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ABSTRACT 

Optimality criteria is a mechanism used for measuring the betterment of a design. Several traditional optimality 

criteria such as A, D, E, T, IV, etc, are the classes of optimal criterion for the test of optimum design. A – 

Optimality criterion as one of the traditional alphabetical criterion is used to examine the right selection of a 

design using second – order response surface models. In this paper, an algorithm and flowchart in line with a 

program to solve A – optimal design problem using second – order response surface model are developed. This 

paper also aimed to juxtaposing the accuracy between the manual and the programming technique in solving 

A – optimal problem. A six points of two designs with two explanatory variables were formulated to test the 

two methods. The result shows that the programming technique outperformed better than the manual method 

and it also minimizes error.  
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INTRODUCTION 

Response Surface Design (RSD) is an applied statistical and 

mathematical technique used for solving problems of 

responses influenced by various variables (Montgomery, 

2013). In other words, response surface design is a design test 

technique established for the aim of detecting or obtaining the 

optimum response around the defined limit of the factors. 

RSD models are used to examine the influence of various 

expository factors on a dependent variable by estimating 

complex functional correlations using linear or quadratic 

multivariate polynomial regression models, which are usually 

designated as first or second - order response surface models 

(Jones and Nachtsheim, 2011). These designs are more 

effective to fit a second – order response surface model for the 

response and it is an integral part for constructing a model for 

modeling curve surface analysis (Myers et al., 2009). This 

method is necessary where different explanatory variables 

controls a response variable and it has become a standard 

statistical tool for analyzing experimental data. The 

independent variables are supposed to be continuous and 

influenced by the experimenter or designers (Victorbabu and 

Surekha, 2013). An appropriate model equation estimating 

the true functional correlation between the response variable 

and the set of independent variables to obtain rotatability in 

central composite design under response surface design was 

proposed by (Akpan and Akra, 2017) 

Optimal designates a finding and controlling process that need 

to determine the optimum possible design selection. Optimal 

design is usually considered as the design process that seeks 

the “best” possible solution(s) for a mechanical structure, 

device, or system, satisfying the requirements and leading to 

the “best” performance, through optimization techniques. It 

also refers to the design points that best satisfy objective(s) 

which are in contrast to non-optimal design (Dieter and 

Schmidt, 2009). Optimal designs admit the evaluation of 

parameters without bias and with a least possible dispersion 

in the statistical model of an experiment. A design that is not 

optimal needs a larger number of experimental runs to 

estimate the parameters with the same precision as an optimal 

design. Practically, optimal design helps in reducing the costs 

of experimentation. 

The optimality of a design is based on the statistical model 

and is estimated with respect to a statistical criterion, which is 

associated with the variance-matrix of the estimator. Optimal 

design for a bivariate efficacy-safety model when both 

responses are continuous is considered by (Magnusdottir, 

2013; Schorning et al., 2017). A complete objective of 

optimality conditions is significant comprehend the 

performance of several numerical techniques (Jasbir, 2012). 

An algorithm and a program was developed to solve E – 

optimality criterion, where the result outperformed better than 

the manual traditional known method (Akra, et al., 2024). 

Optimal experimental design has as an aim to quest the 

optimal ways to perform an experiment considering the 

available resources and the statistical model (Magnusdottir 

and Nyquist, 2015; Magnusdottir, 2016). Optimal designs are 

considered for the simultaneous response of efficacy and 

safety in a bivariate model, for the drug combination trials, 

and for general regression problems, including but not limited 

to dose-finding analysis (Renata, 2021). Relationship 

between E-, D- and A – optimality criteria and their relative 

efficiency to determine the best optimality criterion was 

established by (Akpan et al., 2017). Optimal approximate 

designs that estimate main effects and interactions for the 

situation of both full and partial profiles when all attributes 

have common general number of levels, and also to generate 

exact designs with reduced pairs for the particular situation of 

two level attributes was constructed by (Eric and Kwabena, 

2022). E-optimal designs for the second-order response 

surface models on the k-dimensional cube and ball was 

studied by (Holger and Yuri, 2014). 

