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ABSTRACT 

A foodborne disease called listeriosis is brought on by the bacteria Listeria monocytogenes which typically 

infects people after consuming contaminated food. Listeriosis mostly affects people with weakened immune 

systems, pregnant women and newborns. In this paper, we developed and analyzed a risk-structured 

mathematical model describing the dynamics of Listeriosis using ordinary differential equations. Three 

equilibrium points were obtained, viz; disease free equilibrium point, 𝐸0
𝑑, bacteria free equilibrium point, 𝐸0

𝑏, 

and endemic equilibrium point, 𝐸0
𝑒. Contaminated food threshold was established as 𝑅𝐿. The disease-free 

equilibrium and Bacteria-free equilibrium points are found to be locally asymptotically stable whenever the 

contaminated food threshold is less than unity (𝑅𝐿 < 1). Also, the endemic equilibrium point is found to be 

locally asymptotically stable using the Routh-Hurwitz criterion whenever the food safety index is less than 

unity (𝑅𝑐 < 1). Global stability analysis of the disease-free equilibrium point using Castillo-Chavez method 

revealed that the disease-free equilibrium point, 𝐸0
𝑑 is globally asymptotically stable.  
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INTRODUCTION 

Consuming contaminated food products can infect humans. 

On the other hand, though to a lesser degree, contact with 

infected humans or animals can also result in transmission. 

These illnesses can also be passed on to fetuses from infected 

pregnant women or female animals. The elderly, pregnant 

women, newborns, and those with weaker immune systems 

due to illnesses including HIV/AIDS, diabetes, cancer, and 

kidney disease are the groups most at risk of contracting this 

disease. The primary symptoms of listeriosis are fever, flu-

like symptoms, vomiting, nausea, and diarrhea. Listeriosis 

can be prevented and treated, like other bacterial diseases, by 

properly preparing meat and poultry, avoiding keeping 

products in the refrigerator past their expiration date, and 

preventing raw food from coming into contact with other 

foods and equipment (Iwu & Okoh, 2020). 

The Nigerian meat industry has been linked to the spread of 

Listeria throughout West Africa. 

 (Odu & Okonko, 2017L. monocytogenes was found to be 7% 

prevalent in raw meat samples in Rivers State, South-South 

Nigeria, and 91.8% prevalent in chicken flocks and meat in 

Oyo State, Nigeria. 

(Ishola et al., 2016). The prevalence of Listeria spp. in beef 

and chevon was found to be 58.2% (78/134) and 41.8% 

(56/134) in Lafia, Nigeria, respectively. It was determined 

that 64.4% (67/104) of these isolates were L. monocytogenes 

(Chukwu et al., 2020). 

The prevalence of Listeria spp. isolated from samples of beef, 

pork, and chicken meat in Enugu state, Nigeria, was 45.8%, 

27.1%, and 13.2%, respectively (Odu & Okonko, 2017). L. 

monocytogenes was found in 4.0% of raw meat and meat 

products in Zaria, Nigeria (Ndahi et al., 2014). According to 

other research conducted in Nigeria, the prevalence of L. 

monocytogenes in vegetables, such as tomatoes, cucumber, 

cabbage, carrots, and lettuce, was 28.28, 9.02, 23.36, 19.67, 

and 19.67%, respectively (Ajayeoba et al., 2016). 

Furthermore, 78% of locally produced soft cheeses (wara) had 

Listeria spp. 12.4% of which were found to be L. 

monocytogenes (Kunadu et al., 2018). According to this 

review, Nigeria's mean average prevalence of L. 

monocytogenes is 43.5%. 

Osman et al., (2020) examined a compartmental model of 

listeriosis including three humans and four animals. A 

qualitative analysis is conducted to determine whether the 

model's endemic and disease-free equilibria are stable, as well 

as whether forward and backward bifurcation is possible. 

Sensitivity analysis was employed to investigate the impact of 

altering the model parameters on the disease. The model 

includes treatment, immunization, and education of 

susceptible (human) populations as time-dependent control 

variables. In order to control listeriosis, they further employed 

Pontryagin's Maximum Principle and determined the most 

effective course of action. The model is simulated 

numerically, and the outcomes are shown graphically and 

quantitatively. 

Osman et al., (2018) studied the listeria epidemics in humans 

and animals with a focus on stability analysis. Chukwu et al., 

(2020) developed a deterministic model of co-infection 

between listeriosis and meningitis. We look at the sub-models 

of meningitis exclusively and listeriosis solely. Every co-

infection model and sub-model is examined mathematically. 

