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ABSTRACT

Ordinary Differential Equations (ODES) play a crucial role in modeling various real-world phenomena across
physics, engineering, and the applied sciences. Many of these equations, especially second-order ODEs, arise
in fields such as mechanics, fluid dynamics, and electrical circuit analysis. Traditional numerical methods like
single-step and multi-step techniques have been extensively explored for solving these equations. However,
stiff and non-stiff problems often require more efficient and stable numerical schemes. Backward
Differentiation Formulae (BDF) are implicit multi-step methods well known for their stability properties,
making them suitable for solving stiff ODEs. Hybrid and block approaches have been introduced to enhance
the accuracy, efficiency, and convergence of numerical methods. The block method enables the simultaneous
solution of multiple points within a single step, improving computational efficiency, while the hybrid approach
incorporates additional off-step points to increase accuracy. In this paper, the block hybrid Backward
Differentiation formulae (BHBDF) for the step number k=4 was developed. For this purpose, power series was
employed as the basis function for the development of schemes in a collocation and interpolation techniques
at some selected grid and off- grid points which gave rise to continuous schemes and were further evaluated at
those points to produce discrete schemes combined together to form block methods. Analysis of the basic
properties of the discrete schemes investigated showed consistency, zero stability and convergence of the
proposed block methods. Tested problems were solved to examine the efficiency and accuracy of the proposed
method. The results showed that the proposed methods with relatively small errors performed favorably in

comparison with the existing methods.
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INTRODUCTION

An equation that establishes a connection between an
unknown function and one or more of its derivatives is known
as a differential equation. Stated differently, it refers to the
connection that exists between one or more independent
variables and a dependent variable (Dahlquist, 1956).

Milne (1953) suggested block methods for solving ordinary
differential equations. Due to his shortcomings, which include
poor performance, a low order of accuracy, and an error term,
hybrid approaches were introduced. As demonstrated in
Dahlquist, hybrid approaches were first developed to get over
the zero-stability barrier that existed in block methods
(Dahlquist, 1956).

Besides the ability to change step size, the other benefit of
these methods is utilizing data off-grid points which
contribute to the accuracy of the methods. This paper presents
a four-step block backward differentiation formula for the
numerical solution of stiff second-order differential
equations. The basic properties of the method such as zero
stability, order, consistency, and convergence were examined.
Several numerical problems will be solved and comparison
will be made with other methods to show the efficiency of the
proposed. This paper considers an approximate method for
the solution of stiff differential equation of second-order
initial value problem of the form,

y'=fxyy)y@ =y,y'(a) =& 1)

Where f satisfies a Lipchitz condition as given in Henrici
(1962)

In this paper we develop a continuous hybrid second
derivative block backward differentiation formula based on
interpolation and collocation for the solution of stiff ordinary
differential equations with constants step size

Z;{:o AiYn+j = h™ Z;‘:oﬁj fn+j (2

Where a; and g;are continuous coefficients to be determined
h is the step size, k is the step number, m is the order of the
differential equation.

MATERIALS AND METHODS
Derivation of the Numerical Scheme
We seek an approximation of the form;
Y(x) = TG ax 3)
Where i is the interpolation points, c is the collocation points
and a; are unknown coefficients to be determined. Then, we
take
Y(X) = yn4jj =012, k=1 4)
Y" (nai) = frsk (5)
To derive 4SBHBDF, we take t=6,c=1andx €
[%n, Xnta]. Therefore, (3) becomes;
Y(x) = a-g + apx + apx? + azx® + ayx* + asx® + agx®
Y'(x) = ay + 2a,x + 3a3x? + 4ayx3 + Sasx* + 6agx’
Y"(x) = 2a, + 6asx + 12a,x? + 20asx® + 30asx*

(6)
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Interpolating (4) at x4 i = 0,%, 1,%2, 3 and collocate (5) at x,,4;; i = 4. This results in a system of equations;
Y (Xpia) = 205 + 6Q3Xps + 12a4%2, 4 + 20asx3, 4 + 30aext,,
Y(Xnti) = Qo+ QXng + QX + @3Xiy; + QX + QX + XX

