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ABSTRACT 

In this paper, we demonstrate that Singh’s approach to defining membership—through its novel yet 

underutilized notation—allows for a seamless and unambiguous analysis of multisets alongside their set 

counterparts. This stands in contrast to the widely used cardinality-based approach prevalent in existing 

literature. The Singh’s dressed epsilon approach (∈+, ∈𝑘  and ∈+
𝑘) provides a membership-based way of 

handling multisets, in contrast to the cardinality-based approach that relies on counting functions (𝐶𝑀(𝑥) or 

𝑀(𝑥)).  
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INTRODUCTION 

In Lake (1976), functions are taken as primitive, though Lake 

acknowledges that an axiomatization independent of 

functions might be desirable. Such an axiomatization could be 

conveniently expressed using 𝑥 ∈𝑧 𝑦, which represents “𝑥 

belongs to 𝑦 precisely 𝑧 times.” This approach was later 

adopted by Blizard (1989), the most recent and 

comprehensive work in this direction. Unlike many other 

formalizations of non-Cantorian set theory, Blizard (1989) 

develops a formal theory of multisets as a conservative 

extension of standard set theory. The symbol ∈+ was first 

introduced by Singh and Singh (2003). It was also used in 

Peter and Singh (2011) and Peter et al. (2024) or the 

establishment of some concepts in graph theory using multiset 

approach. See Singh (2006) for details. 

 For any element 𝑥 occurring in a multiset 𝐴, meaning 

𝑚𝐴(𝑥) > 0, we write 𝑥 ∈+ 𝐴. This symbol, known as the 

dressed epsilon, is a binary predicate representing "belongs to 

at least once," in contrast to ∈, which denotes "belongs to only 

once" in the context of a set. Consequently, 𝑚𝐴(𝑥) = 0 

implies 𝑥 ∉ 𝐴, while 𝑥 ∈+
𝑘 𝐴 signifies that 𝑥 belongs to 𝐴 at 

least 𝑘 times. In contrast, 𝑥 ∈𝑘 𝐴 explicitly states that 𝑥 

belongs to 𝐴 exactly 𝑘 times. A multiset over any ground set 

𝐷 is called empty, denoted by ∅ or [ ], if 𝑚∅(𝑥) = 0 for all 

𝑥 ∈ 𝐷.  
Singh himself emphasized that the introduction of ∈+ greatly 

enhances the language of multiset, citing an example: 𝐴 ⊆ 𝐵 

stands for ∀𝑧∀𝑘(𝑧 ∈𝑘 𝐴 → 𝑧 ∈+
𝑘 𝐵. The dressed epsilon 

notation allows us to focus on individual elements and their 

occurrences rather than treating multisets as functions. It 

aligns with how we naturally think about membership—

whether an element appears in a multiset and how many 

times—rather than computing its frequency separately. 

Proofs using ∈+, ∈𝑘  and ∈+
𝑘 tend to be more direct and 

symbolic, avoiding the extra layer of defining and tracking 

cardinality functions. This makes proofs cleaner and easier to 

follow, especially when dealing with set operations like 

unions, intersections, and inverse images. 

For instance, instead of writing as in the following Equation 

1, 

𝐶𝑓−1(𝑁)(𝑥) = 𝐶𝑁(𝑓(𝑥)).    (1) 

we simply state: 

𝑥 ∈𝑛 𝑓−1(𝑁) if and only if 𝑓(𝑥) ∈𝑛 𝑁.  (2) 

Singh’s dressed epsilon naturally handles nonexistent 

elements. The dressed epsilon notation in Equation 2 can 

express uncertainty or partial membership more naturally. 

Using ∈+ we can say that an element appears at least once in 

a multiset, avoiding explicit cases for elements with zero 

occurrences. Instead of checking  

𝐶𝑀(𝑥) > 0.       (3) 

We simply write 

𝑥 ∈+ 𝑀.        (4) 

Many set-theoretic results generalize smoothly to multisets 

using ∈𝑛 notation, making it easier to extend classical set 

results. When dealing with function compositions, images, 

and inverse images, the approach translates naturally, whereas 

cardinality-based proofs often require breaking things into 

case-by-case counting arguments. Using the case of inverse 

image of an intersection for instance: 

𝑥 ∈𝑛 𝑓−1[⋂ 𝑀𝑖𝑖∈𝐼 ] if and only if 𝑓(𝑥) ∈𝑛 ⋂ 𝑀𝑖𝑖∈𝐼 . 
     (5) 

The statement in Equation 5 is direct and avoids needing to 

track explicit summations over count functions. 

