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ABSTRACT 

Dengue fever, a major mosquito-borne disease, poses significant global health challenges, particularly in 

tropical and subtropical regions. Traditional epidemiological models often fail to capture the memory-

dependent dynamics and complexities of disease transmission, limiting their effectiveness in informing public 

health strategies. This study introduces a novel fractional-order dengue transmission model using the Caputo 

fractional derivative to incorporate memory effects. The model considers both vector and non-vector 

transmission pathways, along with mosquito-to-mosquito transmission. The basic reproduction number (𝑅0) 
was derived using the next-generation matrix method. Stability analyses were performed to explore the 

conditions under which backward bifurcation occurs, with a particular focus on the influence of mosquito-to-

mosquito transmission dynamics. Stability analysis revealed that backward bifurcation arises when the 

reproduction number associated with mosquito-to-mosquito transmission exceeds one, highlighting its critical 

role in dengue dynamics. Numerical simulations demonstrated that fractional-order models effectively delay 

epidemic peaks and extend the transition period of exposed populations, providing extended windows for 

timely interventions. Sensitivity analysis identified mosquito-to-human and mosquito-to-mosquito 

transmission rates as key drivers of 𝑅0 emphasizing the need for targeted control measures, including vector 

control and vaccination campaigns. This study demonstrates that fractional-order models are superior to 

traditional integer-order models in capturing the complex dynamics of dengue transmission. By integrating 

memory effects and analyzing critical transmission pathways, the model offers a more realistic framework for 

understanding dengue spread. These findings provide valuable insights for optimizing public health 

interventions, emphasizing the transformative potential of fractional-order models in sustainable dengue 

control and future research.  

 

Keywords: Dengue transmission, Fractional order modelling, Backward Bifurcation, Mosquito-to-mosquito  
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INTRODUCTION 

Dengue virus (DENV) is one of the most prevalent vector-

borne diseases, affecting millions globally each year, with 

outbreaks increasingly observed in tropical and subtropical 

regions. The complex nature of its transmission dynamics, 

involving human hosts and Aedes Aegypti mosquitoes, 

necessitates advanced mathematical modeling approaches to 

understand and predict its spread. Traditional epidemiological 

models, such as those based on the SIR framework, have been 

instrumental in understanding dengue virus dynamics. 

However, these models often rely on integer-order derivatives 

that may not fully capture the memory-dependent and 

complex interactions inherent in disease transmission. To 

address these limitations, fractional-order calculus has 

emerged as a robust mathematical tool that provides a more 

realistic representation of biological systems, incorporating 

memory effects and non-local interactions (Alshehry et al. 

2024; Nasir et al. 2024) 

Several researchers have emphasized the importance of 

fractional-order modeling in understanding the intricacies of 

dengue virus transmission. (Alshehry et al. 2024) employed 

the Caputo–Fabrizio fractional derivative to refine dengue 

transmission models, showcasing its ability to address non-

singular kernel dynamics and improve computational 

efficiency. Meena and Purohit (2024) contributed by 

exploring mathematical analysis using fractional operators, 

further validating their effectiveness in studying dengue's 

nonlinear dynamics. 

The Caputo fractional derivative, in particular, has gained 

traction for its ability to generalize classical models while 

maintaining mathematical rigor and computational efficiency 

(Olayiwola & Yunus. 2024: Usman et al. 2024). Studies 

incorporating this derivative have explored various 

interventions, such as quarantine measures, vaccination 

campaigns, and vector control strategies, emphasizing the 

real-world applicability of fractional models (Pandey & 

Phaijoo, 2024; Meetei et al. 2024). Moreover, advanced 

numerical methods and optimal control approaches have been 

developed to enhance the analysis of fractional-order models 

(Vijayalakshmi et al. 2024; Adel et al. 2024).  

Regional studies have also contributed to understanding 

dengue's transmission dynamics in specific contexts. Pandey 

and Phaijoo (2024) used a fractional Caputo model with 

optimal control strategies to analyze dengue in Nepal, while 

Asaduzzaman et al. (2024) tailored a fractional-order ASIR 

model for Bangladesh, underscoring the value of context-

specific approaches (Pandey & Phaijoo, 2024; Asaduzzaman 

et al. 2024). These studies demonstrate how regional factors, 

such as vaccination rates, public health infrastructure, and 

mosquito control efforts, can influence epidemic outcomes. 

Several works have delved deeper into the biological 

underpinnings of dengue transmission. Olayiwola and Yunus 

(2024) examined within-host dengue virus dynamics, 

integrating adaptive immunity into their fractional-order 

models. Xu et al. (2024) provided a quantitative analysis of 

host-virus interactions, emphasizing the importance of 
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including biological and immunological factors in modeling 

efforts. 

A review by Nisar et al. (2024) consolidated the applications 

of fractional-order epidemic models, highlighting their 

evolution and future potential in tackling complex life 

sciences problems. Additionally, Sk et al. (2024) examined 

the global stability and optimal control of fractional-order 

transmission and recovery processes, stressing the influence 

of fractional parameters on DENV disease progression. 

Studies by Islam et al. (2024) and Naaly et al. (2024) 

reinforced these findings by integrating public health 

strategies, such as mass awareness campaigns and vector 

control measures, into fractional models. 

Other innovative approaches include those by Olayiwola and 

Alaje (2024), who investigated antigenic immunity and its 

impact on dengue dynamics, and Meetei et al. (2024), who 

utilized compartmental fractional-order models to refine our 

understanding of dengue transmission. Further, studies by 

Vellappandi et al. (2024) and Kumar et al. (2024) explored 

optimal control problems and transmission dynamics using 

Caputo fractional derivatives, highlighting their ability to 

model real-world complexities effectively. 

Finally, advancements in computational methods, such as 

those by El-shenawy et al. (2024) and Adel et al. (2024), have 

improved the simulation and analysis of fractional-order 

systems, making them more accessible for public health 

applications. Shanmugam and Byeon (2024) extended these 

insights by reviewing analytical methods across multiple 

diseases, demonstrating the broader applicability of fractional 

models in epidemiology. 

The present study advances this extensive body of work by 

developing a novel fractional-order dengue transmission 

model that incorporates both vector and non-vector 

transmission pathways. Unlike previous studies, this model 

integrates detailed epidemiological transitions, such as 

susceptibility, exposure, infection, vaccination, and recovery, 

within a fractional-order framework. Using the Caputo 

fractional derivative, the model captures memory effects and 

delayed interactions to better reflect the real-world 

complexity of dengue virus epidemics. The next-generation 

matrix methodology is employed to derive the basic 

reproduction number, a critical threshold parameter that 

determines the potential for disease outbreaks. Stability 

analysis is performed to assess the equilibrium states, 

providing insights into the long-term behavior of the system. 

Numerical simulations were conducted to explore the 

dynamics of the disease under varying conditions, offering 

practical strategies for controlling the spread of dengue and 

enhancing public health interventions. 

 

MATERIALS AND METHODS 

To address the limitations of traditional DENV transmission 

models and provide a more comprehensive understanding of 

DENV dynamics, this study presents a fractional-order 

mathematical model for dengue virus transmission, 

incorporating both vector and non-vector pathways, as well as 

mosquito-to-mosquito transmission dynamics. The model 

utilizes the Caputo fractional derivative to account for 

memory effects inherent in biological systems. Key 

epidemiological compartments are defined, including 

susceptible, exposed, infected, vaccinated, and recovered 

populations. 

 

DENV Integer -Order Model formulation 

In formulating the Dengue fever Integer order model, we 

assume that; (i) Dengue is transmitted between humans and 

mosquitoes, human-to-human and mosquito-to-mosquito 

transmission. (ii) Humans are divided into susceptible, 

exposed, infectious, and recovered compartments and 

Mosquitoes are divided into susceptible, exposed, and 

infectious compartments. (iii) Humans and mosquitoes mix 

homogeneously. (iv) Both humans and mosquitoes 

experience a non-infectious incubation period after acquiring 

the virus. (v) Recovered humans are assumed to have 

temporal immunity to reinfection. (vi) The mosquito biting 

rate is constant. (vii) Both humans and mosquitoes experience 

disease-related mortality rate.  

We divided the Human population into five (5) 

compartments; Dengue fever susceptible compartment 𝐻𝑆, 

Dengue fever imperfect vaccinated compartment 𝐻𝑉,Dengue 

fever exposed compartment 𝐻𝐸, Dengue virus infectious 

compartment 𝐻𝐼 and Dengue fever recovered compartment 

𝐻𝑅. We equally divided the Mosquito population into three 

(3) compartments; Dengue fever susceptible mosquitoes’ 

compartment𝑀𝑆, Dengue fever exposed mosquitos’ 

compartment 𝑀𝐸  and Dengue fever infectious mosquitos’ 

compartment𝑀𝐼. The total human population is represented 

by 𝑇ℎ while the total mosquito population is represented by 

𝑇𝑚 and Total population given as𝑇ℎ𝑚. 

