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ABSTRACT 

Decision tree algorithms, particularly Classification and Regression Trees (CART), are widely used in machine 

learning for their simplicity, interpretability, and ability to handle both categorical and numerical data. 

However, traditional decision trees often encounter limitations when dealing with complex, high-dimensional, 

or imbalanced datasets, as conventional impurity measures such as the Gini Index and Information Gain may 

fail to capture subtle variations in the data effectively. This study enhances the traditional Classification and 

Regression Trees (CART) model by introducing the Gini Exponential Criterion, which incorporates an 

exponential weighting factor into the split point calculation process. This novel approach amplifies the 

influence of highly discriminative features, resulting in more refined splits and improved decision boundaries. 

The enhanced CART model was evaluated on two benchmark datasets: the wine quality dataset and the 

hypothyroid dataset, with preprocessing steps like feature scaling and SMOTE for class imbalance, and 

hyperparameter tuning via Bayesian Optimization. On the wine quality dataset, the enhanced model improved 

accuracy from 57% (traditional CART) to 86%, while on the hypothyroid dataset, it achieved an impressive 

accuracy of 98%. These results highlight the model's ability to handle complex and imbalanced data 

effectively. Feature importance analysis and decision tree visualization further demonstrated the model's 

interpretability. The study concludes that the Gini Exponential Criterion significantly improves CART's 

performance, offering better generalization and clearer decision boundaries. This advancement is particularly 

valuable for applications requiring precise and interpretable predictions, such as healthcare diagnostics and 

quality assessment. Future work could explore integrating this criterion into ensemble methods and testing its 

scalability on larger datasets.  
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INTRODUCTION 

Classification and Regression Trees (CART) are foundational 

predictive models in machine learning, widely used for both 

classification and regression tasks. These models employ a 

binary tree structure, recursively partitioning the input space 

to predict the target variable with high accuracy while 

maintaining interpretability. Their versatility has led to 

applications in diverse fields such as healthcare, finance, 

cybersecurity, and environmental sciences. Despite their 

popularity, traditional decision trees face challenges, 

including overfitting, computational inefficiency, and 

suboptimal performance in high-dimensional or imbalanced 

datasets. These limitations are often tied to the choice of 

impurity measures, such as the Gini index and Information 

Gain, which guide split decisions during tree construction. 

While decision trees as shown in Figure 1, are valued for their 

interpretability and robustness, their performance is heavily 

influenced by the impurity measures used to determine 

optimal splits. Previous research, such as Tangirala (2020), 

has compared the Gini index and Information Gain, found 

comparable performance but highlighting limitations in 

handling complex datasets. Existing studies have primarily 

focused on conventional impurity measures without exploring 

algorithmic modifications that could enhance split decisions. 

This gap underscores the need for innovative approaches to 

improve the discriminative power of decision boundaries, 

particularly in scenarios involving noisy data or complex 

decision spaces. 

 

 
Figure 1: Visual representation of decision tree (Hasija, 2023) 
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To address these challenges, this study proposes an enhanced 

CART model that introduces a novel modification to the split 

point calculation. The proposed "Gini Exponential" approach 

integrates an exponential weighting factor into the split 

criterion, amplifying the influence of highly discriminative 

features. This modification aims to capture subtle data 

variations that traditional methods might overlook, leading to 

more refined decision boundaries and improved accuracy. 

The effectiveness of the Gini Exponential-based decision tree 

will be validated through comprehensive experiments on 

benchmark datasets for classification and regression tasks. 

Performance will be evaluated using metrics such as 

accuracy, precision, recall, F1-score, and mean squared error, 

alongside an analysis of tree depth, model complexity, and 

interpretability. This employed primarily in the CART 

(Classification and Regression Tree) algorithm, Gini impurity 

assesses the degree of disorder or impurity in a dataset (Bouke 

et al., 2023; Mustafa et al., 2024). It calculates the probability 

of incorrectly classifying a randomly chosen element if it 

were labeled according to the distribution of labels in the 

dataset (Northcutt et al., 2021). The Gini impurity for a node 

is defined as: 

𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 =   1 − ∑ 𝑃𝑖
2𝑛

𝑖=1   (1) 

where pi represents the proportion of instances belonging to 

class iii in the node. A Gini impurity of 0 indicates perfect 

purity (all instances belong to a single class), while higher 

values signify greater impurity. When constructing a decision 

tree, the algorithm evaluates potential splits by calculating the 

Gini impurity of the child nodes and selects the split that 

results in the lowest weighted average impurity, thereby 

increasing the overall purity of the subsets 

However, utilizing information gain in algorithms like ID3 

and C4.5, is based on the concept of entropy from information 

theory (Reddy and Chittineni, 2021). Entropy measures the 

amount of uncertainty or disorder within a set of data 

(Juszczuk et al., 2021). The entropy E of a node is calculated 

as: 

𝐸 =  − ∑ 𝑝𝑖 log2(𝑃𝑖)𝑛
𝑖=1    (2) 

where 𝑝𝑖  is the proportion of instances of class i in the node. 

Information Gain evaluates the reduction in entropy achieved 

by partitioning the dataset based on a particular attribute. The 

split that provides the highest Information Gain is chosen, as 

it most effectively reduces uncertainty in the dataset. 

These traditional splitting criteria have been instrumental in 

the development of decision tree algorithms, providing 

systematic methods for data partitioning (Bittencourt et al., 

2024). However, they also have limitations. For instance, 

Information Gain can be biased towards attributes with a large 

number of distinct values, potentially leading to overfitting. 

To mitigate this, the Gain Ratio was introduced in the C4.5 

algorithm, which adjusts Information Gain by considering the 

intrinsic information of a split (Lestari, 2020). Despite these 

advancements, challenges such as handling continuous 

attributes, managing missing values, and preventing 

overfitting persist, prompting ongoing research into 

alternative splitting criteria and methods to enhance decision 

tree performance (Sharief et al., 2024). 

The proposed Gini Exponential approach represents a 

significant advancement in decision tree algorithms, offering 

a balance between accuracy and interpretability. By 

enhancing the discriminative power of decision boundaries, 

this method addresses the limitations of traditional models 

and provides a promising solution for real-world applications 

requiring transparency, such as medical diagnosis, fraud 

detection, and financial risk assessment. Furthermore, this 

research contributes to the broader machine learning 

landscape by improving the foundational building blocks of 

ensemble methods like random forests and gradient boosting. 

From an ethical standpoint, the enhanced algorithm has the 

potential to deliver fairer and more reliable predictions in 

sensitive domains, ultimately supporting better decision-

making and reducing risks such as misdiagnosis or false 

positives. Through rigorous experimentation, this study aims 

to demonstrate the superior predictive performance and 

practical applicability of the Gini Exponential approach. 

 

MATERIALS AND METHODS 

The proposed methodology introduces an enhanced version 

of the Classification and Regression Trees (CART) algorithm 

by incorporating an exponential weighting factor into the split 

point calculation. Traditional CART models rely on impurity 

measures like the Gini index or Information Gain, which often 

yield similar performance levels regardless of dataset balance. 

To address this limitation, the study proposes the Gini 

Exponential criterion, which modifies the traditional Gini 

Index with an exponential function. This adaptive weighting 

assigns higher penalties to high-impurity nodes, prioritizing 

splits with greater class separation and improving 

classification accuracy, particularly in complex, high-

dimensional, or noisy datasets. 

The methodology is applied to a wine quality classification 

task, leveraging advanced techniques such as Bayesian 

Optimization, Synthetic Minority Over-sampling Technique 

(SMOTE) for handling class imbalance, and Feature 

Importance Analysis for interpretability. The dataset, 

consisting of physicochemical attributes of red wine, 

undergoes preprocessing steps including feature scaling using 

StandardScaler to normalize values and SMOTE to address 

class imbalance by generating synthetic data points for 

underrepresented classes. This ensures a balanced dataset, 

enabling the model to learn patterns from all quality levels 

without bias toward the majority class. 