The approach aligns with classical Set Theory notation. That 

is, it is more in line with standard set membership logic than 

the function-based cardinality approach. 

This makes it easier to integrate multisets into general set-

theoretic reasoning without switching between different 

notations. 

 

MATERIALS AND METHODS 

This study builds on standard set theory and explores Singh’s 

dressed epsilon notations as a conservative extension to 

multiset theory. Unlike traditional approaches that rely on 

explicit cardinality functions, this framework allows direct 

membership-based expressions, providing an alternative yet 

structurally consistent foundation for multisets within 

standard set theoretic principles.  

Se systematically reinterpret fundamental properties of 

multisets using the dressed epsilon framework. The 

translation from cardinality-based expressions to 

membership-based formulations is rigorously examined to 

ensure logical equivalence and consistency with classical 

multiset operations. 

Key theorems in multiset theory are revisited and re-proven 

within the new framework. Previously established results 

from the cardinality approach are reconstructed using Singh’s 

notation, ensuring that the conservative extension preserves 

the essential axioms and properties of standard set theory 

while offering an alternative perspective. 
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Definition of Terms 

Definition 1 (Multiset) Let D be a set. A multiset 𝑀 over 𝐷 is 

a collection of elements of 𝐷 with repetitions allowed. The set 

𝐷 is called the ground or generic set of the class of all 

multisets containing elements from 𝐷. Different 

representations of multiset exist. 

Definition 2 (Submultiset) Let 𝐴 and 𝐵 be two multisets. 𝐴 is 

a submultiset of 𝐵, written 𝐴 ⊆ 𝐵 if ∀𝑧∀𝑘(𝑧 ∈𝑘 𝐴 →
𝑧 ∈+

𝑘 𝐵). 

Definition 3 (Union) Let 𝑀 and 𝑁 be two multisets over a 

ground set 𝐷. 𝐴 ∪ 𝐵 is the multiset defined by 𝑥 ∈𝑘 (𝑀 ∪
𝑁) ⟺ 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 with 𝑘 = max (𝑚, 𝑛) 

Definition 4 (Intersection) Let 𝑀 and 𝑁 be two multisets over 

a ground set 𝐷. 𝐴 ∪ 𝐵 is the multisetdefined by 𝑥 ∈𝑘 (𝑀 ∪
𝑁) ⟺ 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 with 𝑘 = min (𝑚, 𝑛) 

Definition 5 (Sum or additive union) Let 𝑀 and 𝑁 be two 

multisets over a ground set 𝐷. 𝐴 ∪ 𝐵 is the multisetdefined by 

𝑥 ∈𝑘 (𝑀 ∪ 𝑁) ⟺ 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 with 𝑘 = 𝑚 + 𝑛. 
See Singh et al. (2006) and Singh et al. (2008) 

Definition 6 (Hierarchical decomposition of multisets) Let 𝑀 

be a mutiset over a set 𝑋, then the set 𝑀𝑟 =  {𝑥 ∈
𝑋: 𝑥 ∈+

𝑟 𝑀} is called 𝑟-level reference of 𝑀 where  𝑟 is the 

position of the reference set when all the reference sets (the 

empty set inclusive) are arranged in a descending order using 

the non-proper containment relation ⊇. In this case, the set 𝑀𝑟 

for each 𝑟 is known as an 𝑟-reference set. 

Definition 7 (Hierarchical decomposition of multisets) Let 𝑀 

be a mutiset over a set 𝑋, then the set 𝑀𝑟 =  {𝑥 ∈
𝑋: 𝑥 ∈+

𝑟 𝑀} is called 𝑟-level reference of 𝑀 where  𝑟 is the 

position of the reference set when all the reference sets (the 

empty set inclusive) are arranged in a descending order using 

the non-proper containment relation ⊇. In this case, the set 𝑀𝑟 

for each 𝑟 is known as an 𝑟-reference set. 

Example 8 Let 𝑀 = {𝑎, 𝑎, 𝑎, 𝑎, 𝑏, 𝑏, 𝑐, 𝑐, 𝑐}, then the level 𝑟 

reference sets are:  

𝑀1 = {𝑎, 𝑏, 𝑐}, 𝑀2 = {𝑎, 𝑏, 𝑐}, 𝑀3 = {𝑎, 𝑐}, 𝑀4 = {𝑎}, 𝑀5 =
∅ where 𝑟 ≤ 5. Thus,  {𝑎, 𝑏, 𝑐} is both a level 1 and a level 2 

reference set. 

