 2 The Jacobian matrix at the pertussis-free equilibrium is calculated as follows in order to linearize system
(1):

J(ϵ0) =



−ψ − µ ω 0 −βA1 −βξA1 0 0

ψ −m2 0 −θβA2 −θβξA2 0 0

0 0 −m3 βA1 + θβA2 βξA1 + θβξA2 0 0

0 0 α1α2 −m4 0 0 0

0 0 α1(1− α2) η −m5 0 0

0 0 0 0 γ −m6 0

0 v 0 ϕ1 0 ϕ2 −µ


. (13)
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where, A1 = µ((1−p)m2+pω)
m1m2−ψω , A2 = µ((1−p)ψ+m1p)

m1m2−ψω .

Reducing equation (13) to row-echelon form yields:

J(ϵ0) =



n11 n12 0 n14 n15 0 0

0 n22 n11−n21 n12

n11
0 n24 n11−n21 n14

n11

n25 n11−n21 n15

n11
0 0

0 0 n33 n34 n35 0 0

0 0 0 n44 n33−n43 n34

n33
−n43 n35

n33
0 0

0 0 0 0 K 0 0

0 0 0 0 0 n66 0

0 0 0 0 0 0 n77


. (14)

Where

n11 = −(ψ + µ), n12 = ω, n14 = −βξA1, n15 = −βA1, n21 = ψ, n22 = −m2, n24 = −θβA2,

n25 = −θβξA2, n33 = −m3, n34 = βA1 + θβA2, n35 = βξA1 + θβξA2, n43 = α1α2, n44 = −m4,

n53 = α1(1− α2), n54 = η, n55 = −m5, n65 = γ, n66 = −m6, n72 = v, n74 = ϕ1, n76 = ϕ2, n77 = −µ,

K =
n33 n44 n55 − n34 n43 n55 + n35 n43 n54 − n35 n44 n53

n44 n33 − n43 n34

(15)

The eigenvalues are calculated using the maple software as follows,

n77

n66

n33
n44 n33−n43 n34

n33

n33 n44 n55−n34 n43 n55+n35 n43 n54−n35 n44 n53

n44 n33−n43 n34

n11
n22 n11−n21 n12

n11


. (16)

Clearly, λ1, λ2, λ3 and λ6 are all negatives from (15). Now for the remaining eigenvalues after substitution we
have,
λ4 is negative if and only if

m3m4 − α1α2β (A1 + θA2)

−m2
< 0 (17)

⇐⇒ m3m4 − α1α2β (A1 + θA2) < 0. (18)

⇐⇒ α1α2β (A1 + θA2) < m3m4 (19)

⇐⇒ α1α2β (A1 + θA2)

m3m4
< 1 (20)

λ4 is negative.

λ5 is negative if and only if

−m3m4m5 +
βµα1[(1− p)(m2 + ψθ) + p(ω +m1θ)]((ξ −m4)α2ξ +m4α2 +m4ξ)

[µm2 + ψ(µ+ v)]
< 0 (21)

FUDMA Journal of Sciences (FJS) Vol. 9 No. 8, August, 2025, pp 392 - 405 397



ASSESSING THE IMPACT ... Abubakar et al. FJS

⇐⇒ βµα1[(1− p)(m2 + ψθ) + p(ω +m1θ)]((η −m4)α2ξ +m5α2 +m4ξ)

[µm2 + ψ(µ+ v)]
< m3m4m5. (22)

⇐⇒ βµα1[(1− p)(m2 + ψθ) + p(ω +m1θ)]((η −m4)α2ξ +m5α2 +m4ξ)

m3m4m5[µm2 + ψ(µ+ v)]
< 1 (23)

βµα1[(1− p)(m2 + ψθ) + p(ω +m1θ)]((η −m4)α2ξ +m5α2 +m4ξ)

m3m4m5[µm2 + ψ(µ+ v)]
= Rc < 1 (24)

λ5 is also negative.
λ7 is negative if and only if

m2(ψ + µ),−ψω
−(ψ + µ)

< 0 (25)

⇐⇒ m2(ψ + µ)− ψω < 0 (26)

⇐⇒ m2(ψ + µ) < ψω (27)

⇐⇒ m2(ψ + µ)

ψω
< 1. (28)

λ7 is also negative.

This shows that all the eigenvalues are negative if
Rc < 1 and unstable otherwise. This proved theorem
(2).

