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ABSTRACT 

The minimum time has historical importance in relation to Fermat’s principle, a famous problem that is well 

known to the readers of general physics mattrers. Our intention in this study is to restrict ourselves to classical 

Newtonian mechanics, more specifically to a projectile mothion that every college student has certain 

familiarity. This study established and utilises the Brachistochrone general equation to investigate the 

minimum time curve travelled by an object (jet) under the influence of gravity. It was found that reaching a 

maximum altitude within the shortest time possible, a jet fighter must take off with the same speed at a smaller 

projection angle. This means that travelling directly against gravity takes more time.  
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INTRODUCTION 

‘The worst of a thief is the one that steals our time’, is an 

expression of wisdom emphasizing the importance of time in 

our daily life. Aside social affairs, ‘time’ is a variable in 

physics-the most precious one that has no reset in biological 

matters. In 1905, within the context of Special Relativity, 

Einstein put ‘time’ on an equal footing with the other spatial 

variables. The relativity of time is probably the greatest 

insight that mankind has ever had through Einstein’s mind. 

Recall that twin-paradox as the standard text-book example to 

justify this basic fact (Socolovsky, 2013). The energy 

equivalence of mass i.e. Δ𝐸 = (Δ𝑚)𝑐2, that even a layman in 

the street is aware of, averages as a consequence of intrinsic 

relativity of time. Since doing experiments with humans has 

serious biological risks, atomic clocks do the job on our 

behalf. K. Godel was afraid so much to die that he developed 

a mathematical/cosmological model in challenge of death 

(xam & oi Cosmo ogica, 1949). Ironically he presented it as a 

seventieth birthday gift to Einstein. Today we have many of 

such similar cosmological models in which the spacetime 

returns back to its initial time (Mohajan, 2013). At last, in 

spite of all that highly imaginative mathematical efforts both 

luminaries passed away.  

With General Relativity in 1916, Einstein extended the 

concept of relativity to cover gravitational observer, both 

kinematical, dynamical and gravitational are crucial concept 

verified at large. Each frame/observer carries its own time and 

these different times are connected by some transformations 

such as Lorentz on general coordinates (MTW). Proper time, 

i.e. one’s own time in one’s own frame, is the only invariant 

time that does not change when many other things change. 

This fact makes the starting point for a variational principle in 

a relativistic (special or general) theory that minimizes the 

proper time. Mathematically if (𝑑𝜏) denotes the infinitestimal 

proper time interval which is not an exact different, the 

expression known as action 𝐼 = ∫ 𝑑𝜏
2

1
.That is the variation 

(𝛿𝐼) must be zero for extremality and the second variation 

(𝛿2𝐼), must be positive for a minimum. For a detailed 

explanation of the point we refer to Jacobi’s principle of 

variational calculaus (Akoglu et al., 2017; Gyegwe et al., 

2025; Houchmandzadeh, 2020). 

In classical Newtonian physics there is no relativity of time. 

Times are all same absolute as related in the galilean principle 

of relativity in which spaces change but time not (xam & oi 

Cosmo ogica, 1949). 

Our objective in this study is to restrict ourselves to classical 

Newtonian mechanics, more specifically to a projectile 

mothion that every college student has certain familiarity. It 

is well-known that any such object follows, by virture of 

gravity a parabolic trajectory. This is the case when we 

assume a minimum of action fucntion defined by 𝐼 =

∫(𝑇 − 𝑉)𝑑𝑡, in which 𝑇(=
1

2
𝑚�⃗�2)and 𝑉(= 𝑚𝑔𝑦), refer to 

the kinetic and potential energies, respectively. And 

obviously 𝑡 refers to the absolute time of Newton. We intend 

now at this point to make a diversion by considering a minmal 

time motion instead of the minimal action. This is naturally 

related with the well-known Brachistochrone problem (xam 

& oi Cosmo ogica, 1949), which describes the minimum time 

curve of descent, i.e. a cycloid in a uniform gravitational field. 

It will be shown that launching a projectile with an initial 

speed and angle will be again part of a cycloid, but somewhat 

modified, depending on the launching angle. In other words 

we wish to investigate the Fermat’s principle for a projectile, 

which is a mechanical system distinct from a light trajectory 

that the principle aimed for. What happens to a launched 

projectile if it is to traverse a path in shortest time?. The 

question applies for instance to a jet fighter that is to reach a 

maximum altitude in a minimum time. This is precisely what 

we intend to investigate in this paper. 