Definition 9 (𝒏-regular multiset)  

A multiset 𝑀 over a based set 𝑋 is called 𝑛-regular multiset 

of a set 𝑆 ⊆ 𝑋 if 𝑥 ∈𝑛 𝑀 for all 𝑥 ∈ 𝑋. In other words, a 

multiset whose objects have the same multiplicity 𝑛 is called 

an 𝑛-regular multiset of the root set of the multiset.  

Definition 10 Let 𝑋 and 𝑌 be two nonempty sets and let 

𝑓: 𝑋 → 𝑌 be a mapping. The image of a multiset 𝑀 under 𝑓, 

is denoted by 𝑓(𝑀) or 𝑓[𝑀], is defined by: 

𝑦 ∈𝑛 𝑓(𝑀) if and only if ∃𝑥 ∈+ 𝑀 such that 𝑓(𝑥) =
𝑦 and 𝑛 = ⋁ (𝑥 ∈𝑛 𝑀).𝑓(𝑥)=𝑦    (6) 

In Equation 6 above, it means that the multiplicity of 𝑦 in 

𝑓(𝑀) is determined by taking the least upper bound (join 

operation, ∨) over the multiplicities of all 𝑥 in 𝑀 that are 

mapped to 𝑦 by 𝑓. 

Definition 11 Let 𝑋 and 𝑌 be two nonempty sets and 𝑓: 𝑋 →
𝑌 be a mapping. The inverse image of a multiset 𝑁 under 𝑓, 
is denoted by 𝑓−1(𝑁), is defined by: 

𝑥 ∈𝑛 𝑓−1(𝑁) if and only if 𝑓(𝑥) ∈𝑛 𝑁    (7) 

Equation 7 states that an element 𝑥 appears exactly 𝑛 times in 

𝑓−1(𝑁) if and only if 𝑓(𝑥) appears exactly 𝑛 times in 𝑁. 
 

RESULTS AND DISCUSSION 

As opposed to the method used in Nazmul et al. (2013), we 

have been able to employ Singh's dressed epsilon notation to 

establish various results in multiset theory. Our use of dressed 

epsilon notation offers a more direct and expressive way to 

describe multiset membership and repetition. This alternative 

framework not only reproduces known results but also 

provides a clearer and more intuitive foundation for further 

generalizations and new findings in multiset analysis. 

Proposition 1. A subsequent reference set is contained or is 

equal to its preceding reference set. 

Proof. 

Let 𝑥 ∈ 𝑀𝑟. Then 𝑥 ∈+
𝑟 𝑀. In particular 𝑥 ∈𝑟−1 𝑀. 

Therefore, 𝑥 ∈ 𝑀𝑟−1.   □ 

Proposition 2. Let 𝑀 and 𝑁 be multisets over a base set 𝑋 

such that 𝑀 ⊆ 𝑁, then 𝑀𝑟 ⊆ 𝑁𝑟 where 𝑀𝑟 and 𝑁𝑟 are the 𝑟th 

reference sets of 𝑀 and 𝑁, respectively. 

Proof. 

Suppose 𝑀 ⊆ 𝑁 and let 𝑥 ∈ 𝑀𝑟. We want to show that 𝑥 ∈
𝑁𝑟. Since 𝑀𝑟 ⊆ 𝑀 then 𝑥 ∈ 𝑀, which implies 𝑥 ∈ 𝑁 by 

hypothesis. Moreover, 𝑥 ∈𝑚 𝑀 and 𝑥 ∈𝑛 𝑁 ⟹ 𝑚 ≤ 𝑛. 

Hence 𝑥 ∈ 𝑁𝑡 for some 𝑡 ≥ 𝑟. Thus, 𝑥 ∈ 𝑁𝑟. Therefore, 𝑀𝑟 ⊆
𝑁𝑟.   □ 

Proposition 3. Let 𝑀 and 𝑁 be multisets over a base set 𝑋. 

Then (𝑀 ∩ 𝑁)𝑟 = 𝑀𝑟 ∩ 𝑁𝑟 where 𝑀𝑟 and 𝑁𝑟 are the 𝑟th 

reference sets of 𝑀 and 𝑁, respectively. 

Proof. 

