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ABSTRACT 

Augmented Box-Behnken Designs (ABBDs) are efficient third-order designs for complete observations. 

Previous studies have focused on the development of minimax loss ABBDs for one missing observation. In 

practice, two or more observations may be missing, leading to design inefficiency and generation of invalid 

inference. This study was therefore aimed at developing minimax loss ABBD that is robust to two missing 

observations for more valid inferences. A complete ABBD (𝑘, 𝑛𝑐, 𝑛𝑏, 𝑛𝑓, 𝑛𝑎, 𝛼) was adopted, where 𝑘, 𝑛𝑐, 

𝑛𝑏, 𝑛𝑓, 𝑛𝑎 and 𝛼 are the number of factors, centre, Box-Behnken, factorial, axial points and axial distance, 

respectively. Missing observations were introduced into the ABBD by removing all possible combinations of 

two observations, from each of 𝑛𝑐, 𝑛𝑏, 𝑛𝑓and 𝑛𝑎points of the ABBD. Minimax loss criterion was used to 

compute the losses in precision for the ABBD when two observations are missing from each point. A greed 

search algorithm was used to determine the 𝛼value that minimised the maximum loss in precision. A minimax 

loss ABBD was obtained when the maximum loss in precision between any two different types of points was 

equal at a particular value of 𝛼. The loss in precision values when two observations were missing at α = 

1.6021were 0.5259, 0.8833, 0.9664 and 0.9664 and the α value which minimised the maximum losses in 

precision was1.6021. The minimax loss ABBD obtained was minimax loss ABBD robust to two missing 

observations (𝑘=3,𝑛𝑐 = 3, 𝑛𝑏 = 12 , 𝑛𝑓 = 8 , 𝑛𝑎 = 6, 𝛼 =1.6021).  
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INTRODUCTION 

Response surface methodology is an efficient modern 

statistical techniques which emanated from Box and Wilson 

(1951). It has widely been used in building models and 

exploring relationships between one or more response 

variables and several explanatory variables (Zhou and Xu, 

2016; Ahmad and Gilmour, 2010).Its application has cut 

across many fields of life, including; manufacturing 

industries, Lamidi et al. (2022); chemical and food industries, 

Yolmeh et al. (2017); biological and biomedical, Safari et al. 

(2018); biopharmaceutical, Rebollo-Hernanz et al. (2021); 

agriculture, Mead and Pike (1975); etc. However, in response 

surface methodology, second-order models, in some cases 

may be inadequate and unrealistic because of lack of fit 

caused by the presence of third-order or higher-order terms in 

the response surface model (Rashid et al., 2017). This 

situation presents a need for a third-order or higher-order 

model to be augmented from the second order response 

surface designs in order to estimate the third-order or higher-

order terms in the response surface model. Arshad et al. 

(2012) constructed an augmented Box-Behnken designs 

which can handle the estimates of the third-order models and 

these are known as third-order designs. These third-order 

designs in general have been useful in many experimental 

situations for response surface modelling and however may 

have been confronted with experiments that include missing 

observations.  

Missing observation is a phenomenon that surfaces even in a 

carefully planned experiment, where some observations may 

be lost during the process of data collection, damaged or may 

be suspicious in some way (Patchanok, 2015). Missing 

observation affects the statistical power of tests, destroys 

some of the fundamental design properties like: orthogonal, 

optimality, balanced structure of a design, offer biased 

estimates of parameters and give invalid conclusions drawn 

from the data (Chen et al., 2017).  This phenomenon which is 

Missing At Random (MAR) in this setting, can be resulted 

from many causes, for example, the loss of experimental 

units, cancellation of runs that were prolonged and miscoded 

data where their correct values are non-tractable (MacEachern 

et al., 1995). Many researchers have presented ways of 

dealing with missing observations which includes: Imputation 

method (Marina, 2013) and robustness-to-missing value 

criteria (Andrews and Herzberg, 1979; Ghosh, 1979; Akhtar 

and Prescott, 1986; Tanco 2013).  

Robustness of a design against missing observation is the 

ability of a design being able to estimate parameters without 

too much loss of precision in the presence of unavoidable 

conditions (missing observations). The robustness of designs 

against missing observation has been studied by several 

authors, including Hedayat and John (1974), Ghosh et al. 

