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ABSTRACT 

Tuberculosis is a significant public health issue in high-burden countries like Nigeria, causing increased 

disability and claiming many lives. The Cox Proportional Hazards model is commonly used in survival studies, 

but it fails to define the distribution of survival time. This study uses data from the National Tuberculosis and 

Leprosy Center (NTLC), Zaria, Kaduna State, Nigeria, to determine Tuberculosis survival and compare 

alternative parametric survival models. The objectives include determining predictors of TB mortality, 

evaluating the effect of these predictors on survival probability, and comparing Exponential and Weibull AFT 

models on NTLC Zaria TB survival data. The results show that the Weibull AFT model is most effective in 

modelling TB survival rates, with the lowest AIC score of 485.1 and the highest log likelihood of -228.6. Major 

factors associated with mortality include age over 55 years, pulmonary tuberculosis, family history of 

tuberculosis, alcohol and smoking history, and BMI less than 18.5 kgs/m2. The study emphasizes the need for 

region-specific survival models to reveal major directions for successful interventions and TB policies. Future 

studies should consider translating the highly-parametric approach into next-generation non-parametric 

models/machine learning for more accurate prognoses for implementing state-of-the-art public health 

interventions.  

 

Keywords: Tuberculosis, Survival Models, AFT model, Weibull Distribution, Exponential Distribution,  
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INTRODUCTION 

Tuberculosis (TB), caused by Mycobacterium tuberculosis, 

remains a global health challenge despite advances in medical 

research. In 2021 alone, TB caused an estimated 1.6 million 

deaths globally, making it one of the leading causes of 

mortality from infectious diseases (WHO, 2022). TB 

disproportionately affects developing countries, including 

Nigeria, where social determinants such as poverty, 

malnutrition, and inadequate healthcare services contribute to 

the high burden of the disease (Rexy et al., 2024; WHO, 

2024). 

In Nigeria, TB incidence remains alarmingly high, with 

significant mortality rates among vulnerable populations such 

as the elderly, smokers, and malnourished individuals 

(Ogunniyiet al., 2024). The National Tuberculosis and 

Leprosy Control Program (NTLCP) has implemented several 

interventions, including free TB treatment and community-

based diagnostic strategies. Despite these efforts, gaps remain 

in understanding the survival patterns and risk factors 

associated with TB mortality. 

Survival analysis is a critical tool for exploring time-to-event 

data in public health research. The Cox proportional hazards 

(Cox PH) model has been widely used to identify risk factors 

associated with TB mortality. However, the Cox PH model 

assumes proportional hazards, which may not always hold in 

real-world datasets (Kleinbaum and Klein, 2012). Parametric 

survival models, such as the Weibull and log-logistic models, 

offer an alternative by allowing for the estimation of specific 

survival distributions, which can provide deeper insights into 

TB progression and mortality risk (Collett, 2023). The NOF-

G (Sadiq et al., 2022), NGOF-G (Sadiq et al., 2023a), NGOF-

Et-G (Sadiq et al., 2023b), NGOF-OE-G (Sadiq et al., 2023c), 

NETD using the generalized logarithmic function (Obafemi 

et al., 2024), and extension of the T-L distribution (Habu et 

al., 2024), the regression model for diabetes risk factors 

(Sadiq &Komali,2020), the general linear model for epilepsy 

(Sadiq et al., 2020), The Odd Rayleigh-G Family of 

Distribution: Properties, Applications, and Performance 

Comparisons (Sadiq et al., 2024); Exploring Accelerated 

Failure Time Models for Tuberculosis Survival: Loglogistic 

and Weibull Survival Regression Model (Usman et al., 2025); 

Modified Inverted Kumaraswamy Distribution Using Inverse 

Power Function: Properties And Applications (Yusuf et al., 

2025), Machine Learning Models in Predicting Failure Times 

Data Using a Novel Version of the Maxwell Model 

(Panitanarak et al., 2025) are among the other contributions 

to parametric survival distribution. 

While studies such as Bajehsonet al. (2019) have explored TB 

mortality in Nigeria using the Cox PH model, there is limited 

research employing parametric survival models to evaluate 

TB data comprehensively. Moreover, the dynamic nature of 

TB risk factors, influenced by recent health interventions and 

socio-economic changes, necessitates an updated analysis. 

Addressing this gap is critical for accurately assessing the 

effectiveness of interventions and tailoring public health 

strategies to current realities. 

Tuberculosis (TB) continues to be a global health challenge 

in 2024, with significant advancements in diagnostic 

techniques, treatment regimens, and public health 

interventions. Despite these strides, the burden of TB remains 

substantial, particularly in low- and middle-income countries, 

where social determinants of health exacerbate its impact 
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(WHO, 2024). Nigeria, with one of the highest TB burdens 

globally, faces unique challenges due to socioeconomic 

disparities, weak healthcare infrastructure, and limited access 

to diagnostic and treatment facilities (Ogunniyiet al., 2024). 

The advancements in TB research and survival analysis, 

recent studies emphasize the importance of survival analysis 

in understanding the progression and outcomes of TB. 

Traditional approaches, such as the Cox proportional hazards 

(Cox PH) model, have been instrumental in identifying risk 

factors associated with TB mortality. However, the 

assumption of proportional hazards often limits the Cox PH 

model's applicability to datasets where hazard ratios change 

over time (Collett, 2023). This limitation has led to increased 

interest in parametric survival models, which provide greater 

flexibility and precision in estimating survival probabilities 

and modelling time-to-event data. 

Parametric models, including the Weibull, log-logistic, and 

exponential models, have shown promise in TB research. For 

instance, Daniel et al.(2020) applied the Weibull survival 

model to a cohort of TB patients in Asia, identifying 

significant risk factors such as age, HIV co-infection, and 

malnutrition. Their findings highlight the ability of parametric 

models to capture time-dependent risk factors, offering deeper 

insights into TB progression. Similarly, Adewale et al. (2024) 

compared parametric models to the Cox PH model in a study 

on TB patients in sub-Saharan Africa, concluding that the log-

logistic model provided a better fit for data with heavy tails. 