The severity parameters of infection co-dynamics are 

determined by Latin hypercube sampling. According to 

numerical models, co-infections between meningitis and 

listeriosis are decreased when ambient listeria bacteria are 

reduced and meningitis recovery rates are raised. 

Cui et al., (2007) developed a Susceptible Exposed Infected 

(SEI) model to examine how media affects infectious disease 

control. Numerical simulations conducted on this model 

demonstrate that while a lack of media notice can result in 

several disease outbreaks, its presence shortens the duration 

of the secondary peak in disease transmission. 

 

MATERIALS AND METHODS 

Model Formulation 

The model consists of three sub-populations, namely; the 

human population, bacteria population and the food products. 

The total human population 𝑁𝐻 is subdivided into four 

compartments; individuals at high risk of contracting 
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Listeriosis, 𝐻𝑆, individuals at low risk of contracting 

Listeriosis, 𝐿𝑆, infected individuals, 𝐼𝐻, and Recovered 

individuals (individuals who recover from the disease), 𝑅𝐻. 

The total human population, 𝑁𝐻, at any time 𝑡 is thus given 

by 

𝑁𝐻 = 𝐻𝑆 + 𝐿𝑆 + 𝐼𝐻 + 𝑅𝐻  

Susceptible human population is increased by recruitment at 

a constant rate Π𝐻. A portion 𝑧 of these recruited individuals 

is at low risk of contracting the disease, while the rest are at 

high risk. The population of susceptible high-risk individuals 

decreases due to education/enlightenment efforts, when 

adopted by these high-risk individuals, reduce their risk and 

susceptibility to the disease, thereby reducing their population 

at a rate of 𝜒. Infection with the Listeriosis disease from 

contaminated food products at a rate of 𝜆𝐻 and natural death 

at the rate of 𝜇𝐻 further diminish this population. Thus, the 

disease dynamics for high-risk susceptible individuals is 

given by 
(1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆 

For low-risk susceptible individuals, 𝐿𝑆, their population 

increases with education or enlightenment and subsequent 

behavioral changes due to high-risk susceptibility at a rate 𝜒.  

It is decreased by natural death, 𝜇𝐻,  and rate at which low-

risk individuals come in contact with Listeria disease at the 

rate (1 − 𝜑)𝜆𝐻, where 𝜑 is a modification parameter 

representing the behavioral dispositions adopted by these 

low-risk. This is mathematically expressed as 

𝑧Π𝐻 + 𝜒𝐻𝑆 − (𝜇𝐻 + (1 − 𝜑)𝜆𝐻)𝐿𝑆 

The infected human population is increased due to infection 

with Listeriosis disease from high risk susceptible, low risk 

susceptible at a rate 𝜆𝐻 and (1 − 𝜑)𝜆𝐻 respectively. The 

population is further decreased due to natural death 𝜇𝐻, death 

due to Listeriosis infection 𝜙𝐻 , and rate at which infected 

individuals received treatment from Listeria infection, 𝛼𝐻. 

Thus, it is given as 

𝜆𝐻𝐻𝑆 + (1 − 𝜑)𝜆𝐻𝐿𝑆 − (𝜇𝐻 + 𝜙𝐻 + 𝛼𝐻)𝐼𝐻 

The recovered human population is increased due to treatment 

and decreased by natural death at a rate 𝛼𝐻 and 𝜇𝐻 

respectively. Thus, it is given as 

𝛼𝐻𝐼𝐻 − 𝜇𝐻𝑅𝐻 

We let 𝐿𝑏 to represents L. monocytogenes population with a 

net growth rate 𝑐1, and a carrying capacity 0 ≤ 𝑑𝐿 ≤ 1. The 

Bacteria is assumed to grow logistically at a rate 𝑐1𝐿𝑏 (1 −

𝐿𝑏

𝑑𝐿
). The Bacteria population is reduced due to decay rate 𝜇𝐿, 

so that 

𝑐1𝐿𝑏 (1 −
𝐿𝑏

𝑑𝐿
) − 𝜇𝐿𝐿𝑏  

Food products are divided into two: we have uncontaminated 

food products, 𝑈𝐹, and contaminated 

food products, 𝐶𝐹; with the total food products 𝐹 = 𝑈𝐹 + 𝐶𝐹: 

production rate into uncontaminated food products is Π𝐹 . 