(1983), Akhtar and Prescott (1986), Ahmad and Gilmour 

(2010), Ahmad et al. (2012), Alrweili et al. (2019), and more. 

Therefore, the goal of this paper is to develop a minimax loss 

augmented Box-Behnken design robust to two missing 

observations using a minimax loss criterion. 

Akhtar and Prescott (1986) discussed the effects of missing 

observations in response surface designs and provided a 

number of robustness criteria. Akram (2002) developed 

minimaxloss3 designs robust to three missing observations by 

using minimax loss criteria, and then compared these designs 

with cuboidal, orthogonal, rotatable, Box and Draper outlier 

robust designs, spherical, minimaxloss1 and minimaxloss2 

designs. Alrweili et al. (2019) constructed minimax loss 

response surface designs which are robust to missing 

observations. The construction applied minimax loss criteria 

to the minimal central composite designs of Georgiou et al. 

(2014) and Angelopoulos et al. (2014). Rashid et al. (2019) 

investigated the robustness of augmented Box-Behnken 

designs and augmented fractional Box-Behnken designs to 
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one missing observation using minimax loss criteria. 

Oladugba et al. (2019) looked at “robustness of Space-filling 

Orthogonal-Array Composite Design (SOACD)”, when 

observations are declared missing. The authors developed a 

novel design called “Space-filling Orthogonal-Array 

Composite Minimax loss design (SOACM)”. The formulated 

Second-Order Augmented Composite Model (SOACM) 

design was implemented using Second-Order Augmented 

Composite Designs (SOACDs), with the aim of determining 

an optimal axial distance (α) which minimizes maximum loss 

of efficiency in the cases of missing data. This was achieved 

through the application of a minimum loss of efficiency 

criterion. The study compared the performance of SOACDs 

with other established designs, such as orthogonal array 

composite designs, centre composite designs, and small 

composite designs, focusing on their robustness and 

efficiency under conditions where data points are missing. 

The results provided insights into how SOACMs and other 

designs handle such challenges, contributing to the broader 

understanding of design reliability in experimental settings. 

The precision of coefficient estimate of regression model and 

D- efficiency value were the basis for their comparisons. 

SOACMs showed a preferred performance in general. Full 

information maximum likelihood was also considered in 

judging the influence of missing observation (MCAR and 

MAR) on the performances of the designs and the judgement 

discovered no association betwixt the missing values and 

variable in the dataset. Rashid et al. (2019) demonstrated that 

Augmented Box-Behnken designs are generally more robust 

when one observation is lost for 3 to 6 factors, using minimax 

loss criteria. Rashid et al. (2022) investigated the impact of 

missing one observation on the estimation and predictive 

capabilities as well as on the relative A, D and G-efficiencies 

of augmented Box-Behnken designs. 

 

MATERIALS AND METHODS 

Source of Designs 

The design presented in Table 1 was obtained from a work 

titled augmented Box-Behnken designs for fitting third order 

response surfaces by Arshad et al. (2012; table 5, page 4235).  

 

Table 1: Augmented Box-Behnken third –order designs (ABBD) for 𝒌 = 𝟑 

𝐅𝐚𝐜𝐭𝐨𝐫 (𝐤) 𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝐁𝐁𝐃 + 𝐀𝐝𝐝𝐞𝐝 𝐏𝐨𝐢𝐧𝐭𝐬 𝐃𝐞𝐬𝐢𝐠𝐧 𝐏𝐨𝐢𝐧𝐭𝐬 

3 

𝐵[3] 12 

𝐹[𝑎]3 8 

𝐴[𝛼]3 6 

 𝐍 = 26+𝒏𝒄 

 

where: 𝐵[3] = 𝑛𝑏 =  𝑏 × 2𝑡 = 12and it is the number of Box 

Behnken points, 𝐹[𝑎]3 = 𝑛𝑓 = 2𝑘 = 8,is the number of 

factorial points, 𝐴[𝛼]3 = 𝑛𝑎 = 2(3) = 6,is the number of 

axial points,𝑛𝑐is the number of center points and it is 

replicated three times.N is the total number of design points 

in augmented Box-Behnken designs for factor 𝑘 = 3. 

However, the design matrix for 𝑘 = 3 factors in Augmented 

Box-Behnken Design (ABBD) is given as in Table 2 (note 

that here, values of factorial points was coded as -1and +1). 