Recent studies continue to explore the risk factors influencing 

TB mortality and patient outcomes. Age, gender, 

comorbidities (especially HIV/AIDS), malnutrition, and 

socioeconomic status consistently emerge as significant 

predictors of TB mortality (Bajehsonet al., 2019; WHO, 

2024). Additionally, lifestyle factors such as smoking, alcohol 

use, and previous TB history have been linked to poorer 

outcomes (Jinet al., 2024). However, recent interventions, 

including community-based TB treatment programs and 

nutritional support, have shown the potential to mitigate these 

risks (Ogunniyiet al., 2024) 

In Nigeria, studies have focused on understanding the unique 

socio-cultural and healthcare-related factors influencing TB 

outcomes. For example, Ogunniyiet al. (2024) investigated 

TB mortality in rural and urban populations, finding 

disparities driven by healthcare access and diagnostic delays. 

Moreover, Bajehsonet al. (2019) highlighted the high 

mortality rates among drug-resistant TB patients, 

emphasizing the need for robust treatment strategies. These 

findings underscore the importance of tailoring interventions 

to Nigeria’s diverse population and health system challenges. 

Despite the growing body of literature, gaps remain in 

understanding the dynamic risk factors influencing TB 

survival, particularly in regions like Nigeria. The reliance on 

traditional Cox PH models in many studies limits their ability 

to capture non-proportional hazards and varying survival 

patterns. As such, recent research calls for the application of 

parametric survival models to address these limitations and 

provide a more nuanced understanding of TB mortality 

(Collett, 2023; Ogunniyiet al., 2024). 

 

MATERIALS AND METHODS 

Method of Data Collection 

Survival analysis is a valuable tool for investigating survival 

time, which refers to the duration until a specific event occurs. 

This study adopts a retrospective cohort design because it 

examines the same subjects over four years. The study relies 

on secondary data obtained from the medical records of 

HIV/TB patients. The retrospective nature of the studies will 

disclose the effect of the risk factors identified, and also 

follow some clinical factors and the extent to which they 

influenced the death of the patients. An advantage of a 

retrospective study is that it reduces the extent to which data 

collectors influence some of the risk factors and it is based on 

evidence of what has happened and not what is yet to come. 

Throughout this study, secondary data from the patient’s 

records is used. 

This research adopts a retrospective cohort design, examining 

the medical records of patients over four years and some 

necessary information related to tuberculosis was retrieved 

from the National TB and Leprosy Center Hospital in Zaria, 

Kaduna State. The patients' folders from the years of interest 

(2020-2023) were thoroughly examined, and relevant 

variables such as the survival time were recorded the 

dependent variable is continuous; it is the waiting time until 

the occurrence of the event which is the death of a patient. 

(Dead: 1, alive or censored: 0). Survival time was months 

from the start of the study year to death while an individual is 

on TB treatment, in the case of individuals who did not die, 

Observations are censored, in the sense that, for some 

subjects, the event of interest has not occurred at the time the 

data are analyzed. Additionally, several independent variables 

that may influence patient survival were recorded, including 

gender, marital status, patients’ age, comorbidity, types of 

TB, smoking history, alcohol and history of patients were all 

obtained from each patient selected for the study.  

 

Data Analysis Framework 

The description of survival data utilizes non-parametric 

methods to compare the survival functions of two or more 

groups and kaplan-meier plot(s) would be employed for this 

purpose (Kaplan & Meier, 1958). A frequency distribution 

table was used to summarize the data obtained based on the 

study variables in the National TB and Leprosy Center 

Hospital in Zaria, Kaduna State. Additionally, various 

survival models including parametric proportional hazards 

(PH) models, accelerated failure time (AFT) models, and 

semi-parametric models were employed to identify risk 

factors associated with tuberculosis patient survival times. 

The optimal model was selected based on the lowest 

information criterion. 

 

Kaplan-Meier (K-M) Estimator (1958) of the Survival 

Function 

The Kaplan-Meier (KM) estimator is a non-parametric 

method used in survival analysis to estimate the survival 

function from time-to-event data. It is particularly valuable 

when dealing with censored data, where the event of interest 

has not occurred for all subjects within the study period. The 

Kaplan-Meier estimator also known as the product-limit 

estimator is the most widely used non-parametric method for 

estimating the survival function. The Kaplan-Meier estimator 

provides an estimate of the survival function𝑆(𝑡), which 

represents the probability that an individual survives beyond 

time 𝑡: 

𝑆(𝑡)  =  𝑃(𝑇 >  𝑡)    (1) 

where 𝑇 is the random variable representing the time-to-

event. 

Then the K-M estimator of S(t) is defined: 

The KM estimator is defined as: 

�̂�(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑡𝑖≤𝑡    (2) 

where: 𝑡𝑖: Time of the 𝑖𝑡ℎevent, 𝑑𝑖: Number of events (e.g., 

deaths, treatment completion) at 𝑡𝑖, 𝑛𝑖: Number of individuals 

at risk just before 𝑡𝑖, and ∏: Product overall event times up to 

𝑡. 
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The estimator adjusts for censored data by ensuring that only 

those individuals still at risk at time t are included in the 

calculation of the survival probability. It produces a step-

function survival curve, which is widely used in practice. 

 

Accelerated Failure Time Model (AFT) 

The Accelerated Failure Time (AFT) model is a parametric 

survival analysis approach that directly models the time-to-

event (e.g., failure or death). Unlike the proportional hazards 

model, which focuses on the hazard function, the AFT model 

describes how covariates accelerate or decelerate the time to 

an event. 

The AFT model assumes that the survival time 𝑇 is multiplied 

by a scaling factor due to the effect of covariates. This scaling 

factor accelerates or decelerates the event's occurrence, 

depending on the covariate values. 