The core innovation lies in integrating the Gini Exponential 

criterion into the Gradient Boosting Classifier (GBC) for node 

splitting. Unlike the traditional Gini Index, which measures 

node impurity, the Gini Exponential emphasizes larger class 

separations through an exponential weighting factor. This 

modification enhances feature selection, sharpens decision 

boundaries, and improves the model's ability to distinguish 

between wine quality levels. By combining these 

advancements, the proposed methodology aims to achieve 

better generalization and classification accuracy, 

demonstrating the potential of the Gini Exponential criterion 

in enhancing decision tree algorithms for real-world 

applications. 
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Algorithm Implementation 
1.  FUNCTION Main(): 

2.      CALL LoadDataset() 

3.      CALL PreprocessData() 

4.      CALL HandleClassImbalance() 

5.      CALL SplitData() 

6.      best_params ← CALL OptimizeHyperparameters() 

7.      best_model ← TRAIN_MODEL(best_params) 

8.      CALL EvaluateModel(best_model) 

9.      CALL VisualizeResults(best_model) 

10.     END FUNCTION 

11. FUNCTION LoadDataset(): 

12.     data_path ← "C:/Users/CSE/Desktop/All_Thesis/Safeenahb_KASU_Thesis/winequality-red.csv" 

13.     wine_df ← READ_CSV(data_path, delimiter=',') 

14.     wine_df.columns ← STRIP_WHITESPACE(wine_df.columns) 

15.     X ← DROP_COLUMN(wine_df, 'quality')  // Features 

16.     y ← SELECT_COLUMN(wine_df, 'quality')  // Target variable 

17.     PRINT("Class Distribution:\n", COUNT_VALUES(y)) 

18.     RETURN X, y 

19. FUNCTION PreprocessData(X): 

20.     scaler ← NEW StandardScaler() 

21.     X_scaled ← scaler.FIT_TRANSFORM(X) 

22.     RETURN X_scaled 

23. FUNCTION HandleClassImbalance(X, y): 

24.     smote ← NEW SMOTE(random_state=42) 

25.     X_resampled, y_resampled ← smote.FIT_RESAMPLE(X, y) 

26.     RETURN X_resampled, y_resampled 

27. FUNCTION SplitData(X, y): 

28.     (X_train, X_test, y_train, y_test) ← train_test_split(X, y, test_size=0.3, random_state=42) 

29.     RETURN X_train, X_test, y_train, y_test 

30. FUNCTION OptimizeHyperparameters(): 

31.     study ← NEW OptunaStudy(direction='maximize') 

32.     FOR trial IN range(50):  // Perform 50 optimization trials 

33.         params ← SUGGEST_HYPERPARAMETERS(trial) 

34.         model ← NEW GradientBoostingClassifier(params, random_state=42) 

35.         cv ← NEW StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

36.         scores ← CROSS_VAL_SCORE(model, X_train, y_train, cv=cv, scoring='accuracy', n_jobs=-1) 

37.         mean_score ← MEAN(scores) 

38.         study.REPORT(mean_score, trial) 

39.     best_params ← study.BEST_PARAMS 

40.     PRINT("Best Parameters:", best_params) 

41.     RETURN best_params 

42. FUNCTION TRAIN_MODEL(best_params): 

43.     best_model ← NEW GradientBoostingClassifier(best_params, random_state=42) 

44.     best_model.FIT(X_train, y_train) 

45.     RETURN best_model 

46. FUNCTION EvaluateModel(model): 

47.     y_pred ← model.PREDICT(X_test) 

48.     accuracy ← CALCULATE_ACCURACY(y_test, y_pred) 

49.     PRINT(f"Accuracy: {accuracy:.2f}\n") 

50.     PRINT("Classification Report:") 

51.     PRINT(GENERATE_CLASSIFICATION_REPORT(y_test, y_pred)) 

52.     cm ← GENERATE_CONFUSION_MATRIX(y_test, y_pred) 

53.     CALL PlotConfusionMatrix(cm) 

54. FUNCTION VisualizeResults(model): 

55.     feature_importance ← EXTRACT_FEATURE_IMPORTANCE(model) 

56.     CALL PlotFeatureImportance(feature_importance) 

57.     CALL PlotDecisionTree(model) 

58. FUNCTION PlotConfusionMatrix(cm): 

59.     PLOT_HEATMAP(cm, annot=True, fmt='d', cmap='Blues', xticklabels=SORTED_CLASSES(y), 

yticklabels=SORTED_CLASSES(y)) 

60.     SET_TITLE('Confusion Matrix') 

61.     LABEL_AXES('Predicted', 'Actual') 

62. FUNCTION PlotFeatureImportance(importance): 

63.     PLOT_BAR_CHART(importance, X.columns) 

64.     SET_TITLE('Feature Importance') 

65. FUNCTION PlotDecisionTree(model): 

66.     first_tree ← model.ESTIMATORS_[0, 0] 