 

Table 2: The design matrix for 𝒌 = 𝟑 factor in Augmented Box-Behnken Design at 𝒏𝒄 = 𝟑 

S/N 𝑿𝟎 𝑿𝟏 𝑿𝟐 𝑿𝟑 

1 1 -1 -1 0 

2 1 1 -1 0 

3 1 -1 1 0 

4 1 1 1 0 

5 1 -1 0 -1 

Box-Behnken point: 𝒏𝒃 = 𝟏𝟐     6 1 1 0 -1 

7 1 -1 0 1 

8 1 1 0 1 

9 1 0 -1 -1 

10 1 0 1 -1 

11 1 0 -1 1 

12 1 0 1 1 

13 1 -1 -1 -1 

14 1 1 -1 -1 

15 1 -1 1 -1 

Factorial point: 𝒏𝒇 = 𝟖             16 1 1 1 -1 

17 1 -1 -1 1 

18 1 1 -1 1 

19 1 -1 1 1 

20 1 1 1 1 

21 1 𝛼 0 0 

22 1 -𝛼 0 0 

Axial point: 𝒏𝜶 = 𝟔                  23 1 0 𝛼 0 

24 1 0 -𝛼 0 

25 1 0 0 𝛼 

26 1 0 0 -𝛼 

27 1 0 0 0 

Center point: 𝒏𝒄 = 𝟑                 28 1 0 0 0 

29 1 0 0 0 
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Robust-to-Missing Observations Criterion 

Robust-to-missing observation criterion is a criterion that is 

used to construct or evaluate the robustness of designs in the 

presence of missing observations. The following are robust to 

missing observation criteria: Estimability criterion by Ghosh 

(1982), Loss of D-efficiency by Ghosh (1979), Minimax loss 

criteria by Akhtar and Prescott (1986). This research made use 

of minimax loss criterion proposed by Akhtar and Prescott 

(1986) 

 

Minimax loss Criterion 

Akhtar and Prescott (1986) developed a minimax loss 

criterion which is minimization of the maximum loss due to 

missing observations in the reduction of the determinant of 

the information matrix denoted by|X′X|. However, Andrews 

and Herzberg (1979) established a relationship between the 

reduced determinants of the information matrix, with 

𝑚missing design points (𝑚 = 1, 2, . . . ), denoted 

by|Xr
′Xr|and the determinant of the information matrix 

without any missing observation known as full or complete 

information matrix|X′X| which is expressed as 
|𝐗𝐫

′𝐗𝐫|

|𝐗′𝐗|
= 𝑅𝑗     (1) 

where:Rj = 1 − hijis the 𝑗𝑡ℎ diagonal element of (I − H) and 

His the hat matrix, H =  X(X′X)−1X′. Now the loss for the 𝑗𝑡ℎ 

design point missing, is defined as, 

𝑙𝑗 = 1 −  
|𝐗𝐫

′𝐗𝐫|

|𝐗′𝐗|
    (2) 

Equation (2) can also be rewritten according to (Rashid et al. 

2019) as 

𝑙𝑗 = 1 − Rj = hjj    (3) 

The loss 𝑙𝑗is a relative measure of efficiency with 0 ≤ 𝑙𝑗 ≤ 1. 

It has been observed that a small value of 𝑙𝑗indicates a low 

reduction in the determinant of the information matrix and in 

this sense, less loss of information. We will choose a design 

with a smallest value of the maximum loss over design points 

(Ahmad and Gilmour, 2010).  

 

Construction of the Proposed Minimax Loss design 

The detailed procedure for constructing robust augmented 

Box-Behnken design for two missing observations are 

presented as follows: 

 

Algorithm 

Step 1. Choose an ABBD for factor k = 3(Rashid et al., 

2022), we represent Box-Behnken point by ′𝑏𝑏′, factorial 

point by ′𝑓′, axial point by ′𝑎′ and centre point by  ′𝑐′. None 

of the design points are replicated, except for the center point 

which is fixed at 3 according to Akhtar and Prescott (1986). 

Step 2. Calculate the loss function : 𝑙𝑏𝑏,  𝑙𝑓𝑓, 𝑙𝑎𝑎, 𝑙𝑐𝑐, 𝑙𝑏𝑓, 𝑙𝑏𝑎, 

𝑙𝑏𝑐, 𝑙𝑓𝑎, 𝑙𝑓𝑐  and 𝑙𝑎𝑐,  where 𝑙𝑏𝑏 is the loss for missing a pair of 

Box-Behnken point, 𝑙𝑓𝑓 is the loss for missing a pair of 

factorial points, etc. 