Let 𝑥 ∈ (𝑀 ∩ 𝑁)𝑟. Then 𝑥 belongs to the 𝑟th reference set of 

𝑀 ∩ 𝑁. Thus, 𝑥 belongs to the 𝑟th reference set of 𝑀 and 𝑥 

belongs to the 𝑟th reference set of 𝑁. That is, 𝑥 ∈ 𝑀𝑟 and 𝑥 ∈
𝑁𝑟. Which means 𝑥 ∈ 𝑀𝑟 ∩ 𝑁𝑟 . Hence, (𝑀 ∩ 𝑁)𝑟 ⊂ 𝑀𝑟 ∩
𝑁𝑟. 

Conversely, Let 𝑥 ∈ 𝑀𝑟 ∩ 𝑁𝑟 . Then 𝑥 ∈ 𝑀𝑟 and 𝑥 ∈ 𝑁𝑟. That 

is  𝑥 belongs to the 𝑟th reference set of 𝑀 and 𝑥 belongs to the 

𝑟th reference set of 𝑁. Thus, 𝑥 belongs to the 𝑟th reference set 

of 𝑀 ∩ 𝑁. Thus, 𝑥 ∈ (𝑀 ∩ 𝑁)𝑟. Hence, 𝑀𝑟 ∩ 𝑁𝑟 ⊂ (𝑀 ∩
𝑁)𝑟. 

It follows from the two assertions that (𝑀 ∩ 𝑁)𝑟 = 𝑀𝑟 ∩ 𝑁𝑟 .     
□ 

Proposition 4. Let 𝑀 and 𝑁 be multisets over a base set 𝑋, 

then (𝑀 ∪ 𝑁)𝑟 = 𝑀𝑟 ∪ 𝑁𝑟 where 𝑀𝑟 and 𝑁𝑟 are the 𝑟th 

reference sets of 𝑀 and 𝑁, respectively. 

Proof. 

Let 𝑥 ∈ (𝑀 ∪ 𝑁)𝑟. Then 𝑥 belongs to the 𝑟th reference set of 

𝑀 ∪ 𝑁. Thus, 𝑥 belongs to the 𝑟th reference set of 𝑀 or 𝑥 

belongs to the 𝑟th reference set of 𝑁. That is, 𝑥 ∈ 𝑀𝑟 or 𝑥 ∈
𝑁𝑟. Which means 𝑥 ∈ 𝑀𝑟 ∪ 𝑁𝑟 . Hence, (𝑀 ∪ 𝑁)𝑟 ⊂ 𝑀𝑟 ∪
𝑁𝑟. 

Conversely, Let 𝑥 ∈ 𝑀𝑟 ∪ 𝑁𝑟 . Then 𝑥 ∈ 𝑀𝑟 or 𝑥 ∈ 𝑁𝑟. That 

is  𝑥 belongs to the 𝑟th reference set of 𝑀 or 𝑥 belongs to the 

𝑟th reference set of 𝑁. Thus, 𝑥 belongs to the 𝑟th reference set 

of 𝑀 ∪ 𝑁. Thus, 𝑥 ∈ (𝑀 ∪ 𝑁)𝑟. Hence, 𝑀𝑟 ∪ 𝑁𝑟 ⊂ (𝑀 ∪
𝑁)𝑟. 

It follows from the two assertions that (𝑀 ∪ 𝑁)𝑟 = 𝑀𝑟 ∪ 𝑁𝑟 .     
□ 

Corollary 5. (This is a corollary from the pair-wise equality 

theorem for ordered multisets. See Peter and Singh (2013)). 

Let 𝑀 and 𝑁 be multisets over a base set 𝑋, then 𝑀 = 𝑁 if 

and only if 𝑀𝑟 = 𝑁𝑟, where 𝑀𝑟 and 𝑁𝑟 are the 𝑟th reference 

sets of 𝑀 and 𝑁, respectively. 

Proof.  

Let 𝑀 and 𝑁 be multisets over a domain set 𝑋 and suppose 

𝑀𝑖 = 𝑁𝑗  for all 𝑖 = 𝑗. Since 𝑀𝑖 are the references of 𝑀,  an 

element 𝑥 of 𝑀 belongs to 𝑀𝑖 for some 𝑖. Since only 

unidentical elements  belong to any set-based reference of a 

multiset, only one occurrence of 𝑥 belongs to a reference 

containing 𝑥 of 𝑀. Thus, 𝑀(𝑥) = 𝛼𝑀(𝑥) where  𝛼𝑀(𝑥) denotes 

the number of references of 𝑀 containing 𝑥. By hypothesis, 

𝑁𝑗 contains 𝑥 for some 𝑗 and only one occurrence of 𝑥 belongs 

to 𝑁𝑗. Thus, 𝑀(𝑥) = 𝑁(𝑥)∀𝑥 ∈ 𝑋.  Therefore, 𝑀 = 𝑁. 