Dengue fever Susceptible Compartment𝐻𝑆, is recruited at the 

rate ofΛ𝐻. The compartment reduces by natural death rate 𝜇ℎ 

and also by the proportion of humans becoming infected after 

having contacts with either Dengue fever infected human or  

Dengue fever infected mosquitoes at rate of 𝛽ℎ(either Dengue 

fever infected human at the rate 𝜌1 or Dengue fever infected 

mosquito at the rate𝜌2𝜔 with 𝜔 as the mosquito biting rate) 

and the rate of vaccination  𝜀 . This compartment also grows 

by the rate that the recovered loses immunity 𝜙ℎ and by the 

rate at which the vaccine wanes so that the vaccinated 

becomes susceptible again at the rate𝜎. 

We therefore formulated the dynamics of Dengue fever 

susceptible compartment as; 
𝑑𝐻𝑆

𝑑𝑡
= Λ𝐻 + 𝜙ℎ𝐻𝑅 + 𝜀𝐻𝑉 − (𝜇ℎ + 𝜎 + 𝛽ℎ)𝐻𝑆 (1) 

Imperfect Vaccinated Human Compartment 𝐻𝑉 grows due to 

vaccination 

Rate 𝜀 and the compartment reduces due to vaccine waning 

rate 𝜎and natural death at rate𝜇ℎ. The dynamics of Dengue 

fever vaccinated compartment is modeled as follows; 
𝑑𝐻𝑉

𝑑𝑡
= 𝜎𝐻𝑆 − (𝜇ℎ + 𝜀)𝐻𝑉   (2) 

Dengue fever Exposed Human Compartment 𝐻𝐸 increases as 

a result of the proportion 

Of individuals that are infected newly at the rate of 𝛽ℎ. This 

class reduces by the rate at which the exposed becomes fully 

infectious at rate 𝜃ℎ and by natural death rate𝜇ℎ. This 

Population is formulated as follows; 
𝑑𝐻𝐸

𝑑𝑡
= 𝛽ℎ𝐻𝑆 − (𝜇ℎ + 𝜃ℎ)𝐻𝐸   (3) 

Dengue fever Infectious Human Compartment 𝐻𝐼 grows due 

to the progression of 

The exposed to the infected class at rate 𝜃ℎ. The population 

reduces by natural death rate𝜇ℎ, death due to dengue virus 

disease at rate 𝛿ℎand due to recovery rate𝜏ℎ. The dynamics of 

this compartment is formulated as; 
𝑑𝐻𝐼

𝑑𝑡
= 𝜃ℎ𝐻𝐸 − (𝜇ℎ + 𝛿ℎ + 𝜏ℎ)𝐻𝐼  (4) 

Dengue fever Recovered Human Compartment 𝐻𝑅 grows due 

to recovery rate𝜏ℎ. The compartment reduces due to natural 

death at rate 𝜇ℎ and those that recovered losing immunity at 

the rate𝜙ℎ. The dynamics of this class is formulated as; 
𝑑𝐻𝑅

𝑑𝑡
= 𝜏ℎ𝐻𝐼 − (𝜇ℎ +𝜙ℎ)𝐻𝑅   (5) 

Dengue fever Susceptible Mosquito Compartment 𝑀𝑆 is 

recruited at rateΛ𝑀. The compartment reduces by the rate at 

which the susceptible mosquitoes becomes infected after 
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having contact with infected humans or infected mosquitoes 

at rate 𝛽𝑚 (either Dengue fever infected human at the rate 

𝜂1𝜔or Dengue fever infected mosquito at the rate𝜂2with 𝜔 as 

the mosquito biting rate) and by natural death of mosquitoes 

at rate 𝜇𝑚. The dynamics of this compartment is formulated 

as; 
𝑑𝑀𝑆

𝑑𝑡
= Λ𝑀 − (𝜇𝑚 + 𝛽𝑚)𝑀𝑆   (6) 

Dengue fever Exposed Mosquito Compartment 𝑀𝐸 grows at 

the rate by which the 

Newly infected susceptible mosquitoes progress to the 

exposed class at the rate𝛽𝑚, the class reduces due to the rate 

by which the exposed mosquitoes become fully infected at the 

rate 𝜃𝑚 

And by mosquitos’ natural death rate𝜇𝑚. The dynamics of this 

class is formulated as follows; 
𝑑𝑀𝐸

𝑑𝑡
= 𝛽𝑚𝑀𝑆 − (𝜇𝑚 + 𝜃𝑚)𝑀𝐸  (7) 

Dengue fever infectious Mosquito Compartment 𝑀𝐼 grows 

due to the progression of the exposed that becomes fully 

infectious at rate𝜃𝑚. This compartment reduces due to natural 

mosquitoes’ death at the rate 𝜇𝑚 and finally death due to 

disease at the rates𝛿𝑚. The equation that corresponds to this 

compartment is presented as; 
𝑑𝑀𝐼

𝑑𝑡
= 𝜃𝑚𝑀𝐸 − (𝜇𝑚 + 𝛿𝑚)𝑀𝐼  (8) 

The Dengue model schematic diagram is shown in Figure 1  

 

 
Figure 1: Dengue Model Schematic Diagram 

 

The mathematical model equation that corresponds to our 

description above is given by;  

(𝑎)
𝑑𝐻𝑆

𝑑𝑡
= Λ𝐻 + 𝜙ℎ𝐻𝑅 + 𝜎𝐻𝑉 − (𝜇ℎ + 𝜀 + 𝛽ℎ)𝐻𝑆

(𝑏)
𝑑𝐻𝑉

𝑑𝑡
= 𝜀𝐻𝑆 − (𝜇ℎ + 𝜎)𝐻𝑉

(𝑐)
𝑑𝐻𝐸

𝑑𝑡
= 𝛽ℎ𝐻𝑆 − (𝜇ℎ + 𝜃ℎ)𝐻𝐸

(𝑑)
𝑑𝐻𝐼

𝑑𝑡
= 𝜃ℎ𝐻𝐸 − (𝜇ℎ + 𝛿ℎ + 𝜏ℎ)𝐻𝐼

(𝑒)
𝑑𝐻𝑅

𝑑𝑡
= 𝜏ℎ𝐻𝐼 − (𝜇ℎ + 𝜙ℎ)𝐻𝑅

(𝑓)
𝑑𝑀𝑆

𝑑𝑡
= Λ𝑀 − (𝜇𝑚 + 𝛽𝑚)𝑀𝑆

(𝑔)
𝑑𝑀𝐸

𝑑𝑡
= 𝛽𝑚𝑀𝑆 − (𝜇𝑚 + 𝜃𝑚)𝑀𝐸

(ℎ)
𝑑𝑀𝐼

𝑑𝑡
= 𝜃𝑚𝑀𝐸 − (𝜇𝑚 + 𝛿𝑚)𝑀𝐼 }

 
 
 
 
 
 

 
 
 
 
 
 

 

     (9) 

 

And the dengue rate of infectivity for both populations 𝛽ℎ  and 

𝛽𝑚defined as follows; 

𝛽ℎ =
𝜌1𝐻𝐼+𝜌2𝜔𝑀𝐼

𝑇ℎ𝑚
𝑎𝑛𝑑𝛽𝑚 =

𝜂1𝜔𝐻𝐼+𝜂2𝑀𝐼

𝑇ℎ𝑚
  (10) 

The dengue virus model variables and parameter descriptions 

are presented in Table 1 and Table 2 respectively. 

 

Dengue Virus Model Variables and Parameter Descriptions, Values and Source 

Table 1: DENV Model Variables Description 

Variables  Description  Values Source 

𝐻𝑆 DENV Susceptible human Class 406,250 Mohammed et al. (2022) 

𝐻𝑉 DENV Vaccinated  human Class 20000 Mohammed et al. (2022) 

𝐻𝐸 DENV Exposed human Class 369,150 Mohammed et al. (2022) 

𝐻𝐼 DENV Infectious human Class 156,170 Mohammed et al. (2022) 

𝐻𝑅 DENV Recovered human Class  20,000 Mohammed et al. (2022) 

𝑀𝑆 DENV Susceptible Mosquitoes Class 40,200 Mohammed et al. (2022) 

𝑀𝐸 DENV Exposed Mosquitoes Class 32,000 Mohammed et al. (2022) 

𝑀𝐼 DENV Infectious Mosquitoes Class 21,200 Mohammed et al. (2022) 
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Table 2: DENV Model Parameters Description 

Parameters Description  Value Source 

𝛬𝐻 Human  recruitment rate  0.0000406 Mohammed et al. (2022) 

𝛬𝑀 Mosquito recruitment rate  0.0005789 Naaly et al. (2024) 

𝜀 Human Imperfect vaccination rate 0.8 Mohammed et al. (2022) 

𝜎 Vaccine waning rate  0.25 Mohammed et al. (2022) 

𝜃ℎ Exposed to Infectious human progression rate  0.1667 Naaly et al. (2024) 

𝜃𝑚 Exposed to Infectious Mosquito progression rate 0.1428 Naaly et al. (2024) 

𝜏ℎ Infectious to Recovered Human progression rate  0.14286 Naaly et al. (2024) 

𝜙ℎ Recovered to Susceptible Human progression rate  0.011 Naaly et al. (2024) 

𝜇ℎ Human natural death rate  0.0000457 Naaly et al. (2024) 

𝜇𝑚 Mosquito natural death rate 0.03 Naaly et al. (2024) 

𝛿ℎ Human DENV disease death rate 0.33 Mohammed et al. (2022) 

𝛿𝑚 Mosquito DENV disease death rate 0.05 WHO (2022) 