A community will not have a significant outbreak
of pertussis if Rc < 1, as demonstrated
by epidemiological evidence in Theorem (2).
Furthermore, the disease can be managed if the control
reproduction number is kept under one and there are
few people with pertussis.

Global Stability of Pertussis Free Equilibrium

Global stability refers to a dynamical system’s capacity
to remain stable in the face of larger disturbances.
Thus, it is crucial to ascertain whether or not the
pertussis-free equilibrium will remain stable in spite
of the more significant disturbances. As a result, we
proposed the following theorem on system stability
(1).

Theorem 3 The pertussis-free equilibrium of the
system (1) is globally asymptotically stable in G if
Rc < 1 and unstable if Rc > 1.

Proof 3
Ė

Ṁ

İ

J̇

 = (V1 − V2)


E
M
I
J

−X


E
M
I
J

 . (29)

(V1 − V2) =


m3

β(S0+θV 0)
N0

ξβ(S0+θV 0)
N0 0

α1α2 −m4 0 0

α1(1− α2) η −m5 0

0 0 γ −m6

 (30)
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where V1 and V2 are the same matrices in in equations (31) and (7)

X =


0

β (S0+θ V 0)
N0 − β (S+θ V )

N

ξ β (S0+θ V 0)
N0 − ξ β (S+θ V )

N 0

0 0 0 0

0 0 0 0

0 0 0 0

 (31)

The fact that S∗ ≥ V implies that matrix X is nonnegative. Thus, (29) can be expressed as
Ė

Ṁ

İ

J̇

 ≤ (V1 − V2)


E
M
I
J

 . (32)

The condition ρ(V1V−1
2 ) < 1 which hold if Rc < 1 (as shown in the theorem (2) proof), is identical to

(V1 − V2) with eigenvalues that have negative real portions. All of the eigenvalues of (V1 − V2) have negative
real portions when Rc < 1. As a result, the linearized subsystem (29) is stable when Rc < 1. This implies that
E(t),M(t), I(t), J(t) → (0, 0, 0, 0) as t→ ∞
By substituting E(t) = M(t) = I(t) = J(t) = 0 into the uninfected compartments (S(t), V (t), R(t)) Since the
resulting equations reduce to (3) through (5), it has been established that the entire model system (1) is globally
stable.

Pertussis Endemic Equilibrium Point

An equilibrium state occurs when a disease has
spread and persisted in a society for an extended
period of time. The state variables of the model
(1) are difficult to solve explicitly, but we can

derive their implicit solutions in terms of λ and
demonstrate that the equilibrium state exists. Let
S∗∗, V ∗∗, E∗∗,M∗∗, I∗∗, J∗∗ be the state variables
in the endemic equilibrium state, where λ∗ is the
infection force. The state variable solutions are as
follows:

S∗∗ = − Π (λ∗ pθ − λ∗ θ +m2 p− ω p−m2)

λ∗2θ + λ∗m1 θ + λ∗m2 +m1m2 − ω ψ

V ∗∗ =
Π (λ p+m1 p− pψ + ψ)

λ2θ + λm1 θ + λm2 +m1m2 − ω ψ

E∗∗ =
λ∗ Π (m1 pθ − pψ θ + λ∗ θ −m2 p+ pω + ψ θ +m2)

m3

(
λ∗2θ + λ∗ θm1 +m2 λ∗ +m2m1 − ψ ω

)
M∗∗ =

α1 α2 λ
∗ Π (m1 pθ − pψ θ + λ θ −m2 p+ ω p+ ψ θ +m2)

m4m3 (λ∗2θ + λ∗m1 θ + λ∗m2 +m1m2 − ω ψ)

I∗∗ =
α1 (η α2 −m4 α2 +m4)λ

∗ Π (m1 pθ − pψ θ + λ∗ θ −m2 p+ ω p+ ψ θ +m2)

m5m4m3 (λ∗2θ + λ∗m1 θ + λ∗m2 +m1m2 − ω ψ)

J∗∗ =
γ α1 (η α2 −m4 α2 +m4)λΠ (m1 pθ − pψ θ + λ∗ θ −m2 p+ ω p+ ψ θ +m2)

m5m6m4m3 (λ∗2θ + λ∗m1 θ + λ∗m2 +m1m2 − ω ψ)

(33)

It has been observed that R is not included in the
above equation ; this is acceptable as the immunity
acquired by those recovered causes them to be
eliminated from the population. A person may also be
recruited as a new susceptible if their immunity wanes.
Endangemicity will not affect an individual who has
immunity because he will not contract the infection.
However, someone may be recruited as susceptible if
their immunity wanes.