Y(x,) = ag+ ajx, + axx2 + azxs + auxt + asxy + agxl

_ 2 3 4 5 6
Y (xn% = aptax 1+ azxn% + agxn% + a4xn+§ + asxn% + AeX 1

n+s
2 2

_ 2 3 4 5 6
Y(Xpe1) = Qo+ @qxnpq + @oXpyg + A3Xpq + AaXpyq + asxn+1 + AeXp41

_ 2 3
Y (xn% = ap+ “lxn+§ + azxmg + agxm% + a4x +3 + asx 42 + a(,x %
_ 2 3
Y(Xn42) = Qo+ @iXpyp + QpXppy + 3Xpyy + QaXpyy + asxn+2 + AeXpyr
_ 2 3 4 5 6
Y(xn43) = o+ @Xnys + @aXpes + A3Xnis + QuXpys + AsXpys + AeXnys Q)
DY =Y
where

T T
Y= (ao, ai, aq, as, az,a3,[34) Y = <yn,yn+1, yn+1,yn+_ yn+2,yn+3,fn+4) and the matrix W of the proposed method is
2 2

2
expressed as

1 Xn x2 x3 xk x5 x8
2 3 4 5 6

1 (xn +%h) (xn +%h) (xn +%h) (xn +%h) (xn +%h) (xn +%h)
1 (xp,+h) (x, + h)? (x,, + h)® (x,, + B)* (xp, + h)® (x, + h)®

— 2 3 4 5 6

W= 1 (xn + %h) (xn + %h) (xn + %h) (xn + %h) (xn + %h) (xn + %h) )

1 (n+2h) (n+2h)? (tn+20)°  (ta+20)* (en+2h)°  (xn+2R)°
1 (tn+3h) (m+3h)? (tn+30)° (ta+30)* (e +3h)°  (xn+3R)°
[0 0 2 6(xn +4h) 12(x, + 4h)? 20(x, + 4R)3  30(x, + 4h)*

Solving (8) using matrix inversion method with the aid of Maple 2017 software to obtain the following continuous coefficients;

1
@y = MF (45378h° + 213165h5x,, + 368068h*x2 + 304235h3x3 + 127982h%x + 26020hxS + 1992x5)

((213165h5 + 736136h*x,, + 912705h3x2 + 511928h%x3 + 130100hx} + 11952x3)x)

T 453786
1 368068h* + 912705k, + 767892h%x2 + 260200hx3 + 29880x%
45378 16 x
,_ 1 304235°+ 511928h%x, + 260200h} + 398403
45378 no )x
1 63991h2 + 65050hx,, + 14940x2_,
45378 16 )x
2" 6505h + 2988x,
- ( )x>
22689 K6
332 x'
75637 ©)

16 x,(25164h° + 67860h*x, + 68295h°x] + 31970h%x; + 6921hx;; + 550x;)
5 37815 hs

1
+ 37515 76 (25164h° + 135720h*x,, + 204885h°x + 127880h%x] + 34605hx + 3300x5)x)

16 (4524h* + 13659h%x,, + 12788h%x2 + 4614hx} + 550x%)
X

T 2521 h6
16 (13659h% + 25576h%x,, + 13842hx2 + 2200xn)

+7563 7o

16 (6394h + 6921hx,, + 1650x2)
7563 16 x
16 (2307h+1100x,)

12605 h6
1760 x°©

T 7563 h

(10)
a =

“oi2 h6 (xn(56412h5 +208476h*x,, + 248597h3x2 + 128823h2x3 + 29700hx} + 2452x3))

~0i3% ((18804h5 + 138984h*x, + 248597h3x2 + 171764h2x3 + 49500hx + 4904x5)x)

3 (69492h* + 248597h3x, + 257646h%xZ + 99000hx3 + 12260x;)
X
5042 h6
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1 (248597h% + 515292h%x, + 297000hxZ + 49040x3)
5042 16 x
3 (42941h? + 49500hx,, + 12260x2) ,
X
6