Step 3. Using greedy search, trace the𝛼 value that minimizes 

the maximum losses of 𝑙𝑏𝑏, 𝑙𝑓𝑓, 𝑙𝑎𝑎, 𝑙𝑐𝑐, 𝑙𝑏𝑓, 𝑙𝑏𝑎, 𝑙𝑏𝑐, 𝑙𝑓𝑎, 𝑙𝑓𝑐  

and 𝑙𝑎𝑐 
Step 4. Substitute the chosen 𝛼 value in the chosen design.  

 

Robust Designs 

To find the minimax loss designs robust to two missing 

observations, we have to explore the case design (ABBD) 

with number of factor 𝑘 = 3, center point replications 𝑛𝑐 = 3 

and number of design points 𝑁 = 29. However, in the 

structure of the augmented Box-Behnken designs, all losses 

are classified into four types for all 𝑘, where 𝑘 is the number 

of factors : loss of  Box-Behnken points, loss of factorial 

points, loss of axial points, and  loss of centre points. To 

search the α (axial distance) value at which the maximum loss 

is minimized for the case of missing two observations, loss of 

pairs of factorial points (𝑙𝑓𝑓) is equated to the loss of pairs of 

axial points (𝑙𝑎𝑎) and the minimum value of α at which (𝑙𝑓𝑓) 

is equal to (𝑙𝑎𝑎) is chosen as the value of α that makes the 

design robust. Note that it is not always certain that the search 

for α (axial distance) value that will make a design with 

missing observations robust exists (Akram, 2002). 

 

RESULTS AND DISCUSSION 

Loss in precision due to two missing observations in 

augmented Box-Behnken design 

When a pair of design points are missing in an augmented 

Box-Behnken design there are ten possible outcomes of the 

combination of their losses, which are: 𝑙𝑏𝑏, 𝑙𝑓𝑓, 𝑙𝑎𝑎, …, 𝑙𝑎𝑐.  

Table 3: The maximum losses due to a pair of missing observations of augmented Box-Behnken design at for different 