67.     PLOT_TREE(first_tree, filled=True, feature_names=X.columns, class_names=SORTED_CLASSES(y), max_depth=2, 

rounded=True) 

68.     SET_TITLE('Decision Tree Structure (First Tree in Gradient Boosting Ensemble)') 
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Dataset Source 

This work embraced two datasets for the evaluation of the 

Enhanced CART model. The Red Wine Quality dataset, 

obtained from the UC Irvine Machine Learning Repository, is 

a widely used benchmark for classification tasks in machine 

learning research. It consists of physicochemical attributes of 

red wines, such as fixed acidity, volatile acidity, citric acid, 

residual sugar, chlorides, and alcohol content, along with a 

quality rating assigned by wine experts. The quality ratings 

range from 0 to 10, though the dataset primarily includes 

ratings between 3 and 8, representing the ordered classes of 

wine quality (Awujoola et al.,2024).  

A notable characteristic of this dataset is its class imbalance, 

where the majority of samples belong to the "normal" quality 

category, while excellent and poor quality wines are 

underrepresented. This imbalance poses challenges for 

classification models, as they may struggle to accurately 

predict minority classes. To address this issue, techniques 

such as SMOTE (Synthetic Minority Over-sampling 

Technique) or outlier detection algorithms can be employed 

to enhance the representation of rare classes, enabling more 

robust learning and improved model performance.  

The dataset is freely available for download at 

https://archive.ics.uci.edu/dataset/186/wine+quality and 

serves as a valuable resource for exploring predictive 

modeling, feature importance analysis, and handling 

imbalanced data in real-world applications. Its rich set of 

features and ordered class structure make it an ideal choice for 

evaluating machine learning algorithms in regression and 

classification tasks.  

 

Performance Evaluation Metrics 

Evaluating the performance of the enhanced Classification 

and Regression Tree (CART) model, which incorporates an 

exponential weighting factor into the split point calculation, 

requires the application of specific metrics tailored to both 

classification and regression tasks. 

For classification tasks, accuracy is determined by the ratio of 

correctly predicted instances to the total number of instances 

(Awujoola et al., 2021).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
   (3) 

Precision assesses the proportion of true positive predictions 

among all positive predictions made by the model, calculated 

as the number of true positives divided by the sum of true 

positives and false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
   (4) 

Recall, or sensitivity, measures the proportion of actual 

positives correctly identified by the model, computed as the 

number of true positives divided by the sum of true positives 

and false negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
    (5) 

The F1 score provides a harmonic mean of precision and 

recall, offering a balance between the two metrics, and is 

calculated as twice the product of precision and recall divided 

by their sum. 

𝐹1 =   2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (6) 

 

RESULTS AND DISCUSSION 

The results, derived from experiments on benchmark datasets 

compared the performance of the enhanced model against 

traditional CART model. Initial experiments focused on the 

wine quality dataset, followed by additional tests on the 

hypothyroid dataset to evaluate the model's generalization 

capability across diverse data characteristics. 

 

Traditional CART on Wine Dataset 

A detailed classification report (Table 1) illustrates key 

performance metrics, including accuracy, precision, recall, 

and F1-score.  The confusion matrix (Figure 2) provides 

insights into the model's classification performance across 

different classes. These results serve as a baseline for 

comparing the enhanced CART model, highlighting the 

strengths and limitations of the traditional approach in 

handling the complexities of the wine quality dataset. 

 

Table 1: Classification Report for the Traditional CART 

Class Precision Recall F1-Score Support 

0 0.66 0.65 0.65 195 

1 0.57 0.6 0.59 200 

2 0.46 0.43 0.44 61 

3 0.07 0.06 0.06 17 

4 0.33 0.17 0.22 6 

5 0 0 0 1 

Accuracy - - 0.57 480 

Macro Avg 0.35 0.32 0.33 480 

Weighted Avg 0.57 0.57 0.57 480 

 

The evaluation of the traditional CART model on the wine 

quality dataset reveals moderate overall accuracy (0.57), but 

significant performance variations across classes. The model 

performs well for majority classes (Class 0 and Class 1), 

achieving precision, recall, and F1-scores of 0.66/0.65/0.65 

and 0.57/0.60/0.59, respectively, likely due to their larger 

sample sizes. However, performance declines for smaller 

classes: Class 2 shows lower metrics (0.46/0.43/0.44), while 

Class 3 performs poorly (0.07/0.06/0.06) due to its extremely 

small sample size (17 instances). Classes 4 and 5, the smallest 

subsets, exhibit further deterioration, with Class 4 achieving 

an F1-score of 0.22 and Class 5 scoring zero across all 

metrics, reflecting the model's inability to predict rare classes. 