5042 h
6 (2475h + 1226x,

_ ) s
2521 ho
1226x6
+ [ —
2521 ht
(11)
0(5 =
2
16 x,(10668h° + 42964h*x,, + 57719h%x3 + 32774h%x} + 8041hx + 690x5)
22689 ho
+ 525 (L0668RS + 85928h*x, + 173157h%E + 131096h%x3 + 40205hict + 4140x)x)
16 (42964h* + 173157h%x, + 196644h%x% + 80410hx} + 10350x3)
22689 ho x
, 16 (57719h" + 131096h%x, +B0410hx} +13800x3)
22689 16 X
16 (32774h* + 40205hx, + 10350x2)
22689 1o x
16 (8041h +4140x,)
22689 16 x
3680 x°
7563 ho
(12)
a, =
1 1 5 4 3.2 2.3 4 5
TeT567¢ (n(36801h° + 154260hx;, + 220407h%xE + 134984h2x3 + 35172hx} +3136x5)
1
— 15156 5 (B6801R° + 308520hx;, + 661221k} + 539936h2x} + 175860hx; + 18816x5)x)
1 (51420h* + 220407h%x, + 269968h?x2 + 117240hx} + 15680x%)
5042 16 x
1 (220407h% + 539936h%x,, + 351720hx2 + 62720x3)
15126 no x
2 (33746h* + 43965hx, + 11760x3) ,
7563 16
2 (2931h + 1568x,)
2521 ho X
1568 x'
7563 e (13)
a3 ==
1
~ 7e590 75 (n (33756h° + 146860h*x, + 222785h%x% + 148745h%x3 + 43204hxc} + 4140x5))
1
+ 5sanz (33756h° + 293720k, + 668355h%xE + 594980h%x3 + 216020hx + 24840x5)x)
1 (29372h* + 133671h%x, + 178494h%x + 86408hx? + 12420x%)
45378 h6 X
1 (44557h% + 118996h%x, + 86408hx? + 16560x3)
45378 ) 16 ] x
1 (297490 + 43204hw, + 12420x)) ,
45378 16
2 (10801h +6210x,)
+ X
113445 1o
_ 46 x° (14)

2521 h®
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1 x, (18K 818 x + 130/ + 95K + 32/} +4x)

P=S0m I
| (97 + 81kt + 1958 2 + 19047 x) +80hx) + 12 ) x
T 2521 7
| (LA 3904 x, + 570/ +320hx) +60x)) ¥
5042 i
5 (1B 4+38Kx 432k +80) 2 L (199 +32hx, +12:7) x*
2521 i 5042 A
5
_ 4 (4h+3xﬂ)x i 2 i
2521 i 2521 4

The values of the continuous coefficients are then substituted in to the proposed method in (3) to obtain (49
y(0) = ag()yn + a1 (y, 1tas (Dynay,,, + @20y, 3+ €2 ()Yn+2 + as()Vnsz + h2Ba() frsa (16)
Expressing (17) furthier gives 2the continuous form (2)f the 4SZHBDF with 2-step off- step interpolation point as

Y00 = fo + 4 (o= (40 (18h° + 81h*x,, + 130h3x3 + 95h%x3 + 32hx + 4x7))

— (- (9h° + 81h*x,, + 195k, + 190h%x} + BO0hx} + 12xn)x)

+— (& (81h4 + 390, + 570h%x + 320hx] + 60x)x? )

5
7521 \% —(13h3 + 38h%x, + 32hx2 + 8xr3l)x3>

5
* 5042

* ( (4h + 3x,) ) 2_(x
T 2521 \he )X ) T o521 \ Ko

1

+9n (m (F (45378h6)) + 213165h5x, + 368068h*x2 + 304235h3x3 + 127982h%x% + 26020hxS + 1992x;’;)
( (213165h° + 736136h*x,, + 912705hx% + 511928h%x} + 130100k} + 11952x5)x)