 

MATERIALS AND METHODS 

Minimal time versus the action principle 

Case I: We consider first a typical projectile motion launched 

at 𝑥 = 𝑦 = 0, with an angle 𝜃𝑜 making with the +𝑥 axis and 

with the total initial speed 𝜗𝑜 (Fig.1). For simplicity we 

choose the mass as 𝑚 = 1, so that the action is given by: 

𝐼 = ∫𝐿(�̇�, �̇�; 𝑥, 𝑦) 𝑑𝑡 

𝐼 =
1

2
∫[(�̇�2 + �̇�2) − 2𝑔𝑦]𝑑𝑡   (1) 

in which L is the Lagrangian and a ‘dot’ means time 

derivative. The variational principle 𝛿𝐼 = 0, as in a more 

familiar term term, the Euler-Lagrange equation give the 

differential equations of motion. 
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�̈� = 0     (2)  

�̈� + 𝑔 = 0    (3) 

Integration of these equations with the initial conditions of a 

projectile results in: 

𝑥 = (𝑣𝑜 𝑐𝑜𝑠 𝜃𝑜)𝑡    (4) 

𝑦 = (𝑣𝑜 𝑠𝑖𝑛 𝜃𝑜)𝑡 −
1

2
𝑔𝑡2   (5) 

From which we obtain the orbit equation, 

𝑦 = 𝑥 𝑡𝑎𝑛 𝜃𝑜 −
𝑔𝑥2

2(𝑣𝑜 𝑐𝑜𝑠 𝜃𝑜)
   (6)  

This is the well-known parabolic curve of introductory 

mechanics as shown in Figure1 

 

 
Figure 1: The projectile motion 

 

Case II: Next, let us consider the total conserved energy E (for 

a unit mass) as 

𝐸 = 𝑇 + 𝑉 

𝐸 =
1

2
(�̇�2 + �̇�2) + 𝑔𝑦   (7) 

⇒ 𝐸 =
1

2
𝑣𝑜

2 

The element of time (𝑑𝑡) is solved from the foregoing as  

𝑑𝑡 = √
1+𝑥'2

𝑣𝑜
2−2𝑔𝑦

     (8) 

Since we are interested in extremizing (in fact minimizing) 

the time, we choose our action principle as: 

𝐼 = ∫√
1+𝑥'2

𝑣𝑜
2−2𝑔𝑦

𝑑𝑦    (9) 

In which 𝑥 ' =
𝑑𝑥

𝑑𝑦
. The resulting equation of variational 

principle 𝛿𝐼 = 0, after a first integral can be expressed in the 

form: 

(
𝑑𝑥

𝑑𝑦
)
2
=

𝑣𝑜
2−2𝑔𝑦

1

𝛼
−(𝑣𝑜

2−2𝑔𝑦)
   (10) 

in which 𝛼 is an integration constant. Using the initial 

conditions for the projectile we obtain: 

𝛼 =
𝑐𝑜𝑠 𝜃𝑜

𝑣𝑜
    (11)  

Let us note that in the typical Brachistochrone problem the 

mass is released without an initial speed which is require to 

slide to a point such that it will cover the minimum time. In 

the present problem the projectile moves against gravity with 

an arbitrary initial speed (𝑣𝑜) and angle (𝜃𝑜). Complete 

integral for the Fermat projectile, i.e. of Equation (10) is as 

follows: 

(2𝑥 − 1 + 𝑡𝑎𝑛2 𝜃𝑜) 𝑡𝑎𝑛 2𝜃𝑜 + 2√1 − 𝑢√𝑢 + 𝑡𝑎𝑛2 𝜃𝑜

2√1 − 𝑢√𝑢 + 𝑡𝑎𝑛2 𝜃𝑜 𝑡𝑎𝑛 2𝜃𝑜 − (2𝑢 − 1 + 𝑡𝑎𝑛2 𝜃𝑜)
 

= 𝑡𝑎𝑛[ 2 𝑐𝑜𝑠2 𝜃𝑜 (±
2𝑔𝑥

𝑣𝑜2
+ 𝑡𝑎𝑛 𝜃𝑜 − √1 − 𝑢√𝑢 + 𝑡𝑎𝑛2 𝜃𝑜)] 

𝑈 = 2√1 − 𝑢√𝑢 + 𝑡𝑎𝑛2 𝜃𝑜   (12) 

in which we have used the abbreviation: 

𝑢 =
2𝑔𝑦

𝑣𝑜
2      (13) 

More appropraitely we shorten this expreesion as: 
𝑊𝑡𝑎𝑛 2𝜃𝑜+𝑈

𝑈 𝑡𝑎𝑛2𝜃𝑜−𝑊
= 𝑡𝑎𝑛𝜑   (14) 

in which 

𝑈 = 2√1 − 𝑢√𝑢 + 𝑡𝑎𝑛2 𝜃𝑜  

𝑊 = 2𝑢 − 1 + 𝑡𝑎𝑛2 𝜃𝑜   (15) 

and 

𝜑 = 𝑐𝑜𝑠2 𝜃𝑜 (±
4𝑔𝑥

𝑣2𝑜
+ 2 𝑡𝑎𝑛 𝜃𝑜 −𝑈) 

It can easily be checked that the functions U and W satisfy the 

constraint without loss of generality from now on we shall 

choose the (+) sign inside the variable 𝜑. 