In view of all the prominent contributions on A – optimality 

by different scholars, none has developed an easiest and 

simplified approach different from the manual traditional way 

of obtaining A – optimal design for second - order response 

surface model. Based on this fact, this paper seek to fill the 

shortfall by establishing a simplified algorithm and a program 

to compute A – optimal design. The significance of this 

algorithmic approach helps to reduce error in approximation 

than the existing manual method and also ease the 

computation of the above - mentioned optimality criterion. 
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Second - order response surface model 

Response surfaces are mostly estimated by a second-order 

polynomial model as the higher-order effects are commonly 

insignificant. A second-order model for p - number of factors 

can be written as in Equation 1. The second - order model 

includes linear terms, cross product terms and a second order 

term for each of the𝑥′𝑠. The linear terms just have one 

subscript. The quadratic terms have two subscripts. There are 

𝑝 ∗
(𝑝−1)

2
 interaction terms. To fit a second - order model, it 

require a design that several number of runs than the first - 

order design used to move close to the optimum. The second 

- order response surface model, in other words, known as a 

second-order response surface equation model denoted as; 

𝑦𝑟 = 𝜂𝑜 + ∑ 𝜂𝑣𝑡𝑣
𝑝
𝑣=1 + ∑ 𝜂𝑣𝑣𝑡𝑣𝑣

2𝑝
𝑣=1 + ∑ 𝜂𝑣𝑗

𝑝
𝑣<𝑗 𝑡𝑣𝑡𝑗 + 𝜀 

     (1)

 
Where 𝑏 designated the  𝑛 × 1 vector of a non-quadratic 

parameter estimates, and 𝑡𝑡ℎ entry for all the parameters�̂�𝑣’s 

in the model. Let 𝜂designate𝑛 × 𝑛matrix with  𝑡𝑡ℎ diagonal 

element �̂�𝑣𝑣and with off-diagonal  (𝑣𝑗)𝑡ℎ entry�̂�𝑣𝑗 2⁄ . To 

estimate the stationary point, equation (1) can be written as; 

 

 �̂�𝑣 = �̂�0 + 𝑡 ′𝑟 + 𝑡 ′𝜂𝑡   (2) 

Equation (2) can be written as;  

𝑡 = [

𝑡1
𝑡2
⋮
⋮ 𝑡𝑛

], 𝑟 = [

�̂�1

�̂�2

⋮
⋮ �̂�𝑛

]and  

𝜂 =

[
 
 
 
 
�̂�11 �̂�12 2⁄ ⋯ �̂�1𝑛 2⁄

�̂�12 2�̂�22⁄ ⥂⥂⥂⥂⥂⥂⥂⥂⥂ ⋯⋯
⋮⋮⋮⋮
⋮⋮⋮⋮
�̂�1𝑛 2⋯⋯⁄ �̂�𝑛𝑛 ]

 
 
 
 

  

Then the parameters for the stationary points can be 

calculated by the formula: 

𝑡𝑠 = −
1

2
𝜂−1𝑟    (3) 

 

Formation of Design Matrix for E - Optimal Criteria 

Given a 𝑝 –parameter function, 𝑓(𝑡) on N-point design has 

a𝑁 × 𝑝design matrix such that each row of the matrix is a 

point in�̃�. For example, consider n-points design for quadratic 

response model; 

𝑓(𝑡1, 𝑡2) = 𝑏0 + 𝑏1𝑡1 + 𝑏2𝑡2 + 𝑏3𝑡1
2 + 𝑏4𝑡2

2 +
𝑏5𝑡1𝑡2+. . . . , 𝑎𝑝−1𝑏𝑝𝑡𝑖𝑡𝑗 + 𝑒𝑖𝑗    (4)

 The n-points design matrix of equation (4) is given as; 

𝑇 =

(

 
 
 
 

𝑡11 𝑡12 𝑡13 . . . 𝑡1𝑝

𝑡21 𝑡22 𝑡23 . . . 𝑡2𝑝

𝑡31 𝑡32 𝑡33 . . . . 𝑡3𝑝

. . . . . . .