The macro averages (precision: 0.35, recall: 0.32, F1-score: 

0.33) highlight suboptimal performance when considering all 

classes equally, while the weighted averages align with the 

overall accuracy (0.57), indicating the model's reliance on 

majority classes. In summary, the traditional CART model 

performs reasonably for dominant classes but struggles with 

imbalanced datasets and rare classes. This underscores the 

need for enhancements, such as modified split criteria or 

resampling techniques, to improve predictive accuracy for 

minority classes and address dataset imbalance. 

 

https://archive.ics.uci.edu/dataset/186/wine+quality
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Figure 2: Confusion Matrix from the Traditional CART 

 

The confusion matrix (Figure 2) provides a detailed 

breakdown of the traditional CART model's performance on 

the wine quality dataset. For Class 0, the model correctly 

classifies 126 instances, but misclassifies 58 as Class 1, 2 as 

Class 2, 8 as Class 3, and 1 as Class 5. For Class 1, it correctly 

identifies 121 instances, with misclassifications of 48 as Class 

0, 26 as Class 2, and 5 as Class 3. Class 2 sees 26 correct 

classifications, but 6 are misclassified as Class 0, 26 as Class 

1, 1 as Class 3, and 2 as Class 4. 

Class 3 performs poorly, with only 1 correct classification and 

misclassifications of 10 as Class 0, 5 as Class 1, and 1 as Class 

2. Class 4 achieves 1 correct classification, with 3 

misclassified as Class 1 and 2 as Class 2. Class 5 has no 

correct classifications, with its single instance misclassified as 

Class 0. 

These results highlight the model's strength in handling larger 

classes (e.g., Class 0 and Class 1) but significant struggles 

with smaller or rare classes (e.g., Class 3, Class 4, and Class 

5). The confusion matrix underscores the need for techniques 

like resampling, cost-sensitive learning, or modified split 

criteria to address class imbalance and improve classification 

accuracy for minority classes. 

 

Enhanced CART on Wine Dataset 

This section evaluates the enhanced CART model on the wine 

quality dataset, highlighting its improved performance over 

the traditional approach. Table 2 provides a classification 

report summarizing key metrics (accuracy, precision, recall, 

and F1-score), demonstrating the model's enhanced 

effectiveness. Figure 3 visualizes the confusion matrix, 

revealing better classification performance across classes, 

particularly for smaller or less frequent ones.  

The results indicate that the enhanced CART model addresses 

the limitations of the traditional approach by improving split 

point calculations, leading to better performance for minority 

classes while maintaining or enhancing overall accuracy. 

These findings underscore the value of the proposed 

enhancements, setting the stage for a detailed comparison 

between the two models and highlighting their potential in 

real-world applications. 

 

Table 2: Classification Report for the Enhanced CART 

Class Precision Recall F1-Score Support 

3 0.98 0.98 0.98 200 

4 0.91 0.97 0.94 197 

5 0.7 0.76 0.73 218 

6 0.72 0.54 0.62 220 

7 0.86 0.95 0.91 188 

8 0.98 1 0.99 203 

Accuracy - - 0.86 1226 

Macro Avg 0.86 0.87 0.86 1226 

Weighted Avg 0.86 0.86 0.86 1226 

 

The evaluation of the enhanced CART model on the wine 

quality dataset shows significant improvements, achieving an 

overall accuracy of 0.86. Key performance metrics (precision, 

recall, F1-score) reveal strong results for most classes, with 

Classes 3 and 8 performing exceptionally well: Class 3 

achieves precision: 0.98, recall: 0.98, F1-score: 0.98, while 

Class 8 attains precision: 0.98, recall: 1.00, F1-score: 0.99. 