𝜔 Biting rate of Mosquitoes 0.5 Naaly et al. (2024) 

𝜌1 Human -to-human transmission probability rate  0.001 Rahman et al. (2022) 

𝜌2 Mosquito -to-human transmission probability rate  0.375 Naaly et al. (2024) 

𝜂1 Human -to-mosquito transmission probability rate  0.375 Naaly et al. (2024) 

𝜂2 Mosquito -to-mosquito transmission probability rate   0.02 Chitnis et al. (2021) 

 

DENV Fractional -Order Model Formulation 

We apply in this section some basic definitions from 

fractional calculus with the right and left fractional Caputo 

derivative as defined and applied in Atokolo et al. (2024), 

Herein, we extend the integer order model of Dengue fever 

presented in Equation (9) using Caputo fractional derivative 

operator. The new DENV mathematical model presented 

using Caputo fractional derivative operator has a higher 

degree of freedom as compared to the integer order model 

presented in Equation (9), as fractional order model output 

can be varied to have different responses. The fractional 

Dengue fever mathematical model equation is therefore 

presented as follows; 

(𝑎) 𝐷𝑐 𝑡
𝛼𝐻𝑆 = Λ𝐻 + 𝜙ℎ𝐻𝑅 + 𝜎𝐻𝑉 − 𝐵1𝐻𝑆

(𝑏) 𝐷𝑐 𝑡
𝛼𝐻𝑉 = 𝜀𝐻𝑆 − 𝐵2𝐻𝑉

(𝑐) 𝐷𝑐 𝑡
𝛼𝐻𝐸 = 𝛽ℎ𝐻𝑆 − 𝐵3𝐻𝐸

(𝑑) 𝐷𝑐 𝑡
𝛼𝐻𝐼 = 𝜃ℎ𝐻𝐸 − 𝐵4𝐻𝐼

(𝑒) 𝐷𝑐 𝑡
𝛼𝐻𝑅 = 𝜏ℎ𝐻𝐼 − 𝐵5𝐻𝑅

(𝑓) 𝐷𝑐 𝑡
𝛼𝑀𝑆 = Λ𝑀 − 𝐵6𝑀𝑆

(𝑔) 𝐷𝑐 𝑡
𝛼𝑀𝐸 = 𝛽𝑚𝑀𝑆 − 𝐵7𝑀𝐸

(ℎ) 𝐷𝑐 𝑡
𝛼𝑀𝐼 = 𝜃𝑚𝑀𝐸 − 𝐵8𝑀𝐼 }

 
 
 
 

 
 
 
 

 (11) 

Where; 
𝐵1 = (𝜇ℎ + 𝜀 + 𝛽ℎ), 𝐵2 = (𝜇ℎ + 𝜀), 𝐵3 = (𝜇ℎ + 𝜃ℎ), 𝐵4 = (𝜇ℎ + 𝛿ℎ + 𝜏ℎ),

𝐵5 = (𝜇ℎ + 𝜙ℎ), 𝐵6 = (𝜇𝑚 + 𝛽𝑚), 𝐵7 = (𝜇𝑚 + 𝜃𝑚), 𝐵8 = (𝜇𝑚 + 𝛿𝑚)
} 

     (12) 

Subject to the initial conditions; 
𝐻𝑆 = 𝐻𝑆0 > 0, 𝐻𝑉 = 𝐻𝑉0 ≥ 0,𝐻𝐸 = 𝐻𝐸0 ≥ 0,𝐻𝐼 = 𝐻𝐼0 ≥ 0,𝐻𝑅 = 𝐻𝑅0 ≥ 0,
𝑀𝑆 = 𝑀𝑆0 > 0,𝑀𝐸 = 𝑀𝐸0 ≥ 0𝑎𝑛𝑑𝑀𝐼 = 𝑀𝐼0 ≥ 0

}

     (13) 

 

DENV Model analysis 

In this section, we herein analyze the dynamic system of 

fractional DENV mathematical model in equation (11) as 

follows; 

 

Positivity of Solutions  

Herein, we show that the closed set Ωℎ𝑚 =

{(𝐻𝑆, 𝐻𝑉 , 𝐻𝐸 , 𝐻𝐼 , 𝐻𝑅, 𝑀𝑆, 𝑀𝐸, 𝑀𝐼) ∈ ℝ+
8 : 0 ≤ 𝑇ℎ𝑚} provides 

the fractional DENV dynamic system (11) positively 

invariant feasible region. 

Theorem 1 

The solutions of the fractional DENV mathematical model 

system (11) are non-negative and bounded if they start in Ωℎ𝑚 

. 

 Proof 

To mathematically prove positivity of solutions for the DENV 

fractional model in equation (11), we invoke the Comparison 

Theorem which applies because if the derivative  
𝑑𝑥

𝑑𝑡
 is non-

negative whenever 𝑥(𝑡) = 0 then 𝑥(𝑡) cannot decrease below 

zero. Thus, we apply the comparison theorem to equation (11) 

to ensure that each of the model state variables 
(𝐻𝑆, 𝐻𝑉 , 𝐻𝐸 , 𝐻𝐼 , 𝐻𝑅, 𝑀𝑆, 𝑀𝐸, 𝑀𝐼)  remains non- negative if it 

starts with non- negative initial value. 

For equation (11)(a);  

At 𝐻𝑆 = 0 the equation becomes   
𝑑𝐻𝑆

𝑑𝑡
= 𝛬𝐻 + 𝜙ℎ𝐻𝑅 +

𝜀𝐻𝑉 ≥ 0 since all variables and parameters are positive. 

Thus, 

 𝐻𝑆(𝑡) ≥ 0 ∀ 𝑡 ≥ 0. 

Similarly for equations (11) (b) – (h), we obtained the 

following; 

𝐷𝑐 𝑡
𝛼𝐻𝑆|𝐻𝑆=0

= Λ𝐻 + 𝜙ℎ𝐻𝑅 + 𝜀𝐻𝑉 ≥ 0

𝐷𝑐 𝑡
𝛼𝐻𝑉|𝐻𝑉=0

= 𝜎𝐻𝑆 ≥ 0

𝐷𝑐 𝑡
𝛼𝐻𝐸|𝐻𝐸=0

= 𝛽ℎ𝐻𝑆 ≥ 0

𝐷𝑐 𝑡
𝛼𝐻𝐼|𝐻𝐼=0

= 𝜃ℎ𝐻𝐸 ≥ 0

𝐷𝑐 𝑡
𝛼𝐻𝑅|𝐻𝑅=0

= 𝜏ℎ𝐻𝐼 ≥ 0

𝐷𝑐 𝑡
𝛼𝑀𝑆|𝑀𝑆=0

= Λ𝑀 ≥ 0

𝐷𝑐 𝑡
𝛼𝑀𝐸|𝑀𝐸=0

= 𝛽𝑚𝑀𝑆 ≥ 0

𝐷𝑐 𝑡
𝛼𝑀𝐼|𝑀𝐼=0

= 𝜃𝑚𝑀𝐸 ≥ 0 }
 
 
 
 
 
 

 
 
 
 
 
 

 (14) 

Since all the model parameters and variables are positive. We 

therefore conclude that all state variables 
(𝐻𝑆, 𝐻𝑉 , 𝐻𝐸 , 𝐻𝐼 , 𝐻𝑅, 𝑀𝑆, 𝑀𝐸, 𝑀𝐼)  remain non-negative for all 

time 𝑡 ≥ 0 provided the initial conditions are non-negative. 

Also, as 𝑇ℎ𝑚 = 𝑇ℎ + 𝑇𝑚 wherever 𝑇ℎ𝑚 is considered to be 

constant each of the sub-population will lie in[0, 𝑇ℎ𝑚]. Thus, 

the sub-populations𝐻𝑆, 𝐻𝑉 , 𝐻𝐸 , 𝐻𝐼 , 𝐻𝑅 ,𝑀𝑆, 𝑀𝐸 𝑎𝑛𝑑𝑀𝐼  are 

also bounded. This implies that all the DENV model state 

variables cannot decrease below zero which ensures its 

positivity. Therefore, the total populations of both humans 

and mosquitoes remain bounded for all time 𝑡 and the state 

variables stay within the biologically meaningful region 

Ωℎ𝑚.Thus, the region Ωℎ𝑚 is invariant under the dynamics of 

the system (11), meaning that if the initial conditions lie 

within Ωℎ𝑚 the solutions will remain within this region for all 
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future time. Thus, the DENV model is epidemiologically, 

mathematically and biologically feasible.  