Uncontaminated food is thus contaminated at a rate 𝜆𝐹 

through contact with bacteria from the environment and 

contaminated food in the factory’s handling as distribution 

processes and is reduced due to food products removal rate 𝜇𝐹 

, so that 

Π𝐹 − (𝜆𝐹 + 𝜇𝐹)𝑈𝐹 

Similarly, contaminated food products is increased due to 

contamination rate 𝜆𝐹 and is reduced by food products 

removal rate 𝜇𝐹 , so that 

𝜆𝐹𝑈𝐹 − 𝜇𝐹𝐶𝐹 

With 𝜆𝐻 = 𝛽1𝐶𝐹 and 𝜆𝐹 = 𝛽2𝐿𝑏 + 𝛽3𝐶𝐹. Where: 𝛽1, 𝛽2and 

𝛽3 been the effective contact rates of contaminated foods with 

humans, uncontaminated foods with bacteria and 

contaminations of uncontaminated food caused by 

contaminated food products respectively. In general, the 

model formulated for this research is represented by equation 

(1), and the parameters and variables are listed in Table 1. A 

schematic diagram of the proposed model is shown in Figure 

1. 

 
𝑑𝐻𝑆

𝑑𝑡
= (1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆

𝑑𝐿𝑆

𝑑𝑡
= 𝑧Π𝐻 + 𝜒𝐻𝑆 − (𝜇𝐻 + (1 − 𝜑)𝜆𝐻)𝐿𝑆

𝑑𝐼𝐻

𝑑𝑡
= 𝜆𝐻𝐻𝑆 + (1 − 𝜑)𝜆𝐻𝐿𝑆 − (𝜇𝐻 + 𝜙𝐻 + 𝛼𝐻)𝐼𝐻

𝑑𝑅𝐻

𝑑𝑡
= 𝛼𝐻𝐼𝐻 − 𝜇𝐻𝑅𝐻

𝑑𝐿𝑏

𝑑𝑡
= 𝑐1𝐿𝑏 (1 −

𝐿𝑏

𝑑𝐿
) − 𝜇𝐿𝐿𝑏

𝑑𝑈𝐹

𝑑𝑡
= Π𝐹 − (𝜆𝐹 + 𝜇𝐹)𝑈𝐹

𝑑𝐶𝐹

𝑑𝑡
= 𝜆𝐹𝑈𝐹 − 𝜇𝐹𝐶𝐹 }

 
 
 
 
 

 
 
 
 
 

   (1) 

where:     

𝜆𝐻 = 𝛽1𝐶𝐹  and  𝜆𝐹 = 𝛽2𝐿𝑏 + 𝛽3𝐶𝐹 

 

 
Figure 1: A Risk-Structured Listeriosis Model Diagram 
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Table 1: Description of the model variables and parameters 

Variable/Parameters Description 

𝐻𝑆 High-risk susceptible human population 

𝐿𝑆  Low-risk susceptible human population 

𝐼𝐻 Infected human population 

𝑅𝐻 Recovered human population 

𝐿𝑏  Bacteria Monocytogenes population   

𝑈𝐹
 

Uncontaminated food products  

𝐶𝐹 Contaminated food product 

𝛽1 effective contact rate of contaminated foods with humans 

𝛽2 effective contact rate of contaminated foods with bacteria 

𝛽3 effective contact rate of uncontaminated foods with contaminated food products 

Π𝐻 Human recruitment rate 

Π𝐹 Food products production rate 

𝑧 Fraction of humans categorized to be low-risk individuals 

𝜒 Education/ Enlightment campaign efforts 

𝜑 Modification parameter for behavioral change of low-risk  

Susceptibles 

𝜇𝑖(𝑖 = 𝐻, 𝐹, 𝐿) Human natural death/food product removal rate/bacteria decay rate 

𝑐1 Bacteria growth rate  

𝑑𝐿 Bacteria population carrying capacity 

𝛼𝐻 Recovery rate for humans 

𝜙𝐻 Listeria induced death rate for humans 

 

Basic Properties of the Model 

Boundedness of solutions  

In this section, we proved that the solutions to model system 

(1) exists, are non-negative, and are bounded in the region Ω 

for all time 𝑡 > 0. Assume that Ω is the biological meaningful 

region for the model equation (1) contained in ℝ+
7 . The 

positivity of the solutions is governed by the following 

theorem. 

Theorem 1: The closed set Ω = Ω𝐻 × Ω𝐹 × Ω𝐿, with Ω𝐻 =

{𝐻𝑆, 𝐿𝑆, 𝐼𝐻, 𝑅𝐻 ∈ ℝ+
4 : 𝑁𝐻 ≤

Π𝐻

𝜇𝐻
}, Ω𝐹 = {𝑈𝐹 , 𝐶𝐹 ∈ ℝ+

2 : 𝐹 ≤

Π𝐹

𝜇𝐹
} and Ω𝐿 = {𝐿𝑏 ∈ ℝ+

1 } is positively invariant with respect 

to model equations (1). 