. . . . . . .

. . . . . . .
𝑡𝑛1 𝑡𝑛2 𝑡𝑛3 . . . 𝑡𝑛𝑝 .)

 
 
 
 

  (5)

 

 

From equation (5), a 5-points design matrix is given as; 

𝑇 =

(

 
 

𝑡11 𝑡21

𝑡21 𝑡22

𝑡31 𝑡32

𝑡41 𝑡42

𝑡51 𝑡52)

 
 

    (6) 

For p = 2 the second - order response surface of equation (4) 

becomes; 

𝑓(𝑡1, 𝑡2) = 𝑏0 + 𝑏1𝑡1 + 𝑏2𝑡2 + 𝑏3𝑡1
2 + 𝑏4𝑡2

2 + 𝑏5𝑡1𝑡2 + 𝑒 

     (7) 

Design matrix of (7) is given by; 

𝑇 =

(

 
 
 
 

1 𝑡11 𝑡12 𝑡11
2 𝑡12

2 𝑡11𝑡12

1 𝑡21 𝑡22 𝑡21
2 𝑡22

2 𝑡21𝑡22

1 𝑡31 𝑡32 𝑡31
2 𝑡32

2 𝑡31𝑡32

1 𝑡41 𝑡42 𝑡41
2 𝑡42

2 𝑡41𝑡42

1 𝑡51 𝑡52 𝑡51
2 𝑡52

2 𝑡51𝑡52

1 𝑡61 𝑡62 𝑡61
2 𝑡62

2 𝑡61𝑡62)

 
 
 
 

  (8) 

Information matrix for the design 

The quality of a design is measured by the size of the 

information matrix. The information matrix 𝜏(𝜍)of the design 

is defined to be; 

𝜏(𝜍) = {
𝑇1𝑇

∑ 𝑡𝑡 ′𝑡∈𝑇
    (9) 

Normalized information matrix of (5) is designated as; 

𝜏(𝜍) = {

𝑁𝑝(𝑇1𝑇)

𝑁2

𝜎𝑡
2

𝑝

𝑝 ∑ 𝑡𝑡 ′ℎ𝑣
𝜎𝑡

2

𝑝𝑡∈𝑇

   (10)

 Where 

𝑁𝑝(𝑇1𝑇)

𝑁2

𝜎𝑡
2

𝑝 = if the weight are uniform or uniform 

probability measure.

 

𝑝 ∑ 𝑡𝑡 ′ℎ𝑣
𝜎𝑡

2

𝑝𝑡∈𝑇
= Non uniform probability measure and N = 

size of the matrix and p = number of factors 

 

Conceptualization of Optimality Criteria in second - order 

response surface design 

Design optimality is a variance-type criterion that involves 

optimizing various individual properties of the (𝑇1𝑇)matrix. 

Optimal designs are experimental designs that are generated 

based on a particular optimality criterion and are generally 

optimal only for a specific statistical model. Optimal design 

methods use a single criterion in order to construct designs for 

Response Surface Design (RSD); this is especially relevant 

when fitting quadratic order models.  

Therefore, an optimality criterion is a criterion which 

summarizes how good a design is, which could be either 

maximizing or minimizing a design. This design is often 

called the alphabetical optimality criteria because of the 

letters of the alphabet used. There are several optimality 

criteria in existence, but our interest is on A – optimal design. 

 

A-Optimality design for second – order response surface 

design 

A nonlinear model of the form below is considered; 

𝐸(𝑦/𝑤) = 𝑓𝑇(𝑤)𝜃    (11) 

Where 𝑦is one – dimensional response, 𝑤 is the predictor 

variable, 𝑓𝑇is a vector 𝑓(𝑤) = 𝑓1(𝑤), . . . , 𝑓𝑛(𝑤)which is the 

vector of the regression function and 𝜃 = (𝜃1, . . . . , 𝜃𝑛)is a 

vector of unknown model parameters. 