 

Model Formulation Accelerated Failure Time Model (AFT) 

𝑙𝑛( 𝑇𝑖) = 𝜷𝑇𝒙𝑖 + 𝜎𝜖𝑖   (3) 

where: 𝑇𝑖: Survival time for individual 𝑖, 𝒙𝑖: Vector of 

covariates for individual 𝑖, 𝜷: Coefficient vector quantifying 

the effect of covariates, 𝜎: Scale parameter, 𝜖𝑖: Random error 

term with a specified distribution (e.g., exponential, Weibull, 

Log-logistic etc.). 

Alternatively, the model in equation (3) can be written as: 

𝑇𝑖 = 𝑇0 𝑒𝑥𝑝{𝜷𝑇𝒙𝑖}    (4) 

where 𝑇0 = 𝑒𝑥𝑝{𝜎𝜖𝑖} represents the baseline survival time. 

Therefore, The survival functional form of the AFT model is: 

𝑆(𝑡|𝒙𝑖) = 𝑆0(𝑡 𝑒𝑥𝑝{−𝜷𝑇𝒙𝑖})   (5) 

 

Exponential Accelerated Failure Time Model (AFT) 

The Accelerated Failure Time (AFT) model with an 

exponential distribution assumes that survival times follow an 

exponential distribution, and covariates act to accelerate or 

decelerate the time to the event. Suppose the baseline survival 

time 𝑆0 in equation (5) follows an exponential distribution. 

Therefore the PDF and the baseline survival function for the 

exponential distribution are given as: 

𝑓(𝑡) = 𝜆 𝑒𝑥𝑝{−𝜆𝑡} ,  𝑡 ≥ 0   (6) 

where 𝜆 > 0 is the rate parameter (hazard rate). 

𝑆0(𝑡) = 𝑒𝑥𝑝{−𝜆𝑡}    (7) 

However, by substituting equation (5) into equation (7), the 

exponential AFT model is as: 

𝑆(𝑡|𝒙𝑖) = 𝑒𝑥𝑝{−𝜆𝑡 𝑒𝑥𝑝{−𝜷𝑇𝒙𝑖}}  (8) 

Likelihood Function of the Exponential AFT model 

The likelihood function for the exponential AFT model is 

based on the parametric form of the exponential distribution. 

For 𝑛 observations, the likelihood is: 

𝐿(𝜆, 𝜷) = ∏ 𝜆𝑛
𝑖=1 𝑒𝑥𝑝{−𝜆𝑡𝑖 𝑒𝑥𝑝{−𝜷𝑇𝒙𝑖}} (9) 

Taking the log-likelihood: 

𝑙𝑛 𝐿 (𝜆, 𝜷) = ∑ [𝑙𝑛 𝜆 − 𝜆𝑡𝑖 𝑒𝑥𝑝{−𝜷𝑇𝒙𝑖}]𝑛
𝑖=1  (10) 

This function presented in equation (10) can be maximized 

using MLE to estimate 𝜆 and 𝜷. 

 

Weibull Accelerated Failure Time Model (AFT) 

The Weibull Accelerated Failure Time (AFT) model is an 

extension of the exponential AFT model, where survival 

times follow a Weibull distribution. Unlike the exponential 

distribution, the Weibull distribution allows for non-constant 

hazard rates, making it more flexible for modelling survival 

data. The Weibull AFT model assumes that the survival time 

𝑇0 in equation (4) follows a Weibull distribution with two 

parameters: 

𝑓(𝑡) = 𝛼𝜆𝑡𝛼−1 𝑒𝑥𝑝{−(𝜆𝑡)𝛼} ,  𝑡 > 0  (11) 

where: 

𝛼 > 0: Shape parameter, controlling the hazard rate. 

𝜆 > 0: Scale parameter (related to the hazard rate). 

Therefore, the baseline survival function for the Weibull 

distribution is given as: 

𝑆0(𝑡) = 𝑒𝑥𝑝{−(𝜆𝑡)𝛼}   (12) 

With covariates, however, by substituting equation (5) into 

equation (12), the Weibull AFT model is as: 

𝑆(𝑡|𝒙𝑖) = 𝑆0(𝑡 𝑒𝑥𝑝{−𝜷𝑇𝒙𝑖}) = 𝑒𝑥𝑝{−(𝜆𝑡 𝑒𝑥𝑝{−𝜷𝑇𝒙𝑖})𝛼} 

     (13) 

Likelihood Function of the Weibull AFT Model 

The likelihood function for the Weibull AFT model is derived 

from the Weibull distribution for 𝑛 observations: 

𝐿(𝛼, 𝜆, 𝜷) = ∏ 𝛼𝑛
𝑖=1 𝜆𝛼𝑡𝑖

𝛼−1 𝑒𝑥𝑝{−(𝜆𝑡𝑖 𝑒𝑥𝑝{−𝜷𝑇𝒙𝑖})𝛼} 

     (14) 

The log-likelihood function is: 

𝑙𝑛 𝐿 (𝛼, 𝜆, 𝜷) = ∑ [𝑙𝑛 𝛼 + 𝛼 𝑙𝑛 𝜆 + (𝛼 − 1) 𝑙𝑛 𝑡𝑖 −𝑛
𝑖=1

(𝜆𝑡𝑖 𝑒𝑥𝑝{−𝜷𝑇𝒙𝑖})𝛼]   (15). 

Parameters 𝛼, 𝜆, and 𝜷 in equation (15) can be estimated 

using maximum likelihood estimation (MLE). 

 

RESULTS AND DISCUSSION 

Table 1: Description and Categorization of the covariates 

Variable Description Categories 

Age 

 

The age group of patients 0 = <35 years 

1 = 35-55 years 

2 = > 55 years 

BMI (Kg/m2) Body Mass Index of Patients 0 = Normal Weight 

1= Under Weight 

2=Overweight and Obesity 

Gender Sex of patients 0 = Female 

1=Male 

Marital Status Patient's marital status 0 = Single 

1=Married 

Site of Tuberculosis Type of TB associated with patients 1=Yes 

0=No 

Family history History of TB cases in the family of patients 1=Yes 

0=No 

Alcohol History Alcohol History 1=Yes 

0= No 

Smoking History Smoking History 1=Yes 

0=No 
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Comorbidity Types of Comorbidities 0 = No Comorbidity 

1 =   HIV-AIDS 

2=    Hepatitis 

Initial TB Treatment History If patients had received initial treatment 0 = No 

1 =Yes 

Life Status Status of TB 0 = Alive (Censored) 

1 = Dead 

 

Table 1 presents a description and categorization of the 

covariates for better comprehension. The study's response 

variable was the survival time of tuberculosis in months. The 

independent variables considered in the study included patient 

age, gender, marital status, site of tuberculosis, family history, 

alcohol history, smoking history, comorbidities, BMI, and 

initial TB treatment history. These variables were categorized 

accordingly to facilitate analysis. 