Class 4 also performs well, with precision: 0.91, recall: 0.97, 

F1-score: 0.94, and Class 7 shows strong results with 

precision: 0.86, recall: 0.95, F1-score: 0.91. 

For Classes 5 and 6, performance is slightly lower but still 

reasonable: Class 5 achieves precision: 0.70, recall: 0.76, F1-

score: 0.73, while Class 6 attains precision: 0.72, recall: 0.54, 

F1-score: 0.62, reflecting challenges with overlapping or less 

distinct features. 

The macro averages (precision: 0.86, recall: 0.87, F1-score: 

0.86) and weighted averages (aligned with overall accuracy at 

0.86) indicate consistent performance across all classes, with 

effective handling of both majority and smaller classes. 

In summary, the enhanced CART model demonstrates robust 

performance, particularly for Classes 3, 4, 7, and 8, 

highlighting the effectiveness of the exponential weighting 

factor in refining split point calculations. While 

improvements are needed for some challenging classes (e.g., 

Class 6), the results underscore the model's potential to 

address dataset complexities and pave the way for further 

advancements in decision tree algorithms. 
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Figure 3: Confusion matrix obtained from the enhanced 

 

The confusion matrix for the enhanced model on the Wine 

Quality dataset (Figure 4.4) reveals strong classification 

performance, with some misclassifications between adjacent 

classes. For Class 3, 197 instances were correctly classified, 

with 3 misclassified as Class 5. Class 4 saw 192 correct 

classifications, with 3 misclassified as Class 5 and 2 as Class 

6. Class 5 had 166 correct classifications, but 9 were 

misclassified as Class 4, 3 as Class 3, and 37 as Class 6. 

Class 6 experienced more misclassifications, with only 119 

correct classifications, and errors including 9 as Class 4, 63 as 

Class 5, 25 as Class 7, and 4 as Class 8. Class 7 performed 

well, with 179 correct classifications and only 1 misclassified 

as Class 5 and 7 as Class 6. Class 8 achieved perfect accuracy, 

with all 203 instances correctly classified and no 

misclassifications. 

The matrix highlights the model's strength in classifying most 

classes accurately but reveals challenges in distinguishing 

between Classes 5 and 6, likely due to overlapping feature 

distributions. Overall, the model demonstrates robust 

performance, with room for improvement in handling closely 

related classes 

 

The Hypothyroid Dataset for Traditional CART 

This section discusses the results obtained from the evaluation 

of the traditional CART model on the hypothyroid dataset. 

Table 3 presents the classification report from the experiment, 

while Figure 4 visualize the confusion matrix. 

 

Table 3: Classification report of hypothyroid Dataset on traditional CART 

Class Precision Recall F1-Score Support 

0 0.88 0.88 0.88 81 

1 0.99 0.99 0.99 1051 

Accuracy - - 0.98 1132 

Macro Avg 0.93 0.93 0.93 1132 

Weighted Avg 0.98 0.98 0.98 1132 

 

The traditional CART model achieves strong performance on 

the hypothyroid dataset, with an overall accuracy of 0.98. For 

the minority class (Class 0, 81 instances), the model attains 

precision: 0.88, recall: 0.88, and F1-score: 0.88, indicating 

slight challenges in predicting this less frequent class due to 

dataset imbalance. In contrast, for the majority class (Class 1, 

1051 instances), the model performs exceptionally well, 

achieving precision: 0.99, recall: 0.99, and F1-score: 0.99, 

reflecting near-perfect reliability in predicting this dominant 

class. 

The macro averages (precision: 0.93, recall: 0.93, F1-score: 

0.93) show balanced performance across both classes, while 

the weighted averages align with the overall accuracy at 0.98, 

emphasizing the model's strength in handling the majority 

class. Despite robust performance overall, the model's slightly 

lower effectiveness for the minority class highlights a 

common limitation of decision trees with imbalanced 

datasets. Future improvements could involve techniques like 

resampling or cost-sensitive learning to enhance prediction 

accuracy for rare classes. These results underscore the model's 

effectiveness in medical diagnostics while identifying areas 

for refinement. 
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Figure 4: Confusion matrix for the hypothyroid with Traditional CART 

 

The confusion matrix for the traditional CART model on the 

hypothyroid dataset reveals strong performance for the 

majority class (Class 1, 1041 instances), with 1041 correct 

classifications and only 1 misclassification as Class 0. 