 

Fractional DENV Model Equilibrium Points and Basic 

Reproduction Number  

Equilibrium points of a fractional dynamical system such as 

(11) represent the states where the system remains unchanged 

over time. In the context of DENV transmission, these points 

help identify conditions under which the disease either 

vanishes or persists within a population. We define two key 

equilibrium points for the fractional-order dengue model: the 

Fractional DENV Disease-Free Equilibrium (𝜉𝑓) and the 

Fractional DENV Endemic Equilibrium (𝜉𝑒). Thus,              

At equilibrium; 

𝐷𝑐 𝑡
𝛼𝐻𝑆 = 𝐷𝑡

𝛼𝐻𝑉 = 𝐷𝑐 𝑡
𝛼𝐻𝐸 = 𝐷𝑐 𝑡

𝛼𝐻𝐼 = 𝐷𝑐 𝑡
𝛼𝐻𝑅 = 0

𝐷𝑐 𝑡
𝛼𝑀𝑆 = 𝐷𝑐 𝑡

𝛼𝑀𝐸 = 𝐷𝑐 𝑡
𝛼𝑀𝐼 = 0

} 

     (15) 

Fractional DENV Disease-Free Equilibrium (𝜉𝑓): This 

corresponds to the state where no DENV infection exists in 

the human or mosquito populations. At this equilibrium, the 

model assumes that the infectious compartments are empty 

i.e., zero. Mathematically, the Fractional DENV Disease-Free 

Equilibrium (𝜉𝑓) is given by: 

𝜉𝑓 = {𝐻𝑆
𝑓
, 𝐻𝑉

𝑓
, 𝐻𝐸

𝑓
, 𝐻𝐼

𝑓
, 𝐻𝑅

𝑓
, 𝑀𝑆

𝑓
, 𝑀𝐸

𝑓
, 𝑀𝐼

𝑓
} =

{
Λ𝐻

(𝜇ℎ+𝜎)
,

𝜎Λ𝐻

(𝜇ℎ+𝜀)(𝜇ℎ+𝜎)
, 0,0,0,

Λ𝑀

𝜇𝑚
, 0,0}  

Where each component is expressed in terms of model 

parameters defined in Table 2. 

Fractional DENV Endemic Equilibrium (𝜉𝑒): This 

equilibrium describes the state where DENV persists in the 

population at a steady level. At this point, the infectious 

compartments have non-zero values, and the disease 

continues to circulate within the population. Deriving this 

equilibrium involves solving the system of equations (11) 

simultaneously. Thus, the Fractional DENV Endemic 

Equilibrium (𝜉𝑒) is represented as: 

𝜉𝑒 = {𝐻𝑆
𝑒 , 𝐻𝑉

𝑒 , 𝐻𝐸
𝑒 , 𝐻𝐼

𝑒 , 𝐻𝑅
𝑒 , 𝑀𝑆

𝑒 ,𝑀𝐸
𝑒 , 𝑀𝐼

𝑒} =

{
Λ𝐻+𝜙ℎ𝐻𝑅

𝑒

𝐵1
,
𝜎𝐻𝑆

𝑒

𝐵2
,
𝛽ℎ𝐻𝑆

𝑒

𝐵3
,
𝜃ℎ𝐻𝐸

𝑒

𝐵4
,
𝜏ℎ𝐻𝐼

𝑒

𝐵5
,
Λ𝑀

𝐵6
,
𝛽𝑚𝑀𝑆

𝑒

𝐵7
,
𝜃𝑚𝑀𝐸

𝑒

𝐵8
}  

Where each component is expressed in terms of model 

parameters and infection dynamics. 

Seeing that the Susceptible, Vaccinated, Exposed and 

Recovered human populations depends on the infectious 

human population while the mosquito population depends on 

the mosquito force of infection. This implies that at the 

fractional DENV endemic-equilibrium point there will 

always be DENV in the population at all time. 

These equilibrium points serve as the foundation for 

analyzing the stability of the system and understanding its 

long-term behavior in response to control interventions. 

 

DENV Fractional Model Basic Reproduction Number (𝑹𝟎) 

The DENV fractional model basic reproduction number (𝑅0) 

is a critical threshold parameter that determines whether the 

DENV disease can invade and persist in a population. It 

represents the average number of secondary infections 

produced by one DENV infected individual in a completely 

susceptible population. 

To compute𝑅0, we use the next-generation matrix approach 

used in Atokolo et al. (2024). Let 𝐹 and 𝑉represent the 

infection and transition matrices, respectively. Considering 

the compartments (𝐻𝐸 , 𝐻𝐼 ,𝑀𝐸, 𝑀𝐼) these matrices are defined 

as: 

𝐹 = [

0 𝑎1 0 𝑎2
0 0 0 0
0 𝑎3 0 𝑎4
0 0 0 0

]𝑉 = [

𝐵3 0 0 0
−𝜃ℎ 𝐵4 0 0
0 0 𝐵7 0
0 0 −𝜃𝑚 𝐵8

]  

where 𝐹represents the rate of new infections, and 𝑉represents 

the rate of transitions between Infectious compartments due 

to recovery or death. Where,  

𝑎1 =
𝜌1Λ𝐻

(𝜇ℎ+𝜀)𝑇ℎ𝑚
, 𝑎2 =

𝜌2𝜔Λ𝐻

(𝜇ℎ+𝜀)𝑇ℎ𝑚
, 𝑎3 =

𝜂1𝜔Λ𝑀

𝜇𝑚𝑇ℎ𝑚
, 𝑎4 =

𝜂2Λ𝑀

𝜇𝑚𝑇ℎ𝑚
and 𝐵3,𝐵4,𝐵7,𝐵8 are defined in equation (12). 

The basic reproduction number is given by: 

𝜌(𝐹*𝑉−1)  

where 𝜌 denotes the spectral radius (dominant eigenvalue) of 

the matrix product . 

Mathematically, using MATLAB software we computed the 

following; 

𝑉−1 =

[
 
 
 
 
 
 
1

𝐵3
0 0 0

𝜃ℎ

𝐵3𝐵4

1

𝐵4
0 0

0 0
1

𝐵7
0

0 0
𝜃𝑚

𝐵7𝐵8

1

𝐵8]
 
 
 
 
 
 

,   

𝐹*𝑉−1 =

[
 
 
 
 
𝑎1𝜃ℎ

𝐵3𝐵4

𝑎1

𝐵4

𝑎2𝜃𝑚

𝐵7𝐵8

𝑎2

𝐵8

0 0 0 0
𝑎3𝜃ℎ

𝐵3𝐵4

𝑎3

𝐵4

𝑎4𝜃𝑚

𝐵7𝐵8

𝑎4

𝐵8

0 0 0 0]
 
 
 
 

      and  

𝑒𝑖𝑔(𝐹*𝑉−1) =

[
 
 
 
 
 

0
0

[𝜃ℎ𝑎1𝐵3𝐵4+𝜃𝑚𝑎4𝐵7𝐵8]−√(𝜃ℎ𝑎1𝐵3𝐵4−𝜃𝑚𝑎4𝐵7𝐵8)
2+4𝐵3𝐵4𝜃ℎ𝑎3𝐵7𝐵8𝜃𝑚𝑎3

2𝐵3𝐵4𝐵7𝐵8

[𝜃ℎ𝑎1𝐵3𝐵4+𝜃𝑚𝑎4𝐵7𝐵8]+√(𝜃ℎ𝑎1𝐵3𝐵4−𝜃𝑚𝑎4𝐵7𝐵8)
2+4𝐵3𝐵4𝜃ℎ𝑎3𝐵7𝐵8𝜃𝑚𝑎3

2𝐵3𝐵4𝐵7𝐵8 ]
 
 
 
 
 

  

Thus, the basic reproduction number using the next-

generation matrix is computed with MATLAB and given as: 

𝑅0 =
1

2
[(
𝑎1𝜃ℎ

𝐵3𝐵4
+
𝑎4𝜃𝑚

𝐵7𝐵8
) + √(

𝑎1𝜃ℎ

𝐵3𝐵4
−
𝑎4𝜃𝑚

𝐵7𝐵8
)
2
+ 4

𝑎2𝜃ℎ

𝐵3𝐵4

𝑎3𝜃𝑚

𝐵7𝐵8
]  

With, 

𝑅0ℎℎ =
𝑎1𝜃ℎ

𝐵3𝐵4
=

𝜌1Λ𝐻𝜃ℎ

(𝜇ℎ+𝜃ℎ)(𝜇ℎ+𝛿ℎ+𝜏ℎ)(𝜇ℎ+𝜀)𝑇ℎ𝑚
, 𝑅0𝑚𝑚 =

𝑎4𝜃𝑚

𝐵7𝐵8
=

𝜂2Λ𝑀𝜃𝑚

(𝜇𝑚+𝜃𝑚)(𝜇𝑚+𝛿𝑚)𝜇𝑚𝑇ℎ𝑚
,

𝑅0𝑚ℎ
=

𝑎2𝜃ℎ

𝐵3𝐵4
=

𝜌2𝜔Λ𝐻𝜃ℎ

(𝜇ℎ+𝜃ℎ)(𝜇ℎ+𝛿ℎ+𝜏ℎ)(𝜇ℎ+𝜀)𝑇ℎ𝑚
𝑎𝑛𝑑𝑅0ℎ𝑚 =

𝑎3𝜃𝑚

𝐵7𝐵8
=

𝜂1𝜔Λ𝑀𝜃𝑚

(𝜇𝑚+𝜃𝑚)(𝜇𝑚+𝛿𝑚)𝜇𝑚𝑇ℎ𝑚

}

     (16) 

Therefore,  

𝑅0 =
1

2
[(𝑅0ℎℎ + 𝑅0𝑚𝑚) + √(𝑅0ℎℎ − 𝑅0𝑚𝑚)

2
+ 4𝑅0𝑚ℎ

𝑅0ℎ𝑚]  

Where; 

𝑅0ℎℎis the reproduction number associated with human -to-

human infection 

𝑅0𝑚𝑚 is the reproduction number associated with mosquito -

to-mosquito infection, 

𝑅0𝑚ℎ
is the reproduction number associated with mosquito -to-

human infection, and  

𝑅0ℎ𝑚is the reproduction number associated with human -to-

mosquito infection,  

The implication of the model reproduction number is that 

when 𝑅0 < 1 the disease will easily die out of the population 

but when 𝑅0 > 1 the disease will persist or invade the 

population. 