 

Table 2: Distribution of Covariates in the Dataset 

 Frequency Percentage 

Gender Female 115 36% 

Male 208 64% 
    

Age <35 years 89 28% 

35-55 years 191 59% 

> 55 years 43 13% 
    

Site tuberculosis Pulmonary 271 84% 

Extra Pulmonary 52 16% 
    

 Family history of TB No 238 74% 

Yes 85 26% 
    

Alcohol history No 78 24% 

Yes 245 76% 
    

Smoking history No 170 53% 

Yes 153 47% 
    

Comorbidity No comorbidity 93 28% 

Hepatitis 115 36% 

HIV-AIDS 115 36% 
    

Initial tb treatment No 120 37% 

Yes 203 63% 
    

BMI Normal Weight 112 35% 

Under Weight 134 41% 

Overweight and Obesity 77 24% 
    

Status Censored 259 80% 

Dead 64 20% 

 

Table 2 above provides an overview of the demographic, 

clinical, and behavioural characteristics of tuberculosis (TB) 

patients, along with their treatment history and outcomes. The 

demographic data indicate a male-dominated population, with 

64% being male and 36% female. Most patients (59%) fall 

within the 35-55 age group, while 28% are younger than 35 

years, and only 13% are older than 55 years. This distribution 

suggests that TB predominantly affects individuals in their 

prime working years, emphasizing the disease's socio-

economic impact. 

Clinically, the majority of TB cases are pulmonary (84%), 

with only 16% categorized as extra-pulmonary. Notably, 26% 

of patients reported a family history of TB and 74% did not, 

highlighting a significant hereditary or environmental 

exposure factor. Alcohol consumption is prevalent among 

these patients, with 76% admitting to a history of alcohol use 

and 24% not, smoking history is also significant, with 47% 

having a history of smoking and 53% not. These behavioural 

factors are likely contributing to disease susceptibility and 

progression. 

Regarding comorbidities, the population is equally affected 

by hepatitis (36%) and HIV/AIDS (36%), while 28% reported 

no additional health conditions. This high prevalence of 

comorbidities emphasizes the vulnerability of TB patients to 

other infectious and chronic diseases, which can complicate 

treatment and outcomes. Moreover, a significant proportion 

of the patients were underweight (41%), with 24% overweight 

or obese, and 35% having a normal BMI. Malnutrition, as 

indicated by the underweight category, could be a 

contributing factor to weakened immunity and poorer 

prognosis. 

In terms of treatment history and outcomes, 63% of the 

patients had received prior TB treatment, while 37% were 

new to treatment. The response variable represents the 

survival time to death (in months) with the censoring indicator 

showing that 80% of them were censored (either successfully 

treated or still undergoing treatment), whereas 20% resulted 

in death. This mortality rate emphasizes the seriousness of 

TB, particularly in the context of associated risk factors such 

as comorbidities, behavioural influences, and undernutrition. 

These findings highlight the need for integrated care 
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approaches addressing both TB and its coexisting conditions 

to improve patient outcomes. 

Kaplan-Meier Survival Analysis for the Tuberculosis Patients 

For a more elaborate descriptive analysis, the study uses a 

non-parametric Kaplan-Meier approach to provide a summary 

of the distribution of the variables. The mean overall survival 

time of tuberculosis patients is 18.21 months. The maximum 

and minimum survival times for tuberculosis patients were 0 

to 20 months. Patients who survive beyond 18 months after 

diagnosis are considered long-term survivors in this study. 

 

 
Figure 1: Kaplan-Meier probability of the survival time of Patients with Tuberculosis 

 

Figure 1 depicts the Kaplan-Meier probability of the survival time of tuberculosis patients sampled with a 95 per cent 

confidence bound. The Kaplan-Meier method estimates survival probabilities over time based on observed survival durations. 

 

Table 3: Kaplan-Meier Survival Probability of the TB Patients 

Time 𝒏𝒊 𝒅𝒊 Survival Probability Standard Error 95% Lower CI 95% Upper CI 

1.840 302 2 0.993 0.005 0.984 1.000 

2.100 296 1 0.990 0.006 0.979 1.000 

2.140 293 1 0.987 0.007 0.974 1.000 

2.530 286 1 0.983 0.007 0.969 0.998 

2.600 284 1 0.980 0.008 0.964 0.996 

3.060 276 1 0.976 0.009 0.959 0.994 

3.220 274 1 0.973 0.010 0.954 0.992 

3.680 267 1 0.969 0.010 0.949 0.989 

3.980 266 1 0.965 0.011 0.944 0.987 

4.040 262 8 0.936 0.015 0.908 0.965 

4.110 238 1 0.932 0.015 0.903 0.962 

4.340 235 3 0.920 0.016 0.888 0.953 

5.030 214 1 0.916 0.017 0.883 0.949 

5.060 212 1 0.911 0.017 0.878 0.946 

5.130 209 1 0.907 0.018 0.873 0.943 

5.360 207 1 0.903 0.018 0.868 0.939 

5.390 206 1 0.898 0.019 0.862 0.936 

5.420 203 1 0.894 0.019 0.857 0.932 

6.940 185 1 0.889 0.020 0.851 0.928 

7.000 182 1 0.884 0.020 0.846 0.924 

7.270 178 1 0.879 0.021 0.840 0.920 

7.590 174 2 0.869 0.022 0.828 0.912 

7.690 167 5 0.843 0.024 0.798 0.891 

7.760 149 1 0.837 0.024 0.791 0.886 

7.960 145 1 0.832 0.025 0.784 0.882 

7.990 144 1 0.826 0.025 0.778 0.877 

9.070 131 1 0.820 0.026 0.770 0.872 

10.260 117 1 0.813 0.027 0.762 0.866 

10.550 115 1 0.805 0.027 0.754 0.861 

11.240 91 2 0.788 0.029 0.732 0.848 
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11.640 72 1 0.777 0.031 0.718 0.840 