- (368068h* + 912705h%x,, + 767892h%x% + 260200hux; + 29880x;)x?)
(- (304235h® + 511928h%x, + 260200hx7 + 39840x3)x?)
L (- (63991h2 + 65050, + 14940x2)x*) — —=— (L (6505h + 2988x,)x° )

(16 (X (56412R5 + 208476h*x,, + 248597h3x2 + 128823h%x3 + 29700hx? + 2452;@))

(he (19h2% + 32hx, + 12x2)x* )
1

45378

45378

45378

t 22689
tVn+1 (5

Hm

(%((18804%15 + 138984h*x,, + 248597h3x2 + 171764h%x3 + 49500hx? + 4904x,§)x))
(- (69492h* + 248597h°x,, + 257646h%x} + 99000hx; + 12260x;)x2)
— (- (248597h3 + 515292h%x;,, + 297000hx3 + 49040x,§)x )

(= (2475h + 1226x,)x°) (17)

1

ho
2 (= 2

+ =2 (L (42941h2 + 49500hx, +12260x)x*) -

Evaluate (18) at x = x,,,4, gives the discrete scheme as
_ 18515 38144 95480 66710 41608 356608 h f (18)
e =2y 2= = === ==

Yn+a 7563 In T gma1 Ynal T Tmar Yntl T Gmpy Yna2 T Tgeg Ynt3 T og Ynad T o M ne2

To obtain the sufficient schemes required, we obtain the first derivative of (18) and evaluate the continuous function at x =
XX =X, L,X = Xpy1, X = X 3,X = Xpyp, X = Xpy3 and x = Xx,44

2 2

175261 892864 146742 578929 669398 1607104 1163 ; »
hzp44 = — n 1— n+1 n+2 n+3 3 frta

45378 37815 n+; 2521 15126 113445 22689 Tl+; 2521

5235 55008 58275 26055 62759 118880 45 5 5
7501 1V frta

hz = —— 1 —— - 3
n+3 7563 7™ T 12605 yn+; soaz I+l T Sapn Yntz ton g Ynis + 00 n+
hz 1525 27136 5724 43195 3556 34816 5 p2f
= —_ 1 —_— —_— —_— —_—— 3 — —
n+2 = 15126 37815 yn+; 2521 V71 T T5126Yn+2 T 37515 Y043 T T5g3 yn+; 2521 Jnt4
hz 2023 35936 3747 3305 4591 45856 L g
= — 1 — —— _— _— 3 — —
n+1 = 52689 7" T 37815 n+t T 50547 T 7563742 T 256800 V3 T 20680 Yntd T gsa1 ¢ Int4
hz 23685 134208 28206 12267 5626 56896 n2f
= - - 1 _—— —_— _— 3
n 5052 TN T 12605 Yn+t T z521 Y1 T osg In+2 T 37g15 V43 T Tgeg Ynad T ggpy It s
hz 887 5913 39861 8739 8147 IRLES + f
3 = — ] — —— _— _— _—
n+; 1512671 12605 Y n+> 20168 "1 T 10084 YM+2 T 302520 /n+3 T 2521 n+d T S0168 ¢ Intt
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_ 2840 86401 84825 18485 10217 56896 15,
hzn+§ T T 75637n T 37815 Yn+t T 2016871 T 30252 VM2 T 302520 V73 T 7563 Yt T 20168 W fuea (19)
Where z is the first derivative of y.
_ 64139 400032 1010475 679401 1261792 _BLpop | 226895,
In+3 = 52101 0 T o211 Yn+t T Tozror VML T Toz101 Y42 T Topuor Ynad T 3a79 L Jntd T ggigr M nes
_ 10433 1145 473 + 1637 + 4409 31 B2 2521
Vnid = 123647 " 2128”1 T 1064772 T 57456773 T 3501 ns2 T aa6as " 1t T 11172 Ll
=_ 785 4384 _ 1% __28 12832 +L p2 - B2 p2g
1 = T ouse7 Yn T Big9 Vn4l T 5109 Yn42 T 24507 Yn+3 T Ju597 Yned T Zasey frta = Ga5er W fnsa
(20)

5353 1312 8269 88736
1

Yniz = " 152710 ¥ 573 Vnad

The equations (18) — (20) are the proposed 4-Step Block
Hybrid Backward Differentiation Formulae (BHBDF) for
solving second order ordinary differential equations.