The Converse follows from the Pairwise Equality Theorem in 

Peter and Singh (2013). 
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Proposition 6. (First reference theorem) If 𝑀𝑟, 𝑟 ∈ ℕ are the 

reference sets of a multiset 𝑀 over a base set 𝑆, then 𝐶𝑀(𝑥) =
∑ 𝜒𝑀𝑟

(𝑥)𝑛∈ℕ , where 𝜒𝑀𝑟
 is the characteristric function of 𝑀𝑟. 

Proof. 

By the definition of reference sets of a multiset, the number 𝑟 

of references 𝑀𝑟 containing 𝑥 is the same as the cardinality of 

𝑥 in 𝑀.  

That is, 𝑥 ∈𝑟 𝑀 holds. 

Moreover, 𝜒𝑀𝑟
(𝑥) = 1 and 𝑟(𝜒𝑀𝑟

(𝑥)) = 𝑟 = ∑ 𝜒𝑀𝑟
(𝑥)𝑟∈ℕ  

Hence, 𝒞𝑀(𝑥) = ∑ 𝜒𝑀𝑟
(𝑥)𝑛∈ℕ  

Proposition 7. (Second reference theorem) A multiset is the 

union of all  

Let 𝑁𝑟 be the 𝑟-regular multisets of the reference sets 𝑀𝑟, 𝑟 ∈
ℕ of a multiset 𝑀 over a base set 𝑆, then 𝑀 = ⋃ 𝑁𝑟𝑟∈ℕ . 

Proof. 

Let 𝑥 ∈+ 𝑀. By definition of 𝑁𝑟 , 𝑥 ∈ 𝑁𝑟 for some 𝑟 ∈ ℕ. In 

particular, 𝑥 ∈ 𝑁𝑟 implies 𝑥 ∈𝑟 𝑀𝑟. This implies 

𝑥 ∈+ ⋃ 𝑀𝑟𝑟∈ℕ  

Conversely, Let 𝑥 ∈+ ⋃ 𝑀𝑟𝑟∈ℕ . Then 𝑥 ∈𝑟 𝑀𝑟 for some 𝑟 ∈
ℕ. Thus, 𝑥 ∈ 𝑁𝑟 implies 𝑥 ∈ 𝑁𝑟−1. Thus, This implies that 

𝑥 ∈ 𝑁𝑟 for some 𝑟 ∈ ℕ. Since 𝑀 = ⋃ 𝐴𝑟𝑟∈ℕ .    𝑥 ∈+ 𝑀. 

Proposition 8 Let 𝑋 𝑎𝑛𝑑 𝑌 be nonempty sets and let 𝑓: 𝑋 → 𝑌 

be a mapping from 𝑋 to 𝑌. Then 𝑀1 ⊆ 𝑀2 implies 𝑓(𝑀1) ⊆
𝑓(𝑀2). 

Proof 

We need to show that if  

𝑥 ∈𝑛 𝑀1 ⟹ 𝑥 ∈𝑚 𝑀2 for some 𝑚 ≥ 𝑛,  (8) 

then  

𝑦 ∈𝑛 𝑓(𝑀2) for some 𝑚 ≥ 𝑛.    (9) 

By definition, 𝑀1 ⊆ 𝑀2 means 

∀𝑥 ∈+ 𝑀1, 𝑥 ∈+ 𝑀2 and 𝑥 ∈𝑛 𝑀1 ⟹
𝑥 ∈𝑚 𝑀2 for some 𝑚 ≥ 𝑛     (10) 

The image of 𝑀 under 𝑓 is given by: 

𝑦 ∈𝑛 𝑓(𝑀) if and only if ∃𝑥 ∈𝑛 𝑀 such that 𝑓(𝑥) = 𝑦   
     (11) 

Suppose 𝑦 ∈𝑛 𝑓(𝑀1). By the definition of multiset image, 

this means ∃𝑥 ∈𝑛 𝑀1 such that 𝑓(𝑥) = 𝑦. 
Since 𝑀1 ⊆ 𝑀2, we know that: 𝑥 ∈𝑚 𝑀2 for some 𝑚 ≥ 𝑛. 