12.920 64 3 0.740 0.036 0.673 0.814 

14.200 53 4 0.685 0.043 0.606 0.774 

14.890 32 2 0.642 0.050 0.552 0.747 

14.990 28 1 0.619 0.053 0.523 0.732 

15.620 22 1 0.591 0.057 0.488 0.715 

17.560 17 1 0.556 0.064 0.444 0.696 

17.850 16 1 0.521 0.069 0.403 0.675 

18.210 10 1 0.469 0.079 0.337 0.653 

18.540 8 1 0.410 0.088 0.269 0.626 

18.610 6 1 0.342 0.097 0.197 0.595 

18.670 2 1 0.171 0.130 0.039 0.760 

 

Table 3 provides insights into the survival probabilities of 

tuberculosis (TB) patients over time using Kaplan-Meier 

estimates. At the earliest recorded time (1.840 months), the 

survival probability is high at 0.993 (99.3%), indicating that 

most patients are still alive or event-free at this point. Over 

time, the survival probability decreases steadily, reflecting the 

occurrence of deaths or events among the patients. 

At 4.04 months, there is a noticeable decline in survival 

probability from 0.965 to 0.936, likely due to the occurrence 

of 8 events. This sharp drop indicates a critical point where 

many patients experienced the event of interest. Significant 

decreases in survival probabilities are also observed at 7.69 

months (5 events) and 14.2 months (4 events), suggesting 

clusters of adverse outcomes. 

At 18.67 months the survival probability drops to 0.17 

(17.1%), indicating that only a small fraction of patients 

remain event-free by this time. The wide confidence intervals 

(95% CI of 0.039 to 0.760) at later times suggest uncertainty 

due to a smaller number of patients remaining under 

observation. 

At the beginning of the study, the 95% confidence intervals 

(e.g., 0.984 to 1.000 at 1.840 months) are narrow, reflecting 

high precision due to a larger sample size. As time progresses 

and fewer patients remain at risk, the confidence intervals 

widen (e.g., 0.039 to 0.760 at 18.670 months), indicating 

reduced precision in survival probability estimates. 

The Kaplan-Meier survival curve shows a gradual decline in 

survival probability, highlighting the progressive nature of 

TB's impact on patient survival. Critical points in time (e.g., 

4.04, 7.69, and 14.2 months) suggest periods where 

interventions or enhanced monitoring might be necessary to 

improve patient outcomes. The early and steep declines 

suggest the importance of timely diagnosis and treatment to 

improve survival outcomes. This analysis emphasizes the 

practical use of Kaplan-Meier estimates in understanding 

survival trends and identifying critical periods for 

intervention in TB management. 

Kaplan Meier curves are plotted for 9 of the categorical 

variables with time recorded in months. The categorical 

variables considered for the study are gender, age group, site 

of tuberculosis, family history, alcohol history, smoking 

history, comorbidity, initial tuberculosis treatment and BMI. 

A formal test was carried out using the Log-rank test to 

compare the difference between each categorical variable. 

The general hypothesis states that there is no difference 

between the groups regarding their survival time of 

tuberculosis. Thus we wish to test that: 

Hypothesis 

H0 : The survival  times of tuberculosis patients between the 

groups are not different 

H1 : The survival  times of tuberculosis patients between the 

groups are different 

 
Figure 2: The Kaplan-Meier Plot for Gender 
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Figure 2 shows the Kaplan-Meier plot for the gender of the 

TB patients. The yellow curve (females) shows a higher 

survival probability compared to the blue curve (males) over 

20 months. The survival probability for females remains 

relatively high and stable throughout the period. The survival 

probability for males decreases more sharply over time, 

indicating a higher risk of events (e.g., death) compared to 

females. The p-value of 0.00013 suggests that the difference 

in survival probabilities between males and females is 

statistically significant, meaning that gender has a significant 

impact on survival outcomes. The Kaplan-Meier survival 

curve indicates that females have a better survival outcome 

compared to males over the 20 months, with a statistically 

significant difference in survival probabilities between the 

two genders. This suggests that gender plays a crucial role in 

influencing survival rates. 

 

 
Figure 3: The Kaplan-Meier Plot for Age Group 

 

Figure 3 depicts the Kaplan-Meier plot for the age group of 

TB patients. The yellow curve (Age < 35 years) shows the 

highest survival probability, followed by the blue curve (Age 

35-55 years), and the red curve (Age > 55 years) shows the 

lowest survival probability. The survival probability 

decreases more rapidly for older age groups, indicating a 

higher risk of events (e.g., death) compared to younger age 

groups. The p-value of less than 0.0001 suggests that the 

differences in survival probabilities among the age groups are 

statistically significant, meaning that age has a significant 

impact on survival outcomes. The Kaplan-Meier survival 

curve indicates that younger individuals have better survival 

outcomes compared to older individuals over the 20 months, 

with a statistically significant difference in survival 

probabilities among the age groups. This suggests that age 

plays a crucial role in influencing survival rates. 

 

 
Figure 4: The Kaplan-Meier Plot for the Site of the TB 
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Figure 4 depicts the Kaplan-Meier plot for the site of TB 

patients. The yellow curve (Pulmonary TB) shows a higher 

survival probability compared to the blue curve (Extra-

Pulmonary TB) over the 20 months. The survival probability 

for Pulmonary TB remains relatively high and stable 

throughout the period. The survival probability for Extra-

Pulmonary TB decreases more sharply over time, indicating a 

higher risk of events (e.g., death) compared to Pulmonary TB. 