Zero Stability

Since the root of the first characteristic polynomial satisfies
|r| < 1,then r = (0,0,0,0,0,0,1) or 1 therefore the newly
develop block is zero-stable.

Consistency
The newly develop block scheme is consistent since p > 1

Convergence

According to Awari (2017). The new block scheme is
convergent, since is both consistent and zero-stable

RESULTS AND DISCUSSION

19 2521

— R ] R ]
1547173 T 15471 7ns2 T 3338 frve F 35357 sz

Numerical examples

Problem 1: see Hussaini (2021)

Linear System of Second Order Initial Value problem (I\VP)
Py _dyi | 4y,

dx? dx dx
d’y, _dy; | dy,

dx? dx dx

¥1(0) = 1,y1(0) = 2,,(0) = 1,y5(0) = 2, h=0.01
Exact Solution: y; (x) = e?*, y,(x) = e?*

Problem 2: See Badmus and Yahay (2019)

Constant Coefficient Linear Type
n 6 ! 4
y =2y =3y
— 1 v'(1) = -
y()=-1,y'(1)=1h —5320 i
Exact solution as: y(x) = ——

3x  3x*

Table 1: Comparisons of Errors in the solutions of Problem 1

X Hussani and Rahina (2021) Absolute Error in (New Method)
0.0 0.000000E-00 0.000000E-00
0.1 3.782543E-11 1.584762E-14
0.2 1.496751E-10 3.538009E-14
0.3 3.704399E-10 5.409330E-14
0.4 7.379615E-10 7.645367E-14
0.5 1.312451E-09 1.218539E-13
0.6 2.160988E-09 1.698903E-13
0.7 3.382452E-09 2.166456E-13
0.8 5.094917E-09 2.660267E-13
0.9 7.464829E-09 3.349836E-13
1.0 1.066781E-08 4.057153E-13

Table 2: Comparisons of Errors in the solutions of Problem 2

X Badmus and Yahaya (2019) Absolute Error in (New Method)
1.000000 0.000000E-00 0.000000E-00
1.003125 2.902001E-15 1.000000E-17
1.006250 6.233869 E-15 2.000000E-17
1.009375 9.585251E-15 3.000000E-17
1.0125625 1.306081E-14 4.000000E-17
1.015625 1.526144E-14 5.000000E-17
1.018750 1.716720E-14 6.000000E-17
1.021875 1.943949E-14 7.000000E-17
1.025000 2.0173730E-14 8. 000000E-17
1.028125 2.414736-E14 9. 000000E-17
1.031259 2.55-703 E-14 1. 000000E-16
Discussion While Table 2 show the error for each method at different x

The proposed method (4SBHBDF) in Table 1 has the smallest

error values, making it the most accurate and efficient
method. The error values of the method are significantly
smaller than the other method, indicating better convergence.
The other method Hussaini and Rahina (2021), have larger
error values indicating less accuracy and efficiency. Hence
the table show that the new method outperforms the other in
term of accuracy efficiency and convergence.

values. The newly developed method has the smallest error
values making it the most accurate and efficient method.
Therefore, it is concluded that the new method is the most
accurate and fastest converging method.

CONCLUSION
In conclusion, the proposed block hybrid backward
differentiation formula with step number k=4 has shown to be
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a reliable and efficient method for solving stiff ODEs. Its
ability to produce accurate results with smaller errors makes
it a promising approach for solving complex problems. The
results of this study demonstrate the potential of BHBDF to
be a valuable tool for numerical analysis, and its efficiency
and accuracy make it a suitable alternative to existing
methods.
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