If the DENV fractional model disease-free equilibrium is 

locally asymptotically stable, then the infection will 

eventually die out. But, 

If the DENV fractional model disease-free equilibrium is 

unstable, then the infection can invade the population. 

This provides insights into the effectiveness of control 

strategies such as vaccination, vector control, and reducing 

contact rates. 
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Local Stability Analysis of The Fractional DENV Disease-

free-equilibrium 

Theorem 1  

The DENV fractional disease- free equilibrium (𝜉𝑓) of the 

system (11) is locally asymptotically stable (LAS) if 𝑅0 < 1 

and unstable if 𝑅0 > 1. 

Proof 

Using the Jacobian matrix method we obtained the Jacobian 

matrix of model equation (11) evaluated at the fractional 

DENV disease free equilibrium point (𝜉𝑓) is given as; 

𝐽𝜉𝑓 =

[
 
 
 
 
 
 
 
−𝐵1 𝜎 0 −𝑎1 𝜙ℎ 0 0 −𝑎2
𝜀 −𝐵2 0 0 0 0 0 0
0 0 −𝐵3 𝑎1 0 0 0 𝑎2
0 0 𝜃ℎ −𝐵4 0 0 0 0
0 0 0 𝜏ℎ −𝐵5 0 0 0
0 0 0 −𝑎3 0 −𝐵6 0 −𝑎4
0 0 0 𝑎3 0 0 −𝐵7 𝑎3
0 0 0 0 0 0 𝜃𝑚 −𝐵8]

 
 
 
 
 
 
 

  

We are to show that all the eigenvalues of Jacobian matrix 𝐽𝜉𝑓 

represented by (𝐸)are all negative. Using MATLAB 

software, we obtained the eigenvalue of  𝐽𝜉𝑓 as; 

𝐸 =

[
 
 
 
 
 

−𝐵5
−𝐵6

−
1

2
[(𝐵2 + 𝐵1) + √(𝐵2 − 𝐵1)

2 + 4𝜎𝜀]

−
1

2
[(𝐵2 + 𝐵1) − √(𝐵2 − 𝐵1)

2 + 4𝜎𝜀]

𝑄 ]
 
 
 
 
 

  

Where, 

 𝑄 = 𝑄0𝜆
4 + 𝑄1𝜆

3 +𝑄2𝜆
2 + 𝑄3𝜆

1 +𝑄4𝜆
0 

Which is the characteristic equation of four eigenvalues. 

Clearly, 𝜆1 = −𝐵5 < 0, 𝜆2 = −𝐵6 < 0, 𝜆3 = −
1

2
[(𝐵2 +

𝐵1) + √(𝐵2 − 𝐵1)
2 + 4𝜎𝜀] < 0𝑎𝑛𝑑 

𝜆4 = −
1

2
[(𝐵2 + 𝐵1) − √(𝐵2 − 𝐵1)

2 + 4𝜎𝜀] < 0𝑎𝑠 −

(𝐵2 + 𝐵1)𝑑𝑜𝑚𝑖𝑛 𝑎 𝑡𝑒𝑠 + √(𝐵2 − 𝐵1)
2 + 4𝜎𝜀.  

Now we want to prove that all the remaining eigenvalues 
(𝜆5, 𝜆6, 𝜆7𝑎𝑛𝑑𝜆8) in 𝑄 are negative. To do this we apply the 

Routh-Hurwitz criteria because the Routh-Hurwitz criterion 

provides conditions under which all roots of the polynomial 

𝑄 have negative real parts. The Routh-Hurwitz criterion states 

that for a polynomial such as 𝑄 all roots have negative real 

parts if and only if all coefficients𝑄𝑖 > 0. 

Thus,  
𝑄0 = 1 > 0; 𝑄1 = (𝐵3 +𝐵4 +𝐵7 + 𝐵8) > 0;  
𝑄2 = (𝐵3𝐵8 +𝐵4𝐵8 +𝐵3𝐵7 + 𝐵4𝐵7 + 𝐵3𝐵4 − 𝑎1𝜃ℎ +𝐵7𝐵8 −
𝑎4𝜃𝑚),  

𝑄2 = (𝐵3𝐵8 +𝐵4𝐵8 +𝐵3𝐵7 + 𝐵4𝐵7 + 𝐵3𝐵4(1 − 𝑅0ℎℎ) +

𝐵7𝐵8(1 − 𝑅0𝑚𝑚)) > 0𝑖𝑓𝑅0ℎℎ < 1𝑎𝑛𝑑𝑅0𝑚𝑚 < 1;  

𝑄3 = (𝐵3𝐵7𝐵8 − 𝑎4𝜃𝑚𝐵3 +𝐵4𝐵7𝐵8 − 𝑎4𝜃𝑚𝐵4 + 𝐵3𝐵4𝐵7 −
𝑎1𝜃ℎ𝐵7 +𝐵3𝐵4𝐵8 − 𝑎1𝜃ℎ𝐵8),  

𝑄3 = (𝐵3𝐵7𝐵8(1 − 𝑅0𝑚𝑚) + 𝐵4𝐵7𝐵8(1 − 𝑅0𝑚𝑚) + 𝐵3𝐵4𝐵7(1 −

𝑅0ℎℎ) + 𝐵3𝐵4𝐵8(1 − 𝑅0ℎℎ)) > 0𝑖𝑓𝑅0ℎℎ < 1𝑎𝑛𝑑𝑅0𝑚𝑚 < 1;  

𝑄4 = (𝐵3𝐵4𝐵7𝐵8 − 𝑎2𝑎3𝜃ℎ𝜃𝑚 − 𝑎1𝜃ℎ𝐵3𝐵4 − 𝑎4𝜃𝑚𝐵7𝐵8 +
𝑎1𝑎4𝜃ℎ𝜃𝑚),  
𝑄4 = 𝐵3𝐵4𝐵7𝐵8(1 − 𝑅0𝑚ℎ

𝑅0ℎ𝑚 − 𝑅0ℎℎ − 𝑅0𝑚𝑚) + 𝑎1𝑎4𝜃ℎ𝜃𝑚 >

0𝑖𝑓𝑅0𝑚ℎ
𝑅0ℎ𝑚 < 1,𝑅0ℎℎ < 1𝑎𝑛𝑑𝑅0𝑚𝑚 < 1.  

With this analysis the Routh-Hurwitz criterion confirms that 

the roots of the characteristic polynomial  𝑄 also have 

negative real parts. Thus, all eigenvalues are negative, and the 

fractional DENV disease free equilibrium point (𝜉𝑓) is locally 

asymptotically stable when 𝑅0 < 1 and unstable when 

otherwise. 

Existence of Backward Bifurcation 

In this section, we investigate the possibility of backward 

bifurcation in the DENV fractional model using the Center 

Manifold Theorem. Backward bifurcation arises when a 

stable fractional DENV disease-free equilibrium coexists 

with a stable fractional DENV endemic equilibrium for the 

basic reproduction number,𝑅0 < 1. This phenomenon 

complicates disease control efforts, as reducing 𝑅0  below 

unity may not eliminate the disease. The Center Manifold 

Theorem provides a systematic approach to determine the 

type of bifurcation by analyzing the dynamics near the 

bifurcation point 𝑅0 = 1. Specifically, we calculate the 

coefficients𝑎  and 𝑏 to classify the bifurcation as forward or 

backward. 

To apply the center manifold theory, the following 

modification of variables are done on the fractional DENV 

model (3). We let;  

𝐻𝑆 = 𝑥1, 𝐻𝑉 = 𝑥2, 𝐻𝐸 = 𝑥3, 𝐻𝐼 = 𝑥4, 𝐻𝑅 =
𝑥5, 𝑀𝑆 =𝑥6, 𝑀𝐸 =𝑥7𝑎𝑛𝑑𝑀𝐼 = 𝑥8.  