The p-value of less than 0.0001 suggests that the difference in 

survival probabilities between Pulmonary TB and Extra-

Pulmonary TB is statistically significant, meaning that the site 

of TB has a significant impact on survival outcomes. The 

Kaplan-Meier survival curve indicates that patients with 

Pulmonary TB have better survival outcomes compared to 

those with Extra-Pulmonary TB over the 20 months, with a 

statistically significant difference in survival probabilities 

between the two groups. This suggests that the site of TB 

plays a crucial role in influencing survival rates. 

 

 
Figure 5: The Kaplan-Meier Plot for the Family History of the TB 

 

Figure 5 depicts the Kaplan-Meier plot for the family history 

of TB patients. The yellow curve (No Family History of TB) 

shows a higher survival probability compared to the blue 

curve (Family History of TB) over 20 months. The survival 

probability for individuals with a family history of TB 

decreases more sharply over time, indicating a higher risk of 

events (e.g., death) compared to those with no family history 

of TB. The p-value of less than 0.0001 suggests that the 

difference in survival probabilities between the two groups is 

statistically significant, meaning that a family history of TB 

has a significant impact on survival outcomes. The Kaplan-

Meier survival curve indicates that individuals with no family 

history of TB have better survival outcomes compared to 

those with a family history of TB over 20 months, with a 

statistically significant difference in survival probabilities 

between the two groups. This suggests that a family history of 

TB plays a crucial role in influencing survival rates. 

 

 
Figure 6: The Kaplan-Meier Plot for the Alcohol History of the TB 
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Figure 6 depicts the Kaplan-Meier plot for the alcohol history 

of TB patients. The red curve (No Alcohol History) shows a 

higher survival probability compared to the yellow curve 

(Alcohol History) over 20 months. The survival probability 

for patients with a history of alcohol use decreases more 

sharply over time, indicating a higher risk of events (e.g., 

death) compared to those without a history of alcohol use. The 

p-value of 0.031 suggests that the difference in survival 

probabilities between the two groups is statistically 

significant, meaning that alcohol history has a significant 

impact on survival outcomes. The Kaplan-Meier survival 

curve indicates that TB patients without a history of alcohol 

use have better survival outcomes compared to those with a 

history of alcohol use over the 20 months, with a statistically 

significant difference in survival probabilities between the 

two groups. This suggests that alcohol history plays a crucial 

role in influencing survival rates. 

 

 
Figure 7: The Kaplan-Meier Plot for the Smoking History of the TB 

 

Figure 7 depicts the Kaplan-Meier plot for the smoking 

history of TB patients. The yellow curve (No Smoking 

History) shows a higher survival probability compared to the 

red curve (Smoking History) over the 20 months. The survival 

probability for patients with a history of smoking decreases 

more sharply over time, indicating a higher risk of events 

(e.g., death) compared to those without a history of smoking. 

The p-value of less than 0.0001 suggests that the difference in 

survival probabilities between the two groups is statistically 

significant, meaning that smoking history has a significant 

impact on survival outcomes. The Kaplan-Meier survival 

curve indicates that TB patients without a history of smoking 

have better survival outcomes compared to those with a 

history of smoking over the 20 months, with a statistically 

significant difference in survival probabilities between the 

two groups. This suggests that smoking history plays a crucial 

role in influencing survival rates. 

 

 
Figure 8: The Kaplan-Meier Plot for the Comorbidity of the TB 
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Figure 8 depicts the Kaplan-Meier plot for the comorbidity of 

TB patients. The yellow curve (No Comorbidity) shows the 

highest survival probability compared to the other groups over 

the 20 months. The blue curve (Hepatitis) shows a lower 

survival probability than the no comorbidity group but higher 

than the HIV/AIDS group. The green curve (HIV/AIDS) 

shows the lowest survival probability, indicating a higher risk 

of events (e.g., death) compared to the other groups. The p-

value of 0.0016 suggests that the differences in survival 

probabilities among the three groups are statistically 

significant, meaning that comorbidity status has a significant 

impact on survival outcomes. The Kaplan-Meier survival 

curve indicates that TB patients with no comorbidities have 

the best survival outcomes, followed by those with Hepatitis, 

and those with HIV/AIDS have the worst survival outcomes 

over the 20 months. The statistically significant difference in 

survival probabilities among the groups suggests that 

comorbidity status plays a crucial role in influencing survival 

rates. 

 

 
Figure 9: The Kaplan-Meier Plot for the Initial Treatment of the TB 

 

Figure 9 depicts the Kaplan-Meier plot for the initial 

treatment of TB patients. The green curve (Initial TB 

Treatment) shows a higher survival probability compared to 

the blue curve (No Initial TB Treatment) over the 20 months. 

The survival probability for patients who received initial TB 

treatment remains relatively high and stable throughout the 

period. The survival probability for patients who did not 

receive initial TB treatment decreases more sharply over time, 

indicating a higher risk of events (e.g., death) compared to 

those who received initial TB treatment. The p-value of 

0.00024 suggests that the difference in survival probabilities 

between the two groups is statistically significant, meaning 

that initial TB treatment has a significant impact on survival 

outcomes. The Kaplan-Meier survival curve indicates that TB 

patients who received initial TB treatment have better survival 

outcomes compared to those who did not receive initial TB 

treatment over the 20 months, with a statistically significant 

difference in survival probabilities between the two groups. 

This suggests that initial TB treatment plays a crucial role in 

influencing survival rates. 

 

 
Figure 10: The Kaplan-Meier Plot for the BMI of the TB Patients 
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Figure 10 depicts the Kaplan-Meier plot for the initial 

treatment of TB patients. The blue solid line (Normal Weight) 

shows the highest survival probability compared to the other 

BMI categories over the 20 months. The yellow dotted line 

(Overweight & Obesity) shows a lower survival probability 

than the normal weight group but higher than the underweight 

group. The red dashed line (Underweight) shows the lowest 

survival probability, indicating a higher risk of events (e.g., 

death) compared to the other BMI categories. The p-value of 

0.037 suggests that the differences in survival probabilities 

among the BMI categories are statistically significant, 

meaning that BMI has a significant impact on survival 

outcomes. The Kaplan-Meier survival curve indicates that TB 

patients with a normal BMI have the best survival outcomes, 

followed by those who are overweight or obese, and those 

who are underweight have the worst survival outcomes over 

the 20 months. The statistically significant difference in 

survival probabilities among the BMI categories suggests that 

BMI plays a crucial role in influencing survival rates. 