Pertussis Existance of EE point

To determine the existence of endemic equilibrium, we
used Descarte’s rule of sign where the number of
roots of a polynomial equation is equal to the number
of changes of sign for details see (Mustapha et al.,
2023). Now an endemic state force of infection is
given by

λ∗ =
β(M∗∗ + ξI∗∗)

N∗∗
(34)
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where,

N∗∗ = S∗∗ + V ∗∗ + E∗∗ +M∗∗ + I∗∗ + J∗∗. (35)

After solving the equation and substituting M∗∗,
I∗∗, and N∗∗ in (34), we obtain λ∗ = 0 (which is

comparable to the stable DFE) and the quadratic
equation that follows.

Z1λ
∗2

+ Z2λ
∗ + Z3 = 0 (36)

where,

Z1 =m3m4m5(m4 + α1(1− α2)) + (α1(1− α2)η + α1α2m4)(m6 + γ)

Z2 =m3m4m5m6[(1− p)θ + p] + (m5m6 + α1(1− α2))[(1− p)(m2 + θψ) + p(m1θ + ω)]

+ (α1(1− α2)η + α1α2m4)[(m6 + γ)((1− p)(m2 + θψ)

+ p(m1θ + ω))]− βθm6(α1(1− α2)m5 + α1(1− α2)ηξ + α1α2m4ξ)

Z3 =m3m4m5[µm2 + ψ(µ+ v)][1−Rc].

(37)

Clearly, Z1 > 0 since all the parameters are positive.
So there are four cases to be considered depending on
the sign of Z2 and Z3.

Theorem 4 The system (1) has:

I. no endemic equilibrium if Z2 > 0 and Z3 > 0
⇐⇒ Rc < 1.

II. a unique endemic equilibrium if Z2 < 0 and
Z3 < 0 ⇐⇒ Rc > 1.

III. a unique endemic equilibrium if Z2 > 0 and
Z3 < 0 ⇐⇒ Rc > 1.

IV. two positive equilibrium if Z2 < 0 and Z3 > 0.
⇐⇒ Rc < 1 and Z2

2 − 4Z1Z3 > 0.

The following theorem was established based on items
2 and 3 of theorem (4) for reference.

Theorem 5 The system (1) has a unique positive
endemic equilibrium if Rc > 1.

Global Stability of EE Point

Theorem 6 Suppose δ = ω = ψ = v = ϕ1 = 0
then the endemic equilibrium is globally asymptotically
stable if Rc > 1 and unstable if Rc < 1.

Proof 4 Let F be a Lyapunov function of the Goh-Volterra type in the manner described.

F =

(
S − S∗∗ − S∗∗ln

S

S

∗∗)
+

(
V − V ∗∗ − V ∗∗ln

V

V

∗∗)
+

(
E − E∗∗ − E∗∗ln

E

E

∗∗)
+
(α1 + µ)

α1

(
M −M∗∗ −M∗∗ln

M

M
∗∗
)
+

(α1 + µ)(η + µ)

α1η

(
I − I∗∗ − I∗∗ln

I

I

∗∗)
+
(α1 + µ)(η + µ)(γ + µ)

α1γη

(
J − J∗∗ − J∗∗ln

J

J∗∗

)
.

(38)

When (38) is differentiated in relation to time, we obtain

Ḟ =

(
1− S∗∗

S

)
Ṡ +

(
1− V ∗∗

V

)
V̇ +

(
1− E∗∗

E

)
Ė +

(α1 + µ)

α1

(
1− M∗∗

M

)
Ṁ

(α1 + µ)(η + µ)

α1

(
1− I∗∗

I

)
İ +

(α1 + µ)(η + µ)(γ + µ)

α1γη

(
1− J∗∗

J

)
J̇

(39)

with

N =
Π

µ
(40)

As we modify the force of the infection, we have

λ̄ = β̄(M + ξI) (41)

where

β̄ = β
Π

µ
(42)
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When (1) is substituted with (39), we obtain

Ḟ =

(
1− S∗∗

S

)
((1− p)π − λS − µS) +

(
1− V ∗∗

V

)
(pπ − αλV − µV )

+

(
1− E∗∗

E

)
(λS + αλV − (α1 + µ)E) +

(α1 + µ)

α1

(
1− M∗∗

M

)
(α1E − (η + µ)M)

+
(α1 + µ)(η + µ)

α1η

(
1− I∗∗

I

)
(ηM − (γ + µ)I)

+
(α1 + µ)(η + µ)(γ + µ)

α1γη

(
1− J∗∗

J

)
(γI − (ϕ2 + µ)J)

(43)

With relationships

(1− p)Π = λ∗∗S∗∗ + µS∗∗,

pΠ = θλ∗∗V ∗∗ + µV ∗∗,

(α1 + µ)E∗∗ = λ∗∗S∗∗ + θλ∗∗V ∗∗,

(η + µ)M∗∗ = α1E
∗∗,

(γ + µ)I∗∗ = ηM∗∗,

(ϕ2 + µ)J∗∗ = γI∗∗.