Hence, this criterion minimizes the trace of the dispersion 

matrix, 𝜏(𝜍)−1 . Symbolically, a design 𝜍is said to be A-

optimal if it gives 𝑀𝑖𝑛{𝑡𝑟𝜏(𝜍)−1}
 

A measure of the relative efficiency of design 1 to design 2 

according to the A-rotatable criterion is given by;
 

𝐴𝑒 =
𝑡𝑟[𝜏2(𝜍)

−1]

𝑡𝑟[𝜏1(𝜍)
−1]

× 100   (12)
 

 

An algorithm for obtaining A – optimality Criterion 

The following steps are adopted to obtain A – optimal design; 

Step 1: Select the matrix called (𝜍1)for the first design. 

Step 2: Take the transpose of𝜍1 called 𝜍1
′  

Step 3: Take the product of the matrices (𝜍1
′ )and (𝜍1)called 

information matrix𝜏(𝜍). 

Step 4: Take inverse of the resulting matrix in (3). 

Step 5: Obtain the trace of the resulting matrix in (4).  

Step 6: Repeat the same steps of (1) – (5) for the second 

design(𝜍2). 

Step 7: Hence, the minimum trace of the design i.e. 

𝑀𝑖𝑛𝑡𝑟𝑎𝑐𝑒(𝜏(𝜍)) is A – optimal Criterion 
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Figure 1: Flowchart of the algorithm for obtaining A- optimality criterion 

 

Program Source for A – optimal design 

MatrixManager.java 

package dm; 
 

importjama.Matrix; 

 
public class MatrixManager 

{ 

public double matrixTrace(DataMatrix dm) 
{ 

Matrix m = new Matrix(dm.elements); 

double d = m.trace(); 
return d; 

} 

  
public double maxValue(double d[]) 

{ 

double v = d[0]; 
for(inti = 0;i <d.length;i++){ 

if(d[i] > v){ 

v = d[i]; 
} 

} 
return v; 

} 

} 
 

Program managé. 

private void solveACriterion() 
{ 

String result = ""; 

//Design Matrix 1 

DataMatrixmatTranspose = 
DataMatrix.transpose(curProblem.designMatrix1); 

//DataMatrix infoMat1 = 

curProblem.designMatrix1.multiplyBy(matTranspose); 

DataMatrix infoMat1 = 

matTranspose.multiplyBy(curProblem.designMatrix1); 

double trace1 = matMgr.matrixTrace(infoMat1); 
String v1 = "Trace of Design 1 = " + trace1; 

//DataMatrix.df.format(trace1); 

 
//Design Matrix 2 

matTranspose = 

DataMatrix.transpose(curProblem.designMatrix2); 
//DataMatrix infoMat2 = 

curProblem.designMatrix2.multiplyBy(matTranspose); 

DataMatrix infoMat2 = 
matTranspose.multiplyBy(curProblem.designMatrix2); 

double trace2 = matMgr.matrixTrace(infoMat2); 

String v2 = "Trace of Design 2 = " + trace2; 
//DataMatrix.df.format(trace2); 

 

//compare 

if(trace1 < trace2){ 

result = "Design Matrix 1 is A-optimal"; 

}else if(trace1 > trace2){ 
result = "Design Matrix 2 is A-optimal"; 

}else if(trace1 == trace2){ 

result = "Both Design Matrices are A-optimal"; 
} 

createReport("A-

Criterion",infoMat1,infoMat2,v1,v2,result); 
} 

RESULTS AND DISCUSSION 

Consider a second - order response surface model for p = 2 and 6 – points of two designs given below; 

𝑓(𝑡) = 𝑏0 + 𝑏1𝑡1 + 𝑏2𝑡2 + 𝑏3𝑡1
2 + 𝑏4𝑡2

2 + 𝑏5𝑡1𝑡2, 𝑡1, 𝑡2 = −1 ≤ 𝑡 ≤ 2  

𝑋1 =

(

  
 

−1 1
0 −1
2 0
0 2

−1.4 0
0 1.4)

  
 

,   𝑋2 =

(

  
 