 

Table 4: Exponential AFT Model fitted to the Tuberculosis (TB) Dataset 

Covariates Coefficients Standard Error z P 

(Intercept) 3.7183 0.7758 4.79 1.60e-06 

(Age) > 55 years -1.5950 0.4721 -3.38 0.00073 

(Age) 35-55 years -0.9790 0.4322 -2.27 0.0235 

(Gender) Male -0.7839 0.3939 -1.99 0.04657 

(SiteTB) Pulmonary 1.25080 0.2678 4.67 3.00e-06 

(FamilyHist) Yes -0.7268 0.2823 -2.57 0.01004 

(AlcoholHist) Yes 0.6676 0.3371 1.98 0.04762 

(SmokingHist) Yes -0.7052 0.2864 -2.46 0.0138 

(Comorbidity) HIV-AIDS 0.1738 0.3010 0.58 0.56362 

(Comorbidity) No comorbidity 0.7310 0.4567 1.6 0.10944 

(TB treatment) Yes 0.7057 0.2811 2.51 0.01206 

(BMI) Overweight and Obesity 0.0522 0.3883 0.13 0.89299 

(BMI) Under Weight 0.4719 0.3146 1.5 0.13356 
     

 𝜒2 p-value Loglik AIC 

Exponential AFT 99.45 7.1e-16 -252.6 531.2722 

 

Table 4 presents the results of an exponential AFT model 

fitted to the tuberculosis (TB) dataset. The model log-

likelihood is -252.6, while the intercept-only model is -302.4. 

This indicates an improvement in fit when covariates are 

included. Then (𝜒2 = 99.45, 𝑑𝑓 = 12, 𝑝 = 7.1 × 10−16), 

indicating that the covariates significantly improve the model 

fit. The Akaike Information Criterion (AIC) is 531.27, useful 

for comparing model fits. 

Each covariate represents a coefficient from the exponential 

AFT model. Positive coefficients indicate an increase in 

survival time (hazard decreases), while negative coefficients 

indicate a decrease in survival time (hazard increases). 

Patients aged >55 years (𝑧 = −3.38, 𝑝 = 0.00073) and 35-

55 years (𝑧 = −2.27, 𝑝 = 0.02350) have significantly 

shorter survival times compared to those aged <35 years. 

Male patients (𝑧 = −1.99, 𝑝 = 0.04657) have significantly 

shorter survival times compared to females. 

Pulmonary TB (𝑧 = 4.67, 𝑝 = 3.0 × 10−6) is associated with 

longer survival compared to extrapulmonary TB. Having a 

family history of TB (𝑧 = −2.57, 𝑝 = 0.01004) is associated 

with shorter survival. A history of alcohol consumption 
(𝑧 = 1.98, 𝑝 = 0.04762) is associated with longer survival. 

A history of smoking (𝑧 = −2.46, 𝑝 = 0.01380) is 

associated with shorter survival. Neither HIV/AIDS (𝑝 =
0.56362) nor "No comorbidity" (𝑝 = 0.10944) show 

significant effects on survival. Patients who received TB 

treatment (𝑧 = 2.51, 𝑝 = 0.01206) have significantly longer 

survival. Neither underweight (𝑝 = 0.13356) nor 

overweight/obesity (𝑝 = 0.89299) show significant effects 

on survival. 

The model identifies significant predictors of survival for TB 

patients, including age, gender, TB site, family history, 

alcohol history, smoking history, and treatment status. Non-

significant covariates, such as comorbidity and BMI, may not 

substantially affect survival time in this context. The 

exponential distribution assumes a constant hazard rate over 

time, which may need to be assessed for appropriateness with 

diagnostic tools. 

 

Table 5: Weibull AFT Model fitted to the Tuberculosis (TB) Dataset 

Covariates Coefficients Standard Error z p 

(Intercept) 2.8114 0.3739 7.5200 5.50e-14 

(Age) > 55 years -0.7649 0.2294 -3.3300 0.00086 

(Age) 35-55 years -0.5082 0.2029 -2.500 0.01228 

(Gender) Male -0.2853 0.1843 -1.5500 0.12166 

(SiteTB) Pulmonary 0.5852 0.1315 4.4500 8.60e-06 

(FamilyHist) Yes -0.4787 0.1324 -3.6100 0.00030 

(AlcoholHist) Yes 0.4207 0.1667 2.5200 0.01161 

(SmokingHist) Yes -0.4981 0.1402 -3.5500 0.00038 

(Comorbidity) HIV-AIDS 0.0857 0.1475 0.5800 0.56131 

(Comorbidity) No comorbidity 0.2547 0.2129 1.2000 0.23141 

(TB treatment) Yes 0.3544 0.1314 2.7000 0.00700 
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(BMI) Overweight and Obesity 0.2272 0.1832 1.2400 0.21483 

(BMI) Under Weight 0.5061 0.1446 3.5000 0.00046 

Log(scale) -0.8047 0.0981 -8.2100 2.30e-16 
     

 𝜒2 p-value Loglik AIC 

Weibull AFT 117.46 2.0e-19 -228.6 485.1086 

 

Table 5 presents the results of the Weibull AFT model fitted 

to the tuberculosis (TB) dataset. The model's log-likelihood is 

-228.6, significantly improved from the intercept-only 

model's -287.3, indicating that the inclusion of covariates 

improves the model's fit. Then (𝜒2 = 117.46, 𝑑𝑓 = 12, 𝑝 =
2 × 10−19), demonstrates that the covariates collectively 

contribute significantly to the model. The Akaike Information 

Criterion (AIC) is 485.11, useful for model comparison. A 

Weibull scale parameter less than 1 suggests decreasing 

hazard rates over time. 