(44)

We may simplify by changing the relations in (44) to (43).

Ḟ ≤ µS∗∗
(
2− S

S∗∗ − S∗∗

S

)
+ µV ∗∗

(
2− V

V ∗∗ − V ∗∗

V

)
+λS∗∗

(
6− S∗∗

S
− SE∗∗

S∗∗E
− EM∗∗

E∗∗M
− MI∗∗

M∗∗I
− IJ∗∗

I∗∗J
− J

J∗∗

)
+ θλV ∗∗

(
6− V ∗∗

V
− V E∗∗

V ∗∗E
− EM∗∗

E∗∗M
− MI∗∗

M∗∗I
− IJ∗∗

I∗∗J
− J

J∗∗

) (45)

Next, we use the connection between the arithmetic and geometric means to obtain(
2− S

S∗∗ − S∗∗

S

)
≤ 0,

(
2− V

V ∗∗ − V ∗∗

V

)
≤ 0,

(
6− S∗∗

S
− SE∗∗

S∗∗E
− EM∗∗

E∗∗M
− MI∗∗

M∗∗I
− IJ∗∗

I∗∗J
− J

J∗∗

)
≤ 0,(

6− V ∗∗

V
− V E∗∗

V ∗∗E
− EM∗∗

E∗∗M
− MI∗∗

M∗∗I
− IJ∗∗

I∗∗J
− J

J∗∗

)
≤ 0.

(46)

Hence,
F

′ ≤ 0. Strict equality F
′
= 0 is only true at S = S∗∗, V = V ∗∗, E = E∗∗,M = M∗∗, I = I∗∗, and J = J∗∗.

The model 1 exhibits only one invariant set, which is the endemic equilibrium ϵ∗. Applying the Lasalle invariance
principle, the outcome is as follows see (Lasalle, 1976). For the model (1), this means that the endemic
equilibrium (EE) ϵ∗ is globally asymptotically stable (GAS).

Sensitivity analysis

We analyzed the sensitivity of the fundamental
reproduction number Rc in relation to certain
important associated parameters of pertussis
transmission dynamics, including isolation and booster
vaccine, using the forward sensitivity index approach.
The easiest way to stop the spread of pertussis
infections is to reduce the basic reproduction number,
which is a parameter-dependent output (P. Van
De Driessche and Watmough, 2002) . Since some
parameters are extremely sensitive, some are only
marginally sensitive, and some have no relative

sensitivity at all, some parameter modifications might
not have an equivalent impact on the outcomes
(Ibrahim et al., 2025). Thus, the normalized sensitivity
Hence the normalized sensitivity index χRc

η is given
as,

χRc
η =

η

Rc
× ∂Rc

∂η
(47)

We get the sensitivity status of each parameter with
respect to Rc in the table (2).

Figure (2) shows the most sensitive parameters
for increasing the control reproduction number are
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Table 2: Forward Normalized Sensitivity Indices

Parameter Elasticity Indices Values of the Elasticity index

θ ηRc

θ 0.2105

ξ ηRc

ξ 0.6415

ψ ηRc

ψ -0.8113

ω ηRc
ω 0.0509

v ηRc
v -0.3248

β ηRc

β 1.0000

η ηRc
η 0.0041

α1 ηRc
α1

0.1254
α2 ηRc

α2
0.3142

γ ηRc
γ -0.8128

ϕ1 ηRc

ϕ1
-0.3159

δ ηRc

δ -0.0571

Figure 2: Bar chart graph showing the elasticity indices versus parameters

contact rate β and modification parameter due to the
reduction of infectious severe individuals ξ while the
most sensitive parameters for decreasing the control
reproduction number are isolation γ and vaccine rate
ψ. This shows that isolation and vaccination have a
strong impact on reducing the spread of pertussis in
a community.