However, for the minority class (Class 0, 71 instances), the 

model correctly identifies 61 instances but misclassifies 10 as 

Class 1, reflecting challenges due to dataset imbalance. 

Overall, the model excels in predicting the majority class but 

struggles slightly with the minority class, highlighting a 

common issue with imbalanced datasets. To address this, 

techniques like resampling (e.g., SMOTE) or adjusting class 

weights could improve the model's ability to classify the 

minority class accurately. These enhancements would 

strengthen the model's robustness, particularly for critical 

applications like medical diagnostics. 

 

Enhanced CART for Hypothyroid Dataset 

This section evaluates the enhanced CART model on the 

hypothyroid dataset, presenting results through a 

classification report (Table 4) with key metrics like precision, 

recall, and F1-score. Figure 5 shows the confusion matrix, 

detailing correct and incorrect classifications across classes. 

Together, these results demonstrate the enhanced model's 

effectiveness in addressing the dataset's challenges. 

 

Table 4: Enhanced CART Results Discussion 

Class Precision Recall F1-Score Support 

0 0.98 0.99 0.98 1032 

1 0.99 0.98 0.98 1057 

Accuracy - - 0.98 2089 

Macro Avg 0.98 0.98 0.98 2089 

Weighted Avg 0.98 0.98 0.98 2089 

 

The Enhanced CART model achieves an overall accuracy of 

0.98 on the hypothyroid dataset, demonstrating excellent 

performance. For Class 0 (1032 instances), the model attains 

precision: 0.98, recall: 0.99, and F1-score: 0.98, indicating 

near-perfect identification with minimal errors. Similarly, for 

Class 1 (1057 instances), it achieves precision: 0.99, recall: 

0.98, and F1-score: 0.98, showing exceptional performance 

with very few misclassifications. 

The macro averages (precision: 0.98, recall: 0.98, F1-score: 

0.98) and weighted averages (aligned with overall accuracy at 

0.98) reflect consistent and balanced performance across both 

classes. While the results are highly promising, minor 

discrepancies in recall and precision suggest room for slight 

improvements. Overall, the model proves effective for 

medical diagnostics, particularly in datasets with balanced 

class distributions. 
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Figure 5: Confusion Matrix for Enhanced CART for hypothyroid 

 

The Enhanced CART model demonstrates highly accurate 

performance on the hypothyroid dataset, as shown in Figure 

4.7. For Class 0 (non-hypothyroid), the model correctly 

classifies 1,023 instances but misclassifies 9 as Class 1, 

indicating a strong true negative rate with minimal false 

positives. For Class 1 (hypothyroid), it correctly identifies 

1,033 instances but misclassifies 24 as Class 0, reflecting a 

high true positive rate with some false negatives, which are 

critical in medical diagnostics. 

The model achieves a well-balanced classification 

performance with a low error rate, effectively distinguishing 

between hypothyroid and non-hypothyroid cases. Future 

improvements could focus on reducing false negatives 

through feature engineering, hyperparameter tuning, or 

ensemble techniques to further enhance predictive accuracy. 

 

CONCLUSION 

This study successfully addresses the limitations of traditional 

decision tree algorithms by introducing the Enhanced CART 

model, which integrates the Gini Exponential criterion. This 

innovation incorporates an exponential weighting factor into 

split point calculations, amplifying the influence of highly 

discriminative features and resulting in refined splits, sharper 

decision boundaries, and improved performance on complex, 

high-dimensional, or imbalanced datasets. 

The model's effectiveness was validated on two benchmark 

datasets: the wine quality dataset, where accuracy improved 

from 57% (traditional CART) to 86% (Enhanced CART) and 

the hypothyroid dataset, achieving 98% accuracy and 

demonstrating robustness in handling class imbalance. The 

proposed model offers superior predictive performance and 

adaptability, supported by advanced techniques like Bayesian 

Optimization and SMOTE. Future research could explore 

applying the Gini Exponential criterion to ensemble methods 

like Random Forests or XGBoost, testing it on larger datasets, 

and refining the exponential weighting factor for broader 

adaptability. The study highlights the Enhanced CART model 

as a powerful, interpretable tool for classification tasks, with 

significant potential for practical applications requiring 

precise and reliable predictions. 
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