Thus, 𝑦 ∈𝑚 𝑓(𝑀𝑀2) for some 𝑚 > 𝑛. 
Thus, 𝑦 ∈+ 𝑓(𝑀1) ⟹ 𝑦 ∈+ 𝑓(𝑀2).  
Proposition 9. Let 𝑋 𝑎𝑛𝑑 𝑌 be nonempty sets and let 𝑓: 𝑋 →
𝑌 be a mapping from 𝑋 to 𝑌. Then 𝑓[⋃ 𝑀𝑖𝑖∈𝐼 ] ⊆ ⋃ 𝑓[𝑀𝑖]𝑖∈𝐼 . 

Proof 

We need to show that for any 𝑦 ∈ 𝑌 

 𝑦 ∈+ 𝑓[⋃ 𝑀𝑖𝑖∈𝐼 ] ⟹ 𝑦 ∈+ ⋃ 𝑓(𝑀𝑖)𝑖∈𝐼   (12) 

Suppose 𝑦 ∈+ 𝑓[⋃ 𝑀𝑖𝑖∈𝐼 ]. By the definition of image, 

∃𝑥 ∈+ ⋃ 𝑀𝑖𝑖∈𝐼  such that 𝑓(𝑥) = 𝑦. 
By the definition of union, this means  

∃𝑖 ∈ 𝐼, 𝑥 ∈+ 𝑀𝑖. 

Applying the definition of image to each 𝑀𝑖: 

𝑦 ∈+ 𝑓(𝑀𝑖) for some 𝑖 ∈ 𝐼.      (13) 

Thus,  

𝑦 ∈+ ⋃ 𝑓(𝑀𝑖)𝑖∈𝐼      (14) 

This proves  
[⋃ 𝑀𝑖𝑖∈𝐼 ] ⊆ ⋃ 𝑓(𝑀𝑖)𝑖∈𝐼    (15) 

Proposition 10 Let 𝑋 𝑎𝑛𝑑 𝑌 be nonempty sets and let 𝑓: 𝑋 →
𝑌 be a mapping from 𝑋 to 𝑌. Then. 𝑀1 ⊆
𝑀2 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑓−1[𝑀1] ⊆ 𝑓−1[𝑀2] 
Proof 

We need to show that if 𝑦 ∈𝑛 𝑀1 ⟹ 𝑦 ∈𝑚 𝑀2, then 

𝑥 ∈𝑛 𝑓−1[𝑀1] ⟹ 𝑥 ∈𝑛 𝑓−1[𝑀2] for some 𝑚 ≥ 𝑛. 
By definition 𝑀1 ⊆ 𝑀2 means ∀𝑦 ∈+ 𝑀1, 𝑦 ∈+ 𝑀2 and 

𝑦 ∈𝑛 𝑀1 ⟹ 𝑦 ∈𝑚 𝑀2 for some 𝑚 ≥ 𝑛. 
Using Singh’s notation, the inverse image under 𝑓 is defined 

as: 𝑥 ∈𝑛 𝑓−1[𝑀] if and only if 𝑓(𝑥) ∈𝑛 𝑀. 

Suppose 𝑀1 ⊆ 𝑀2, we have: 

𝑓(𝑥) ∈𝑚 𝑀2 for some 𝑚 ≥ 𝑛.     (16) 

Thus, 𝑥 ∈+ 𝑓−1[𝑀1] ⟹ 𝑥 ∈+ 𝑓−1[𝑀2]. Hence the proof. 

Proposition 11 Let 𝑋 𝑎𝑛𝑑 𝑌 be nonempty sets and let 𝑓: 𝑋 →
𝑌 be a mapping from 𝑋 to 𝑌, then 𝑓−1[⋃ 𝑀𝑖𝑖∈𝐼 ] =
⋃ 𝑓−1[𝑀𝑖]𝑖∈𝐼 . 

Proof 

We need to show that for every 𝑥 ∈+ 𝑋: 
𝑥 ∈+ 𝑓−1[⋃ 𝑀𝑖𝑖∈𝐼 ] if and only if 𝑥 ∈+ ⋃ 𝑓−1[𝑀𝑖]𝑖∈𝐼   
     (17) 

By definition, the inverse image under 𝑓 is:  

𝑥 ∈+ 𝑓−1(𝑀) if and only if 𝑓(𝑥) ∈+ 𝑀   (18) 

An element belongs to the union of multisets if and only if it 

belongs to at least one of the multisets in the family. Using 

Singh’s notation: 

𝑦 ∈+ ⋃ 𝑀𝑖𝑖∈𝐼  if and only if ∃𝑖 ∈ 𝐼, 𝑦 ∈+ 𝑀𝑖     (19) 

Suppose 𝑥 ∈+ 𝑓−1[⋃ 𝑀𝑖𝑖∈𝐼 ]. By definition  

𝑓(𝑥) ∈+ ⋃ 𝑀𝑖𝑖∈𝐼         (20) 