NUMERICAL SIMULATIONS

Numerical simulations of the proposed model (1)
provide valuable insights into the dynamics of the
disease by simulating the interaction of the various
factors that contribute to its spread and control. Some
of the parameters used in the simulations are derived
from existing literature, while others are assumed, and
two are control parameters that vary between 0 and
1.

Impact of Isolation

Both Figures (3) and (4) illustrate the effectiveness of
increasing the isolation rate in controlling the spread
of the disease described by the proposed model (1),
with an increase in the isolation rate leading to a
significant reduction in the number of severely infected
individuals and a corresponding increase in the number
of isolated individuals.

Impact of Vaccination

Figure (6, 7) shows the impact of vaccination rate
on the susceptible un-vaccinated and vaccinated
respectively. The figures shows a significant decrease
in the number of susceptible and an increases in the
number of vaccinated individuals as the parameter ψ
increases.
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Table 3: Ranges and baseline values of parameters of model (1).

Parameter Ranges (Baseline) Unit Reference
λ 0.0006 per year (Johnson and Edogbanya, 2024)
Π 0.019 per year (Johnson and Edogbanya, 2024)
p 0.06 per year Fitted
ψ 0.003264 per year Fitted
ω 0.77657 per year Fitted
µ 0.012 per year Fitted
δ 0.053 per year (Johnson and Edogbanya, 2024)
β 0.58 per year (Johnson and Edogbanya, 2024)
η 0.0071 per year Fitted
θ 0.8315045 per year Fitted
γ 0.2758 per year Fitted
ϕ1 0.6009 per year Fitted
ϕ2 0.0836 per year Fitted
α2 0.0301 per year Fitted
α1 0.1840 per year Fitted
ξ 0.598350 per year Fitted
v 0.012781 per year Fitted
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Figure 3: Impact of isolation rate on severely
infectious individuals

Years

0 2 4 6 8 10

J

0

500

1000

1500

2000

2500

γ=0

γ=1

Figure 4: Impact of isolation rate on Isolated
individuals
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Figure 5: Box plotting illustrating the effectiveness of isolation

DISCUSSION

Figures (6) and (7) shows the impact of vaccination.
Figure (6) shows that as the vaccine rate increases,
the number of unvaccinated significantly decreases
while figure (7) demonstrates that as the vaccine

rate increases, the number of vaccinated individuals
significantly increases, indicating that vaccine is
an effective strategy for controlling pertussis in a
community. The effectiveness of isolation as a control
measure for pertussis is clearly depicted in Figures (3)
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Figure 6: Pattern of Susceptible Individuals with differents values of ψ

Figure 7: Pattern of Vaccinated Individuals with differents values of ψ

and (4). Figure (3) shows that as the isolation rate
increases, the number of severely infected individuals
decreases significantly. Figure (4) demonstrates
that as the isolation rate increases, the number of
isolated individuals increases significantly, indicating
that isolation is an effective strategy for controlling
the spread of the disease. Figure (5) provides a
clear visualization of the effectiveness of the isolation
strategy in controlling pertussis in the environment,
with the number of cases shown to decrease over time.
This visual representation reinforces the importance
of isolation in reducing the spread of the disease
and highlights the effectiveness of the strategy in
controlling the disease.

CONCLUSION

An epidemiological compartmental model consisting
of seven classes susceptible unvaccinated, susceptible

vaccinated, exposed, mildly, severely, isolated, and
recovered was used to predict the dynamics of
pertussis. Numerical simulations and a thorough
mathematical study of the model were performed.
The model comprises two equilibria, the DFE and the
EEP, as demonstrated by the mathematical analysis
section’s determination of the solution’s positivity
and boundedness as well as the presence of disease
equilibria. Whenever Rc < 1, the DFE is found to be
asymptotically stable both locally and globally. Global
asymptotic stability of endemic equilibrium point EEP
has been ascertained using the nonlinear Lyapunov
function of Go–Volterra type, which reveals that, the
EEP is globally asymptotically stable if the control
reproduction number is greater than unity and ω =
ψ = ϕ1 = v = δ = 0. Numerical simulation indicates
that the isolation rate of infected individuals and the
booster vaccine are critical factors in societal control
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of pertussis. Sensitivity analysis demonstrates that
isolation and booster vaccinations are highly sensitive
in lowering the control reproduction number. The
box plot also demonstrates how crucial isolation is to

containing pertussis in the environment. Therefore, we
recommend that the isolation of infected individuals
and the promotion of vaccination in the general public
be prioritized.
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