Using vector notation  

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8)
𝑇  

 Formulated as 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋)  

With  

𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8)
𝑇  

Given in the following; 

(𝑎) 𝐷𝑐 𝑡
𝛼𝑥1 = Λ𝐻 + 𝜙ℎ𝑥5 + 𝜎𝑥2 − 𝐵1𝑥1

(𝑏) 𝐷𝑐 𝑡
𝛼𝑥2 = 𝜀𝑥1 − 𝐵2𝑥2

(𝑐) 𝐷𝑐 𝑡
𝛼𝑥3 = 𝛽ℎ𝑥1 − 𝐵3𝑥3

(𝑑) 𝐷𝑐 𝑡
𝛼𝑥4 = 𝜃ℎ𝑥3 − 𝐵4𝑥4

(𝑒) 𝐷𝑐 𝑡
𝛼𝑥5 = 𝜏ℎ𝑥4 − 𝐵5𝑥5

(𝑓) 𝐷𝑐 𝑡
𝛼𝑥6 = Λ𝑀 − 𝐵6𝑥6

(𝑔) 𝐷𝑐 𝑡
𝛼𝑥7 = 𝛽𝑚𝑥6 − 𝐵7𝑥7

(ℎ) 𝐷𝑐 𝑡
𝛼𝑥8 = 𝜃𝑚𝑥7 − 𝐵8𝑥8 }

 
 
 
 

 
 
 
 

 (17) 

And,  

𝛽ℎ =
𝜌1𝑥4+𝜌2𝜔𝑥8

𝑇ℎ𝑚
𝑎𝑛𝑑𝛽𝑚 =

𝜂1𝜔𝑥4+𝜂2𝑥8

𝑇ℎ𝑚
  (18) 

Suppose, we chose 𝜌2 = 𝜌2
*   as our bifurcation parameter and 

solve 𝑅0 = 1 we have; 

𝜌2
* =

𝐵3𝐵4𝑇ℎ𝑚(𝜇ℎ+𝜀)(2−(𝑅01−𝑅04))
2

4𝑅03𝜃ℎ𝜔Λ𝐻(𝑅01−𝑅04)
2 ,  

Using the fractional DENV Jacobian Matrix evaluated at the 

fractional DENV disease free equilibrium point  𝐽𝜉𝑓 with 

𝑎2 =
𝜌2
*𝜔Λ𝐻

(𝜇ℎ+𝜀)𝑇ℎ𝑚
 

which is in terms of the bifurcation parameter 𝜌2
* . 

Given that the right eigenvector associated with the simple 

zero eigenvalue is; 

𝑊 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7, 𝑤8)
𝑇  

Where𝐽𝜉𝑓 ×𝑊 can be obtained as; 

𝑤4 > 0, 𝑤1 =
𝐵2[(𝑎2𝑎3𝜃𝑚𝐵5+𝑎1𝐵5𝐵7𝐵8(𝑅04−1))+𝜙ℎ𝜏ℎ𝐵7𝐵8(𝑅04−1)]𝑤4

(𝜎𝜀+𝐵1𝐵2)𝐵5𝐵7𝐵8(𝑅04−1)
> 0𝑖𝑓𝑅04 > 1,

  

𝑤2 =
𝜀𝑤1

𝐵2
> 0,𝑤3 =

𝐵4𝑤4

𝜃ℎ
> 0,𝑤5 =

𝜏ℎ𝑤4

𝐵5
> 0,𝑤6 =

𝐵7𝐵8𝑎3𝑤4

𝐵6𝐵7𝐵8(𝑅04−1)
> 0𝑖𝑓𝑅04 > 1,  

𝑤7 =
𝐵8𝑎3𝑤4

𝐵7𝐵8(𝑅04−1)
> 0𝑖𝑓𝑅04 > 1,𝑤8 =

−𝑎3𝜃𝑚𝑤4

𝐵7𝐵8(𝑅04−1)
<

0𝑖𝑓𝑅04 > 1.  

The left eigenvector associated with the simple zero 

eigenvalue is; 

𝑉 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8)
𝑇  

Where 𝐽𝜉𝑓
𝑇 × 𝑉 can be obtained as; 
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𝑣1 > 0, 𝑣4 > 0, 𝑣6 = 0, 𝑣3 =
𝜃ℎ𝑣4
𝐵3

> 0, 𝑣5 =
𝜙ℎ𝑣1
𝐵5

> 0, 𝑣8

=
𝐵7(𝑎1𝐵3𝑣1 + 𝑎2𝜃ℎ𝑣4)

𝐵3𝐵7𝐵8(𝑅04 − 1)
> 0𝑖𝑓𝑅04 > 1, 𝑣7

=
𝜃𝑚𝑣8
𝐵7

> 0𝑖𝑓𝑅04 > 1. 

Since 𝑣6 = 0 we do not need the derivatives of  𝑓6. 

Thus, the derivatives of 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓7𝑎𝑛𝑑𝑓8 that are non 

zero are; 
𝜕2𝑓1

𝜕𝑥1𝜕𝑥4
=

−𝜌1

𝑇ℎ𝑚
,
𝜕2𝑓1

𝜕𝑥1𝜕𝑥8
=

−𝜌2
∗𝜔

𝑇ℎ𝑚
,
𝜕2𝑓3

𝜕𝑥1𝜕𝑥4
=

−𝜌1

𝑇ℎ𝑚
,
𝜕2𝑓3

𝜕𝑥1𝜕𝑥8
=

𝜌2
∗𝜔

𝑇ℎ𝑚
,
𝜕2𝑓7

𝜕𝑥6𝜕𝑥4
=

𝜂1𝜔

𝑇ℎ𝑚
,
𝜕2𝑓7

𝜕𝑥6𝜕𝑥8
=

𝜂2

𝑇ℎ𝑚
.  

To determine the bifurcation direction at 𝑅0 = 1 we consider 

the signs of 𝑎 and 𝑏 which are the bifurcation coefficients as 

follows; 

𝑎 = ∑ 𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2𝑓𝑘(0,0)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑛
𝑘,𝑖,𝑗=1   

𝑎 = 𝑣1𝑤1𝑤4
𝜕2𝑓1

𝜕𝑥1𝜕𝑥4
+ 𝑣1𝑤1𝑤8

𝜕2𝑓1

𝜕𝑥1𝜕𝑥8
+ 𝑣3𝑤1𝑤4

𝜕2𝑓3

𝜕𝑥1𝜕𝑥4
 +  

𝑣3𝑤1𝑤8
𝜕2𝑓3

𝜕𝑥1𝜕𝑥8
+ 𝑣7𝑤6𝑤4

𝜕2𝑓7

𝜕𝑥6𝜕𝑥4
+ 𝑣7𝑤6𝑤8

𝜕2𝑓7

𝜕𝑥6𝜕𝑥8
  

With 𝑣1𝑤1 = 1  (as 𝑣.𝑤 = 1 ) we have; 

𝑎 = (
𝜌1𝑤4+𝜌2

∗𝜔𝑤8

𝑇ℎ𝑚
) (𝑣3𝑤1 − 1) + (

𝜂1𝜔𝑤4+𝜂2𝑤8

𝑇ℎ𝑚
) 𝑣7𝑤6  

Since  𝑤8 < 0 𝑎𝑡 𝑅04 > 1 then, 

𝑎 < 0  

if 𝑣3𝑤1 > 1, 𝜌2
∗𝜔𝑤8 > 𝜌1𝑤4  and 𝜂2𝑤8 > 𝜂1𝜔𝑤4.  

For when  𝜌2
∗ is the bifurcation parameter 

𝑏 = ∑ 𝑣𝑘𝑤𝑖
𝜕2𝑓𝑘(0,0)

𝜕𝑥𝑖𝜕𝜌2
∗

𝑛
𝑘,𝑖,𝑗=1   

𝑏 = 𝑣1𝑤1
𝜕2𝑓1

𝜕𝑥1𝜕𝜌2
∗ + 𝑣3𝑤1

𝜕2𝑓3

𝜕𝑥1𝜕𝜌2
∗  

Where,   
𝜕2𝑓1

𝜕𝑥1𝜕𝜌2
∗ =

−𝜌2
∗𝜔𝑥8

𝑇ℎ𝑚
 𝑎𝑛𝑑 

𝜕2𝑓3

𝜕𝑥1𝜕𝜌2
∗ =

𝜌2
∗𝜔𝑥8

𝑇ℎ𝑚
  

So that, 

𝑏 = 𝑣1𝑤1
−𝜌2

∗𝜔𝑥8

𝑇ℎ𝑚
+ 𝑣3𝑤1

𝜌2
∗𝜔𝑥8

𝑇ℎ𝑚
  

With 𝑣1𝑤1 = 1  (as 𝑣.𝑤 = 1 ) we have; 

𝑏 = (
𝜌2
∗𝜔𝑥8

𝑇ℎ𝑚
) (𝑣3𝑤1 − 1)  

𝑏 > 0  

if 𝑣3𝑤1 > 1.  

The analysis of backward bifurcation in the DENV fractional-

order model reveals significant insights into the dynamics of 

the DENV disease. By examining the model through the lens 

of the center manifold theorem and exploring the conditions 

for the existence of backward bifurcation and the local 

stability of the Fractional DENV endemic equilibrium in the 

vicinity of the bifurcation point, we found that the disease can 

persist even when the basic reproduction number, 𝑅0 is less 

than unity. This phenomenon is critical as it challenges the 

traditional belief that reducing 𝑅0 below one guarantees the 

elimination of the DENV disease. 

The key finding of this analysis is that backward bifurcation 

occurs under specific conditions, namely when the parameter 

𝑎 is less than one and 𝑏 is greater than zero. These conditions 

imply that, despite 𝑅0 being less than one, multiple 

equilibrium states exist, including one where the DENV 

disease remains endemic. This is primarily influenced by the 

mosquito-to-mosquito transmission dynamics. In particular, 

when the reproduction number for mosquito-to-mosquito 

infection, 𝑅0𝑚𝑚 is greater than one, mosquitoes act as a self-

sustaining reservoir for the infection, thereby facilitating the 

persistence of dengue transmission even when human-related 

transmission is controlled. 

This result underscores the importance of comprehensive 

intervention strategies. While traditional models suggest that 

reducing mosquito-to-human transmission is sufficient to 

control the DENV disease, the existence of backward 

bifurcation highlights the need for targeted vector control. 