−1 1
0 −1
2 0

−1.4 2
0 1.4
1 0 )
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Let 𝐷1 and 𝐷2represent the design matrices for 𝑋1and 𝑋2respectively. From (7), the design matrices are given as; 

𝐷1 =

(

  
 

1 −1 1 1 1 −1
1 0 −1 0 1 0
1 2 0 4 0 0
1 0 2 0 4 0
1 −1.4 0 1.96 0 0
1 0 1.4 0 1.96 0 )

  
 

,  𝐷2 =

(

  
 

1 −1 1 1 1 1
1 0 −1 0 1 0
1 2 0 4 0 0
1 −1.4 2 1.96 4 −2.8
1 0 1.4 0 1.96 0
1 1 0 1 0 0 )

  
 

  

Information matrix for design 1 and design 2 is given as; 

𝐷1 =

(

  
 

2.8413 0.5919 1.0317 −1.0063 −1.4286 0.8462
0.5919 0.3403 0.2149 −0.2661 −0.2976 −0.0971
1.0317 0.2149 0.7937 −0.3654 −0.7143 0.5308

−1.0063 −0.2661 −0.3654 0.4211 0.506 −0.1786
−1.4286 −0.2976 −0.7143 0.506 0.8571 0.4821
0.8462 −0.0971 0.5308 −0.1786 −0.4821 1.8134 )

  
 

, 

𝐷2 =

(

  
 

0.8269 0.1996 0.1442 −0.3576 −0.5034 0.6098
0.1996 1.7908 0.2072 −0.9937 −0.2612 1.8586
0.1442 0.2072 0.4458 −0.1547 −0.2339 0.1588

−0.3576 −0.9937 −0.1547 0.6857 0.2925 −1.1995
−0.5034 −0.2612 −0.2339 0.2925 0.5548 −0.7384
0.6098 1.8586 0.1588 −1.1995 −0.7384 2.6815 )

  
 

  

 

Design 1: Trace(𝐷1) = 7.0669 

Design 2: Trace(𝐷2) = 6.9855 

Min trace {D} = 6.9855 

Hence, design 2 is A – optimal. 

From the above program, the result shows analysis of the two information matrices obtained from the six point designs using 

second – order response surface model. Hence, by definition of A – optimal design, the minimum trace of the information 

matrix gives the result of the design. Therefore, design 2 is A – optimal design as shown in Fig 2.  

 

 
Figure 2: The A - optimality of two designs 

 

From the analysis of the two methods, the result is summarized in Table 1 
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Table 1: The result for the new and existing method 

Design  Existing method (𝑫𝑬𝑴)  New method(𝑫𝑵𝑴) 

1 7.0669 7.0668 

2 6.9856 6.9855 

 

Discussion 

Second - order response surface model for p = 2 and 6 – points 

of two designs were considered for the analysis of both 

techniques (manual calculation and programming approach). 

Information matrices were formed in consonant with the A – 

optimality criterion and the results were obtained. The trace 

values of design 1 are 7.0669 and 7.0668 while the trace 

values of design 2 are 6.9856 and 6.9855. Therefore, the 

minimum trace occur in design 2.  

In comparing the two methods, we observed a little variation 

in fractional part (i.e the new method differs from the existing 

method by 0.0001 and that the later approach has a minimum 

trace value which satisfied the condition of A – optimality 

criteria) which intuitively proven that the programming 

method of solving A – optimal design is better than the 

manual technique for solving second – order response surface 

design problem. 

 

CONCLUSION  

According to the above results, the minimum trace value of 

the dispersion matrix for design 2 is smaller than that of the 

design matrix 1 which fulfilled the postulate of A – optimum 

design criterion. Therefore the design (𝑋2) is A – optimal. It 

is very clear from the illustrations that the algorithmic 

approach for solving A – optimality problems surpass the 

existing manual method due to approximation and error 

minimization. In this paper, the newly algorithmic method is 

limited to second - order response surface model with two 

predictor variables. It is recommended that more explanatory 

variables higher than two variables be experimented using 

second – order response design to solve A – optimality 

problems for further study.  
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