By the definition of union: 

∃𝑖 ∈ 𝐼, 𝑓(𝑥) ∈+ 𝑀𝑖    (21) 

By the inverse image definition  

𝑥 ∈+ 𝑓−1(𝑀𝑖)      (22) 

Thus,  

𝑥 ∈+ ⋃ 𝑓−1[𝑀𝑖]𝑖∈𝐼      (23) 

Conversely, suppose 𝑥 ∈+ ⋃ 𝑓−1[𝑀𝑖]𝑖∈𝐼   (24) 

By the definition of union: 

∃𝑖 ∈ 𝐼, 𝑥 ∈+ 𝑓−1(𝑀𝑖)      (25) 

By the definition of inverse image again: 

𝑥 ∈+ 𝑓−1[⋃ 𝑀𝑖𝑖∈𝐼 ]     (26) 

Hence the proof. 

Proposition 12 Let 𝑋 𝑎𝑛𝑑 𝑌 be nonempty sets and let 𝑓: 𝑋 →
𝑌 be a mapping from 𝑋 to 𝑌. Then 𝑓−1[⋂ 𝑀𝑖𝑖∈𝐼 ] =
⋂ 𝑓−1[𝑀𝑖]𝑀𝑖

. 

Proof 

We need to show that for any element 𝑥 ∈ 𝑋, 

𝑥 ∈+ 𝑓−1[⋂ 𝑀𝑖𝑖∈𝐼 ] if and only if 𝑥 ∈+ ⋂ 𝑓−1[𝑀𝑖]𝑀𝑖
. 

We Note that  𝑥 ∈+ 𝑓−1[𝑀𝑖] if and only if 𝑓(𝑥) ∈+ 𝑀. 

Moreover, 𝑦 ∈+ ⋂ 𝑀𝑖𝑖∈𝐼  if and only if ∀𝑖 ∈ 𝐼, 𝑦 ∈+ 𝑀𝑖. Now 

suppose 𝑥 ∈ 𝑓−1[⋂ 𝑀𝑖𝑖∈𝐼 ]. By definition of the inverse 

image: 𝑓(𝑥) ∈+ ⋂ 𝑀𝑖𝑖∈𝐼 .  

By the definition of intersection: 

∀𝑖 ∈ 𝐼, 𝑓(𝑥) ∈+ 𝑀𝑖         (27)  

Appplying the inverse image to each 𝑀𝑖:  

∀𝑖 ∈ 𝐼, 𝑥 ∈+ 𝑓−1(𝑀𝑖)    (28) 

Thus,  

𝑥 ∈+ ⋂ 𝑓−1[𝑀𝑖]𝑀𝑖
      (29) 

Conversely, suppose 𝑥 ∈+ 𝑓−1[⋂ 𝑀𝑖𝑖∈𝐼 ]. This means: 

∀𝑖 ∈ 𝐼, 𝑥 ∈+ 𝑓−1[𝑀𝑖]      (30) 

By the definition of inverse image: 

∀𝑖 ∈ 𝐼, 𝑓(𝑥) ∈+ 𝑀𝑖      (31) 

By the definition of intersection: 

𝑓(𝑥) ∈+ ⋂ 𝑀𝑖𝑖∈𝐼      (32) 

Applying the definition of inverse image again: 

𝑥 ∈+ 𝑓−1[⋂ 𝑀𝑖𝑖∈𝐼 ]     (33) 

Having shown both directions, the result follows. 

Proposition 13 Let 𝑋 𝑎𝑛𝑑 𝑌 be nonempty sets and let 𝑓: 𝑋 →
𝑌 be a mapping from 𝑋 to 𝑌. Then 𝑓(𝑀) ⊆ 𝑁 implies 𝑀 ⊆
𝑓−1(𝑁). 

Proof 

The assumption 𝑓(𝑀) ⊆ 𝑁 means ∀𝑦 ∈ 𝑌, 𝑦 ∈𝑛 𝑓(𝑀) ⟹
𝑦 ∈𝑚 𝑁 with 𝑛 ≤ 𝑚 where 𝑚, 𝑛 ∈ ℕ. That is, every 𝒚 in 

𝑓(𝑀) appears in 𝑵 at least as many times. Also, 𝑀 ⊆ 𝑓−1(𝑁) 

means the inverse image of 𝑁 consists of all 𝑥 ∈ 𝑋 such that 

𝑓(𝑥) ∈+ 𝑁. This means 𝑓(𝑥) appears at least once in 𝑁. Since 

𝑥 contributes to 𝑓(𝑥) in 𝑓(𝑀), and 𝑓(𝑀) ⊆ 𝑁, it follows that 
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𝑥 must appear in 𝑓−1(𝑁) as many times as in 𝑀. Thus, we 

have 𝑥 ∈𝑛 𝑀 ⟹ 𝑥 ∈𝑛 𝑓−1(𝑁). 