Measures such as reducing mosquito populations, limiting 

breeding sites, and deploying insecticide-treated nets become 

crucial in breaking the cycle of transmission and preventing 

the persistence of endemic infection, even when 𝑅0 is below 

one. Thus, the existence of backward bifurcation in this 

DENV fractional-order model emphasizes the necessity of 

integrated, sustained interventions targeting both human and 

mosquito populations. It also stresses the importance of 

considering the mosquito population as a key factor in DENV 

disease persistence, offering a more nuanced perspective on 

the management of dengue epidemics. 

 

RESULTS AND DISCUSSION 

In this section, we perform the DENV model numerical 

analysis presenting the key findings and interpreting their 

significance within the broader context of the DENV 

transmission modeling. This section provides both a summary 

of the outcomes derived from numerical simulations, as well 

as a discussion of the result outcomes and practical 

implications for DENV control. The parameter values for the 

numerical analysis were sourced and recorded in Table 2 with 

their sources referenced. Using MATLAB Software, the 

numerical simulation of the DENV model was performed 

with the initial values in Table 1 and the results obtained are 

as follows; 

 

 
(a) Time series simulation of human population  (b) Time series simulation of mosquito population 

Figure 2: Time series simulation of human and mosquito populations 
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As shown in Figure 2, panel (a) demonstrates the time-

dependent dynamics of human populations during the 

outbreak. The susceptible population (𝐻𝑆) rapidly declines 

within the first few months, while the exposed (𝐻𝐸) and 

infected (𝐻𝐼) populations initially increase and then decrease 

as recovered individuals (𝐻𝑅) accumulate. This trend 

highlights the impact of vaccination and recovery on the 

DENV disease mitigation. Panel (b) shows similar dynamics 

in mosquito populations, where the susceptible and exposed 

mosquito populations (𝑀𝑆 and 𝑀𝐸) quickly declines, and 

infected mosquitoes (𝑀𝐼) peak briefly before subsiding. These 

results emphasize the importance of intervention strategies 

targeting both human and mosquito populations. 

 

  
(a) Simulation of fractional order vs integer order human 

and mosquito exposed populations 

(b) Simulation of fractional order vs integer order human 

and mosquito infectious populations 

Figure 3: Simulation of fractional order vs integer order human and mosquito exposed with infectious populations 

 

Figure 3 illustrates the effect of fractional-order dynamics on 

disease progression compared to integer-order models. Panel 

(a) reveals that for exposed human (𝐻𝐸) and mosquito (𝑀𝐸) 

populations, fractional orders (α = 0.50, 0.70) results in slower 

disease progression, with higher exposed populations 

persisting over time. Similarly, panel (b) shows that 

fractional-order dynamics delay the peak and reduce the 

magnitude of infectious human (𝐻𝐼) and mosquito (𝑀𝐼) 

populations compared to integer-order models. These 

findings underscore the flexibility and potential benefits of 

fractional-order systems in modeling DENV  infectious 

diseases. 

 

 
 

(a) Simulation of fractional order vs integer order human 

mosquito susceptible populations 

(b) Simulation of fractional order vs integer order human 

vaccinated and recovered populations 

Figure 4: Simulation of fractional order vs integer order human and mosquito susceptible vaccinated with recovered 

populations 
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As depicted in Figure 4, fractional-order dynamics affect 

susceptible, vaccinated, and recovered populations 

differently. Panel (a) shows that fractional orders (α = 0.50, 

0.70) slow the decline of susceptible populations (𝐻𝑆 and𝑀𝑆), 

reflecting delayed disease spread. Panel (b) reveals that 

vaccinated humans (𝐻𝑉) and recovered populations (𝐻𝑅) 

increase more gradually under fractional orders, reaching 

equilibrium slower than in integer-order cases. These 

observations highlight the role of fractional-order systems in 

capturing real-world complexities of population dynamics 

during DENV epidemics. 

 

  

(a) Contour plot showing the impact of 𝜔 𝜀 on 𝑅0 (b) Contour plot showing the impact of  𝜌1and 𝜌2 on 𝑅0 

Figure 5: Contour plot showing the impact of 𝜔, 𝜀, 𝜌1and 𝜌2 on 𝑅0 

 

Figure 5 examines the combined effects of different 

parameters on 𝑅0. Panel (a) reveals the interaction between 

mosquito biting rate (𝜔) and human vaccination rate (𝜀), 

demonstrating that increasing vaccination rates can mitigate 

the effects of higher mosquito activity on 𝑅0. Panel (b) 

highlights the influence of transmission rates (𝜌1 and 𝜌2), 

showing that increasing either parameter significantly 

amplifies 𝑅0. These results underscore the critical importance 

of reducing transmission and enhancing vaccination efforts to 

control outbreaks.  

 

  
(a) Contour plot showing the impact 𝜂1and 𝜂2, on 𝑅0 (b) Contour plot showing the impact 𝜃ℎ  and 𝜃𝑚 on 𝑅0 

Figure 6: Contour plot showing the impact 𝜂1, 𝜂2, 𝜃ℎ  𝑎𝑛𝑑 𝜃𝑚 𝑜𝑛 𝑅0  



FRACTIONAL-ORDER DENGUE VIRUS…            Ahman et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 4, April, 2025, pp 53 – 65 62 

The contour plots in Figure 6 highlight the role of 

transmission and incubation rates in influencing 𝑅0, which is 

a critical measure of disease spread. Panel (a) focuses on 

transmission rates (𝜂1 and 𝜂2). It demonstrates that higher 

values of both transmission parameters increase 𝑅0. This 

indicates that effective transmission between humans  and 

mosquitoes (and mosquitoes and mosquitoes) enhances the 

epidemic potential. To mitigate 𝑅0, we might include 

reducing contact rates between mosquitoes and humans, such 

as implementing vector control measures or encouraging the 

use of protective measures like insecticide-treated bed nets. 

Panel (b) shows how the human (𝜃ℎ) and mosquito (𝜃𝑚) 

incubation rates affect 𝑅0. Higher incubation rates result in 

larger 𝑅0, indicating that quicker development of 

infectiousness in both humans and mosquitoes accelerates the 

transmission cycle. Targeting incubation rates through 

interventions such as antivirals could help slow the 

development of infectious stages and reduce 𝑅0. 

 

  
Figure 7: Contour plot showing the impact of 

𝛿ℎ and 𝛿𝑚on 𝑅0 

Figure 7: Contour plot showing the impact of 

Λ𝐻  and Λ𝑀 on 𝑅0 

Figure 7: Contour plot showing the impact of 𝛿ℎ, 𝛿𝑚, Λ𝐻  and Λ𝑀 on 𝑅0 

 

The contour plots in Figure 7 explore the effects of mortality 

and recruitment rates of the human and mosquito populations 

on 𝑅0.Panel (a)  illustrates the effect of disease-induced death 

rates (𝛿ℎ and 𝛿𝑚) in humans and mosquitoes. Higher death 

rates reduce 𝑅0, as mortality limits the number of individuals 

contributing to the transmission cycle. While disease-induced 

mortality naturally curtails transmission, interventions that 

reduce infection rates (e.g., vaccines or vector reduction) are 

more desirable as they minimize mortality without relying on 

population depletion. Panel (b) focuses on the recruitment 

rates (Λ𝐻 and Λ𝑀) of humans and mosquitoes. Higher 

recruitment rates result in a larger 𝑅0, as more individuals in 

the population sustain the transmission cycle. Strategies to 

limit recruitment (e.g., reducing vector breeding sites for 

mosquitoes) could significantly reduce 𝑅0 and help control 

disease spread. 

 

 
 

Figure 8: Heatmap vs 3D plot showing the impact of 

𝜌1 and  𝜌2 𝑅0 

Figure 8: Heatmap vs 3D plot showing the impact of 

 𝜃ℎ and 𝜃𝑚 on 𝑅0 

Figure 8: Heatmap vs 3D plot showing the impact of 𝜌1, 𝜌2, 𝜃ℎ and 𝜃𝑚 on 𝑅0 
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Figure 8 highlights the influence of transmission and 

incubation rates on 𝑅0. In panel (a), 𝑅0 increases sharply with 

higher human-to-human (𝜌1) and mosquito-to-human (𝜌2) 

transmission rates, indicating their pivotal role in DENV 

disease spread. Panel (b) illustrates how increasing human (𝜃ℎ

) and mosquito (𝜃𝑚) incubation rates further amplify 𝑅0. 

These findings emphasize the need for interventions targeting 

transmission and incubation stages of the disease. 

 

  
Figure 9: Heatmap vs 3D plot showing the impact of 

𝜂1and 𝜂2 on 𝑅0 

Figure 9: Heatmap vs 3D plot showing the impact of 

𝜇ℎ and 𝜇𝑚 on 𝑅0 

Figure 9: Heatmap vs 3D plot showing the impact of 𝜂1, 𝜂2, 𝜇ℎ  and 𝜇𝑚 on 𝑅0 

 

Figure 9 demonstrates the impact of mosquito-to-human (𝜂1) 

and human-to-mosquito (𝜂2) transmission rates, as well as 

natural death rates, on 𝑅0. Panel (a) shows that higher 

transmission rates (𝜂1 and 𝜂2) dramatically increase 𝑅0, while 

panel (b) reveals that increasing natural death rates (𝜇ℎ and 

𝜇𝑚) reduces 𝑅0. The findings highlight the importance of 

strategies that disrupt transmission cycles and increase vector 

mortality to lower 𝑅0.  