𝑈2 +𝑊2 =
1

𝐶𝑂𝑆4𝜃𝑂
    (16) 

Let us also note that 𝑢 =
2𝑔𝑦

𝑣𝑜
2 ≤ 1 

 

Analysis of the Fermat Projectile  

Case I: The orbit equation (12), or in abbreviated form 

equation (14) represents a generalised cycloid of minimal 

time. It is generalised in the sense that it contains two arbitrary 

parameters, 𝑣𝑜and 𝜃𝑜. To see the connection with the standard 

form of the cycloid let us take first 𝜃𝑜 = 0 and see the 

connection. Equation (12) reduces to:  
2√𝑢(1−𝑢)

1−2𝑢
= 𝑡𝑎𝑛𝜑    (17) 

 

with 𝜑 =
4𝑔𝑥

𝑣𝑜
2 − 2√𝑢(1 − 𝑢) 

solving for 𝑢 =
2𝑔𝑦

𝑣𝑜
2  and 𝑥 yields the standard form of the 

cycloid as: 

𝑥 =
𝑣𝑜

2

4𝑔
(𝜑 + 𝑠𝑖𝑛 𝜑) 

𝑦 =
𝑣𝑜

2

4𝑔
(1 − 𝑐𝑜𝑠 𝜑)   (18) 

depicted in Figure (2). 
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Figure 2: The cycloid curve representing a projectile fired horizontally at 𝑥 = 0, 𝑦 = 0, (𝜓). 

In minimal time it moves upward to 𝑦𝑚𝑎𝑥 =
𝑣𝑜

2

2𝑔
, at 𝑥 =

𝑣𝑜
2𝜋

4𝑔
. 

 

Case II: We are now in a position to express the general form 

of the cycloid equation for 𝜃𝑜 ≠ 0with reference to Equations 

(14) and (15) it is a good exercise to obtain: 

𝑥 = 𝑎[𝜑 + 𝑠𝑖𝑛( 𝜑 + 2𝜃𝑜) − 𝑠𝑖𝑛 2 𝜃𝑜] 
𝑦 = 𝑎[𝑐𝑜𝑠 2 𝜃𝑜 − 𝑐𝑜𝑠( 𝜑 + 2𝜃𝑜)]  (19) 

in which, 

𝑎 =
𝑣𝑜

2

4𝑔 𝑐𝑜𝑠2 𝜃𝑜
    (20) 

The parameter 𝜑is proportional to time. In order to see this 

we use the energy conservation condition: 

�̇�2 + �̇�2 = 𝑣𝑜
2 − 2𝑔𝑦together with the Equation in (19). One 

obtains easily that  

𝜑(𝑡) =
2𝑔𝑡

𝑣𝑜
𝑐𝑜𝑠 𝜃𝑜    (21) 

At the maximum point (𝑦𝑚𝑎𝑥of the projectile we have the 

conditions    
𝑑𝑥

𝑑𝜑
=

𝑑𝑦

𝑑𝜑
= 0    (22) 

which gives 𝜑 + 2𝜃𝑜 = 𝜋 

 

 
Figure 3: Variation of projection angle with time 

 

Thus for different choices of 𝜃𝑜we make the plots in Figure 

(3). It is interesting that as the projection angles changes, and 

the time to reach that maximum change also depending on 

angle the 𝑦𝑚𝑎𝑥remains same for the common initial speed 

once the projectile reaches the maximum altitude in order to 

follow with the minimal time it must follow the standard 

cycloid as its next route. It is also interesting that the more 

steeper the angle of launch is the more time it takes to reach 

the maximum in the horizontal direction. 

 

CONCLUSION 

As representative of the minimum time curve cycloid has a 

well-known reputation in physics. This originated with the 

historic problem of Brachistochrone which solves the 

minimum time of descent far an object under uniform 

gravitational field. It goes also to the extreme of an expanding 

model of Friedmann’s cosmological model. A fixed point on 

the rim of a rolling circle determines a cycloid. Different 

versions of a cycloid such as hypocycloid, epicycloid, prolate 

etc. were out of our scope in this study. Our idea is to change 

the initial conditions for the starting point of a cycloid. We 

consider a projectile motion corresponding to an ordinary 

angle of projection and initial speed. Minimum action of the 

projectile determines a parabola whereas. The tip angle and 

initial speed of a jet fighters, for instance, reaches the 

maximum altitude in a shortest time along a cycloid. We 

found the interesting result that reaching to the same 

maximum height a jet fighter must take off (with the same 

speed) at a smaller projection angle. This means that climbing 

directly against gravity takes more time, the message given by 

Figure 3.  
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