values of 𝜶 with 𝒌 = 𝟑 and 𝒏𝒄 = 𝟑 

Axial point distance (𝜶) 
Loss in precision due to missing 

bb ff aa cc bf ba bc fa fc ac 

0.25 0.9691 0.9710 0.8505 0.2105 0.9804 0.9156 0.8098 0.9323 0.8480 0.6532 

0.50 0.9657 0.9715 0.8508 0.2314 0.9796 0.9154 0.8075 0.9334 0.8514 0.6603 

0.75 0.9534 0.9722 0.8646 0.2722 0.9767 0.9162 0.7961 0.9381 0.8573 0.6888 

1.10 0.9207 0.9729 0.9078 0.3782 0.9680 0.9213 0.7691 0.9500 0.8695 0.7617 

1.25 0.9064 0.9724 0.9273 0.4394 0.9631 0.9244 0.7614 0.9547 0.8741 0.7915 

1.50 0.8883 0.9689 0.9561 0.5198 0.9536 0.9321 0.7548 0.9617 0.8727 0.8334 

1.60 0.8834 0.9665 0.9661 0.5260 0.9495 0.9371 0.7511 0.9650 0.8672 0.8501 

1.6021* 0.8833 0.9664 0.9664 0.5259 0.9494 0.9372 0.7510 0.9651 0.8670 0.8505 

1.75 0.8781 0.9629 0.9785 0.4992 0.9439 0.9468 0.7416 0.9709 0.8549 0.8767 

2.00 0.8728 0.9583 0.9912 0.4000 0.9379 0.9643 0.7185 0.9807 0.8333 0.9185 

2.25 0.8697 0.9564 0.9965 0.3047 0.9356 0.9774 0.6973 0.9879 0.8190 0.9484 

2.50 0.8676 0.9559 0.9986 0.2389 0.9351 0.9856 0.6822 0.9923 0.8113 0.9668 

2.75 0.8662 0.9560 0.9994 0.1966 0.9352 0.9905 0.6722 0.9949 0.8074 0.9780 

3.00 0.8652 0.9563 0.9997 0.1690 0.9355 0.9935 0.6655 0.9965 0.8054 0.9814 

3.25 0.8645 0.9566 0.9998 0.1505 0.9359 0.9954 0.6609 0.9976 0.8044 0.9892 

3.50 0.8640 0.9569 0.9999 0.1376 0.9363 0.9967 0.6576 0.9982 0.8038 0.9921 

3.75 0.8637 0.9571 1.0000 0.1283 0.9366 0.9975 0.6553 0.9987 0.8036 0.9941 

4.00 0.8634 0.9573 1.0000 0.1214 0.9368 0.9981 0.6535 0.9990 0.8034 0.9955 
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It is observed in Table 3 above that loss incurred by missing 

a pair of center points (𝑙𝑐𝑐) remain less than loss due to 

missing a pair of Box-Behnken points (𝑙𝑏𝑏) and every other 

pair of augmented Box-Behnken design for the whole ranges 

of axial point distance (𝛼). This is because of the location 

dependency of ℎ𝑗𝑗 . The minimax loss design point for 

augmented Box-Behnken design with 𝑘 = 3, 𝑛𝑐 = 3 and a 

pair of observations missing is chosen from the values of 

alpha (𝛼) ranging from 0.25 𝑡𝑜 4.00, for which the loss due 

to missing a pair of factorial points (𝑙𝑓𝑓) is equal to the loss 

due to missing a pair of axial points (𝑙𝑎𝑎). The minimax loss 

design point occurs at a point where 𝑙𝑓𝑓 = 𝑙𝑎𝑎 and that point 

is 0.9664 at 𝛼 = 1.6021. Thus, a three factor augmented Box-

Behnken design with total design pointsN = 29, Box- 

Behnken points (𝑛𝑏𝑏=12), factorial points (𝑛𝑓 = 8), axial 

points (𝑛𝑎 = 6), center points (𝑛𝑐 = 3) and 𝛼 = 1.6021 is a 

minimax loss design robust to a pair of missing observations 

(minimax loss2).  

The minimax loss point is traced where the line plot of loss 

due to missing a pair of factorial points intercepted that of the 

line plot of loss due to missing a pair of an axial point. At that 

intercept, the axial distance value (𝛼) is 1.6021 and the loss 

value is 0.9664.  

In Figure 1 also, other loss line plots due to missing a pair of 

Box-Behnken points and a pair of center points were sighted. 

The line plot of center point is always lower than every other 

plots displayed and that was justified by its loss values as seen 

in Table 3. This is because of the closeness of the central 

points to the explanatory points. The shape of the line plot due 

to missing a pair of center point is bell shaped. 

 

 
Figure 1: Loss due to two Box-Behnken, two factorial, two axial and two center points missing for 𝑘 = 3 and 𝑛𝑐 = 3. 

 

CONCLUSION 

In response surface modeling, robustness to missing 

observations is a property that good response surface designs 

should hold, which is crucial to experimenters and therefore, 

designs that are minimally affected by the external sources of 

variability (such as missing observations) are desirous. 

Designs that are robust to missing observations are required 

so as to reduce the effects of the missing observations and also 

in such robust designs, the parameters of the assumed model 

can be estimated without much loss of efficiency. However, 

the augmented Box-Behnken design is one of the augmented 

third order response surface designs for response surface 

exploration. The unique structure of the augmented Box-

Behnken design with four components, the Box-Behnken, the 

factorial, the axial and the center design points, makes the 

design very flexible to use in industrial experiments. In this 

work, an augmented Box-Behnken design that is robust to two 

and three missing observations were constructed by using the 

minimax loss criteria. It was shown that for 𝑘 = 3,  𝑛𝑏 = 12, 

𝑛𝑓 = 8, 𝑛𝑎 = 6, and 𝑛𝑐 = 3, with 𝛼 = 1.6021 is minimax 

loss augmented Box-Behnken design robust to two missing 

observations (minimax loss2. That is, the axial point distance 

(𝛼)  at the point at which  𝑙𝑓𝑓 = 𝑙𝑎𝑎obtained from the plot of 

loss against the axial point distance 𝛼, where 𝑙𝑓𝑓 is the loss 

incurred from losing a pair of factorial design points, 𝑙𝑎𝑎 is 

the loss acquired from losing a pair of axial design points. 
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