Patients aged >55 years (𝑧 = −3.33, 𝑝 = 0.00086) and 35-

55 years (𝑧 = −2.50, 𝑝 = 0.01228) have significantly 

shorter survival times compared to those aged <35 years. 

Male patients (𝑝 = 0.12166) show no significant difference 

in survival compared to females. Pulmonary TB (𝑧 =
4.45, 𝑝 = 8.6 × 10−6) is associated with longer survival 

compared to extrapulmonary TB. Having a family history of 

TB (𝑧 = −3.61, 𝑝 = 0.00030) is associated with shorter 

survival. Patients with a history of alcohol consumption 

(𝑧 = 2.52, 𝑝 = 0.01161) have significantly longer survival. 

A history of smoking (𝑧 = −3.55, 𝑝 = 0.00038)is 

associated with shorter survival. Neither HIV/AIDS (𝑝 =
0.56131)nor "No comorbidity" (𝑝 = 0.23141) are 

significantly associated with survival. Patients receiving TB 

treatment (𝑧 = 2.70, 𝑝 = 0.00700)have significantly longer 

survival. Being underweight (𝑧 = 3.50, 𝑝 = 0.00046)is 

associated with longer survival, but being overweight or 

obese (𝑝 = 0.21483) shows no significant effect. 

Age, TB site, family history, alcohol history, smoking history, 

TB treatment, and being underweight are significant 

predictors of survival time. Gender, comorbidities, and being 

overweight/obese do not significantly affect survival time. 

The decreasing hazard rate of the Weibull AFT model 

suggests that the risk of death declines as survival time 

increases, which aligns with the disease progression in treated 

TB patients. These findings emphasize the importance of 

targeted interventions for older patients, smokers, and those 

with a family history of TB to improve survival outcomes. 

 

Table 6: AFT Models Performance Comparison fitted to the Tuberculosis (TB) Dataset 

Models 𝝌𝟐 p-value Loglikelihood AIC 

Exponential AFT 99.45 7.1e-16 -252.6 531.2722 

Weibull AFT 117.46 2.0e-19 -228.6 485.1086 

 

Table 6 presents the comparative performance of three 

parametric Accelerated Failure Time (AFT) models, 

Exponential, and Weibull fitted to the tuberculosis (TB) 

dataset. The performance metrics include the chi-square 

statistic, p-value, log-likelihood, and Akaike Information 

Criterion (AIC). All models have statistically significant chi-

square values (𝑝 < 0.05), indicating that the covariates 

contribute meaningfully to explaining the survival times. 

Among the models, the Weibull AFT model has the highest 

chi-square statistic (117.46), suggesting the strongest 

explanatory power for survival time variability. The Weibull 

AFT model has the highest log-likelihood (-228.6), indicating 

the best fit to the data among the three models. The AIC 

measures model quality, balancing fit and complexity. Lower 

AIC values indicate better models. The Weibull AFT model 

has the lowest AIC (485.1086), demonstrating the best trade-

off between model fit and parsimony. 

The exponential AFT model is simplistic with constant hazard 

assumption and has the lowest chi-square value (99.45) and 

highest AIC (531.2722), indicating it performs poorly 

compared to the Weibull model. The Weibull AFT model is 

flexible with varying hazard rates. Best overall performance, 

as it has the highest chi-square value, highest log-likelihood, 

and lowest AIC. This model is most suitable for the TB 

dataset. The Weibull AFT model is the best-fitting model for 

the tuberculosis dataset, as it provides the best balance of 

explanatory power and model parsimony. It is recommended 

for use in further analysis and interpretation of TB survival 

data. 

 

CONCLUSION 

A convenience sample of data covering a total of 324 patients 

was considered in this study, consisting of tuberculosis 

patients at the respiratory ward and TB treatment units of the 

National TB and Leprosy Center (NTLC) in Zaria, Kaduna 

State. The study focused on patients who have ever suffered 

from tuberculosis and are on referral to the respiratory unit 

and general ward of the hospital.  Since the hospital serves as 

the major referral centre for most Kaduna TB patients and 

even other Neighboring states in Nigeria, limits the coverage 

area and general conclusion. This study highlights the 

importance of parametric survival models in understanding 

the survival patterns and risk factors influencing tuberculosis 

(TB) outcomes. The Weibull AFT model emerged as the most 

suitable for analyzing TB survival data from the National 

Tuberculosis and Leprosy Center (NTLC) in Zaria, Nigeria, 

outperforming other models in capturing the time-to-event 

dynamics. Key risk factors, including age, TB site, smoking 

history, and body mass index, were identified as significant 

determinants of mortality. The findings underscore the need 

for tailored interventions targeting these risk factors to 

improve patient survival. Additionally, the study emphasizes 

the value of applying diverse survival models to ensure robust 

and accurate analyses, contributing to evidence-based 

strategies for TB management in Nigeria. Future studies 

should consider translating the highly-parametric approach 

into next-generation non-parametric models/machine 

learning for more accurate prognoses for implementing state-

of-the-art public health interventions. Based on the findings, 

the following recommendations are made: for the policy and 

intervention strategies, targeted interventions should focus on 

addressing significant risk factors such as smoking, 

underweight status, and advanced age to improve TB survival 

outcomes; for patient-centred care, efforts should be made to 

enhance nutritional support for TB patients, especially those 

underweight, and provide additional care for older patients 

and those with pulmonary TB; for capacity building, 

healthcare professionals should receive training on the 



ADVANCED SURVIVAL MODELING OF TUB…            Akor et al., FJS 

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 169 – 182 181 

application of parametric survival models to ensure accurate 

and insightful analysis of TB survival data; for surveillance 

and monitoring, continuous collection and analysis of TB data 

at NTLC and other centres are recommended to monitor 

trends, assess interventions' effectiveness, and refine 

predictive models; for broader model applications, 

researchers are encouraged to explore diverse survival models 

beyond Cox PH to gain deeper insights into the survival 

distributions of TB patients in various contexts; for public 

health awareness, strengthen awareness campaigns focusing 

on the risks associated with smoking and poor nutritional 

status to mitigate their impact on TB progression and 

mortality. 
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