 

Discussion 

The results of this study underscore the utility of fractional-

order modeling in capturing the nuanced dynamics of DENV 

transmission. By incorporating memory effects through the 

Caputo fractional derivative, the model demonstrated 

improved realism in representing both transient and long-term 

epidemic behaviors. The findings revealed several key 

insights into the dynamics of DENV transmission, the 

implications of which resonate with existing literature and 

public health strategies. 

One of the most striking aspects of the DENV model was its 

ability to delay the peak of infectious populations. This aligns 

with findings from previous studies, such as Alshehry et al. 

(2024), which observed that fractional models offer a more 

accurate representation of transient dynamics compared to 

integer-order models. Particularly in early outbreak phases, 

our results corroborate these observations, showing the 

persistence of higher exposed populations. This delayed peak 

is a critical feature for designing effective intervention 

strategies, as it indicates that fractional models better reflect 

the gradual buildup of infectious cases, providing a more 

accurate prediction of the DENV disease's progression. 

In addition to the delayed epidemic peaks, the sensitivity of 

the basic reproduction number to key transmission parameters 

such as human-to-human and mosquito-to-human interactions 

is a noteworthy finding. This mirrors conclusions drawn by 

Pandey & Phaijoo (2024), who emphasized the critical role of 

intervention strategies targeting these parameters, such as 

vaccination campaigns and vector control measures. Our 

results further validate the efficacy of these strategies, 

demonstrating significant reductions in the basic reproduction 

number when transmission rates are curtailed through control 

efforts. This reinforces the importance of tailoring public 

health interventions to specifically address high-transmission 

pathways. 

However, the fractional-order model introduces an additional 

complexity which is the influence of memory effects on 

DENV dynamics, which is not accounted for in traditional 

integer-order models. This is consistent with previous 

observations by Usman et al. (2024), and Meena & Purohit 

(2024), who emphasized the importance of early 

interventions, such as accelerating recovery rates or deploying 

antivirals, to prevent prolonged outbreaks. Our contour plot 

analysis reinforced these conclusions, illustrating how 

adjustments to incubation-related parameters can dampen 

epidemic severity. More importantly, the model’s ability to 

simulate memory effects stresses the need for sustained 

interventions, as these effects can amplify delays in epidemic 

peaks and prolong outbreak durations. 

An essential feature of the DENV model’s dynamics is the 

interplay between human and mosquito populations, 

particularly the mosquito-to-mosquito transmission route. 

The concept of backward bifurcation, highlighted by the 

existence of multiple stable equilibria, has profound 

implications for the management of DENV epidemics. When 

the mosquito-to-mosquito reproduction number, 𝑅0𝑚𝑚 is 

greater than one, even when 𝑅0less than one, the DENV 

disease is can persist in the population. This situation is 

particularly relevant in areas with high mosquito densities, 

where mosquitoes act as a self-sustaining reservoir for the 

infection. Despite efforts to control human-to-human 

transmission through vaccination, the presence of mosquito-

to-mosquito transmission could maintain endemicity, 

especially if mosquito control measures are insufficient. This 

dynamic reinforces the necessity of integrated control 

strategies that address both human and mosquito populations 

concurrently. 
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The persistence of exposed populations in fractional-order 

dynamics, influenced by the fractional DENV model’s 

memory effects, underlines the importance of coordinated, 

long-term intervention efforts. Our results suggest that while 

vaccination campaigns are critical, they should be 

complemented by robust mosquito control measures, such as 

the removal of breeding sites and the use of insecticide-treated 

nets. Furthermore, the optimal timing of interventions 

becomes increasingly important in light of the delayed peaks, 

emphasizing the need for public health authorities to act 

preemptively before critical infection thresholds are reached. 

The existence of backward bifurcation calls for a shift in how 

we approach DENV control. While traditional models predict 

that reducing 𝑅0 below unity ensures the elimination of the 

DENV disease, the phenomenon of backward bifurcation 

challenges this assumption. Instead, the mosquito population 

must be carefully managed to prevent the re-establishment of 

endemic transmission. Integrated strategies, such as 

combining vaccination with vector control and public health 

education, are crucial in breaking the cycle of dengue 

transmission and preventing further outbreaks. 

Despite the valuable insights offered by this model, several 

limitations should be acknowledged. The assumption of 

homogeneous mixing of human and mosquito populations 

may not accurately reflect the spatial heterogeneities and 

localized transmission dynamics that are often observed in 

dengue outbreaks. Future models could incorporate spatial 

components, allowing for a more detailed understanding of 

how localized interventions might be more effective in certain 

areas. Additionally, the model’s reliance on parameters 

derived from general literature does not account for region-

specific factors such as climate, healthcare infrastructure, and 

population density. Integrating more localized data could 

enhance the accuracy and applicability of the model, 

particularly in predicting seasonal outbreaks that are 

influenced by factors like temperature and rainfall. 

Furthermore, the model does not consider age-structured 

populations or immunity variations within the human 

population, which are important for understanding the 

differential impact of vaccination strategies across age 

groups. Age-specific immunity and vaccination efficacy 

could significantly influence the outcomes of vaccination 

campaigns, particularly in areas where immunity levels vary. 

Finally, while the Caputo fractional derivative enables the 

modeling of memory effects, the computational complexity of 

fractional-order models can limit their scalability for larger 

systems or real-time application in public health decision-

making. Advances in numerical methods and computational 

techniques, such as adaptive step-size strategies or 

parallelized algorithms, will be essential for improving the 

practical utility of these models in dynamic epidemiological 

settings. 

Looking ahead, there are many opportunities for further 

research. Integrating region-specific data, exploring advanced 

intervention strategies, and considering the dynamic 

behaviors of mosquitoes in different environmental contexts 

could improve the model’s accuracy and predictive power. 

Moreover, the integration of real-world data into the 

fractional-order framework will be essential for model 

validation and improving its capacity to inform public health 

policies and strategies. Ultimately, fractional-order models 

can provide a powerful tool for understanding and controlling 

the complexities of dengue transmission, especially when 

combined with targeted interventions informed by the 

detailed dynamics revealed through backward bifurcation 

analysis. 

In conclusion, the findings of this study highlight the critical 

importance of considering both mosquito and human 

populations in dengue control. The incorporation of memory 

effects and the exploration of backward bifurcation 

underscore the need for integrated, long-term strategies in the 

fight against dengue. By leveraging these advanced modeling 

techniques, public health interventions can be more 

strategically timed and better tailored to the local dynamics of 

dengue transmission, ultimately helping to reduce the burden 

of this global disease. 

 

CONCLUSION 

This study presents a novel fractional-order mathematical 

model for dengue virus (DENV) transmission that 

incorporates memory effects and both vector and non-vector 

transmission pathways. By leveraging the Caputo fractional 

derivative, the model provides a more realistic framework for 

analyzing dengue dynamics, capturing both short-term and 

long-term epidemic behaviors. The inclusion of vaccination 

dynamics and human movement strengthens its applicability 

to real-world scenarios, reflecting the complex interplay 

between disease spread and intervention strategies. Key 

findings reveal that fractional-order modeling effectively 

delays epidemic peaks and extends the duration of exposure 

among populations, providing a more gradual buildup of 

infectious cases over time. This delayed progression is crucial 

for planning timely and targeted interventions. Sensitivity 

analysis of the basic reproduction number underscores the 

importance of interventions focused on reducing mosquito-to-

human transmission, particularly through vaccination 

campaigns and vector control measures. These results are 

consistent with existing literature, reinforcing the critical role 

of integrated strategies, combining vaccination, vector 

control, and public awareness, in managing dengue outbreaks. 

The practical implications for public health decision-making 

are significant. Fractional-order models enable more precise 

predictions of epidemic dynamics, allowing for optimized 

intervention timing and resource allocation. Targeting high-

transmission pathways at the right moment can effectively 

reduce disease spread before infection levels reach critical 

thresholds. These insights highlight the necessity of sustained 

and coordinated interventions to manage long-term dengue 

dynamics, particularly in regions prone to recurrent 

outbreaks. While the study provides important insights, 

several limitations must be acknowledged. The model 

assumes homogeneous mixing, which may not capture spatial 

heterogeneities in transmission dynamics. Additionally, 

generalized parameter values limit the model’s applicability 

to specific regions. Future work should focus on incorporating 

region-specific data, spatial heterogeneity, and age-structured 

populations to enhance model accuracy and relevance. 

Further advancements in computational methods are also 

necessary to address the challenges of solving fractional-order 

equations, particularly for large-scale systems and real-time 

applications. In conclusion, this study highlights the 

transformative potential of fractional-order modeling in 

understanding and controlling dengue epidemics. By 

capturing memory effects and incorporating both vector and 

non-vector pathways, the model provides a comprehensive 

approach to DENV disease dynamics. The findings 

underscore the value of these models in informing evidence-

based public health strategies, particularly in regions with 

high dengue prevalence. Moving forward, refining these 

models through local data integration and improved 

computational techniques will enhance their utility in 

managing and mitigating dengue outbreaks across diverse 

contexts. 
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