Proposition 14 Let 𝑋 𝑎𝑛𝑑 𝑌 be nonempty sets and let 𝑓: 𝑋 →

𝑌 be a mapping from 𝑋 to 𝑌. Then 𝑔(𝑓((𝑀)) = (𝑔𝑓)(𝑀). 

Proof  

Suppose 𝑧 ∈𝑛 𝑔(𝑓(𝑀)). By definition, 

⋁ 𝑦 ∈𝑛 𝑓(𝑀).𝑔(𝑦)=𝑧       (34) 

Expanding 𝑦 ∈𝑛 𝑓(𝑀) using the definition of image: 

⋁ ⋁ 𝑥𝑓(𝑥)=𝑦 ∈𝑛 𝑀.𝑔(𝑦)=𝑧    (35) 

Rearranging the logical structure: 

⋁ 𝑥 ∈𝑛 𝑀.𝑔(𝑓(𝑥))=𝑧      (36) 

Since 𝑔(𝑓(𝑥)) = (𝑔 ∘ 𝑓)(𝑥), we obtain: 

𝑧 ∈𝑛 (𝑔 ∘ 𝑓)(𝑀).       (37) 

Conversely, Suppose 𝑧 ∈𝑛 (𝑔 ∘ 𝑓)(𝑀). By the definition,  

⋁ 𝑥 ∈𝑛 𝑀.(𝑔∘𝑓)(𝑥)=𝑧    (38) 

Expanding (𝑔 ∘ 𝑓)(𝑥) as 𝑔(𝑓(𝑥)), we get: 

⋁ 𝑥 ∈𝑛 𝑀.𝑔(𝑓(𝑥))=𝑧      (39) 

Rewriting this using the definition of image, 

⋁ ⋁ 𝑥𝑓(𝑥)=𝑦 ∈𝑛 𝑀.𝑔(𝑦)=𝑧     (40) 

Since the left hand side of this matches the definition of 

𝑔(𝑓(𝑀)),  we get 

𝑧 ∈𝑛 𝑔(𝑓(𝑀)).        (41) 

Proposition 4.15 Let 𝑋 𝑎𝑛𝑑 𝑌 be nonempty sets and let 𝑓: 𝑋 →
𝑌 and 𝑔: 𝑌 → 𝑍 be mappings. Then for any multiset 𝑁𝑗 in 𝑍, 

𝑓−1[𝑔−1(𝑁𝑗)] = [𝑔𝑓]−1(𝑁𝑗).   (42) 

Proof. 

We need to show that for all 𝑥 ∈ 𝑋, 

𝑥 ∈𝑛 𝑓−1[𝑔−1(𝑁𝑗)] if and only if 𝑥 ∈𝑛 [𝑔𝑓]−1(𝑁𝑗)  

     (43) 

By the definition of inverse mapping,  

𝑦 ∈𝑚 𝑔−1(𝑁𝑗) if and only if 𝑔(𝑦) ∈𝑚 𝑁𝑗    (44) 

Applying 𝑓−1 to both sides, 

𝑥 ∈𝑛 𝑓−1[𝑔−1(𝑁𝑗)] if and only if 𝑓(𝑥) ∈𝑛 𝑔−1(𝑁𝑗)  

Expanding 𝑔−1(𝑁𝑗) in terms of 𝑁𝑗: 

Since 𝑓(𝑥) ∈𝑛 𝑔−1(𝑁𝑗), by the definition of inverse image, 

this implies  

𝑔(𝑓(𝑥)) ∈𝑛 𝑁𝑗  

This is the definition of (𝑔𝑓)−1(𝑁𝑗). 

This means 𝑥 ∈𝑛 [𝑔𝑓]−1(𝑁𝑗). 

 

CONCLUSION 

The Singh’s dressed epsilon approach provides a more 

intuitive, concise, and natural way to reason about multisets. 

It avoids unnecessary complications with counting functions, 

allowing proofs to stay focused on membership properties 

rather than arithmetic. This makes it particularly useful when 

working with set operations, functions, and inverse images in 

multiset theory. 
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