Proof: The total human population is denoted by 𝑁𝐻 and is 

given by  

𝑁𝐻(𝑡) = 𝐻𝑆(𝑡) + 𝐿𝑆(𝑡) + 𝐼𝐻(𝑡) + 𝑅𝐻(𝑡)  

and is differentiated and summed together to have  
𝑁𝐻(𝑡)

𝑑𝑡
= Π𝐻 − 𝜇𝐻𝑁𝐻 − 𝜙𝐻𝐼𝐻   (2) 

in absence of mortality due to Listeria (i.e. 𝜙𝐻 = 0) then by 

standard comparison theorem and rearranging equation (2), 

we obtain 
𝑁𝐻(𝑡)

𝑑𝑡
+ 𝜇𝐻𝑁𝐻 ≤ Π𝐻   (3) 

solving equation (4) by integral factor method, we have  

𝑁𝐻(𝑡) ≤
Π𝐻

𝜇𝐻
[1 − 𝑒𝑥𝑝(−𝜇𝐻𝑡)] + 𝑁𝐻(0) 𝑒𝑥𝑝(−𝜇𝐻𝑡) (4) 

as 𝑡 → ∞, we have that 

𝑁𝐻(𝑡) ≤
Π𝐻

𝜇𝐻
    (5) 

following a similar approach yields similar result for food 

products. 

𝐹(𝑡) ≤
Π𝐹

𝜇𝐹
    (6) 

Furthermore, for the bacteria population, we have that 

𝐿𝑏(𝑡) = [
𝑐1

𝑑𝐿(𝑐1−𝜇𝐿)
+ 𝐷 𝑒𝑥𝑝(−(𝜇𝐿 − 𝑐1)𝑡)]

−1
 (7) 

thus, as 𝑡 → ∞, 𝐿𝑏(𝑡) → 𝑑𝐿 (1 −
𝜇𝐿

𝑐1
). So, we note that for 

human Listeria to exists, its decay rate, 𝜇𝐿 must be less than 

its growth rate, 𝑐1. Implying that 0 ≤ 𝐿𝑏 ≤ 𝑑𝐿. Thus, we have 

shown that Ω is positively invariant and attracts all solutions 

of model equation (1) in finite time. This guarantees that our 

investigation and analyses will be carried out in a feasible 

region and that every solution of our model having initial 

conditions in Ω will always remain in Ω for all time 𝑡 > 0. 

 

Non-negativity of solutions 

Next, we establish that every solution of the model equation 

(1) will be non-negative for all time 𝑡. 
Theorem 2: Let 
(𝐻𝑆(0), 𝐿𝑆(0), 𝐼𝐻(0), 𝑅𝐻(0), 𝐿𝑏(0), 𝑈𝐹(0), 𝐶𝐹(0)) be the 

initial states of the model equation (1). Then every solution 
(𝐻𝑆(𝑡), 𝐿𝑆(𝑡), 𝐼𝐻(𝑡), 𝑅𝐻(𝑡), 𝐿𝑏(𝑡), 𝑈𝐹(𝑡), 𝐶𝐹(𝑡)) ≥ 0 for all 

time 𝑡 > 0. 

 

Proof: From the first equation of our model equations (1), 

we have  
𝑑𝐻𝑆

𝑑𝑡
= (1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆  

So, by collecting like terms, we have  
𝑑𝐻𝑆

𝑑𝑡
+ (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆 ≥ (1 − 𝑧)Π𝐻  (8) 

solving equation (8) using integral factor method gives  
𝑑

𝑑𝑡
{𝐻𝑆 𝑒𝑥𝑝 [𝜇𝐻𝑡 + 𝜒𝑡 + ∫ 𝜆𝐻(𝜏)𝑑𝜏

𝑡

0
]}  

≥ (1 − 𝑧)Π𝐻 𝑒𝑥𝑝 [𝜇𝐻𝑡 + 𝜒𝑡 + ∫ 𝜆𝐻(𝜏)𝑑𝜏
𝑡

0
]   

integrating both sides, we have  

𝐻𝑆(𝑡) 𝑒𝑥𝑝 [𝜇𝐻𝑡 + 𝜒𝑡 + ∫ 𝜆𝐻(𝜏)𝑑𝜏
𝑡

0
] − 𝐻𝑆(0)  

≥ (1 − 𝑧)Π𝐻 ∫ [𝑒𝑥𝑝{(𝜇𝐻 + 𝜒)𝑔 + ∫ 𝜆𝐻(𝜏)𝑑𝜏
𝑔

0
}]

𝑡

0
𝑑𝑔  

so that 

𝐻𝑆(𝑡) ≥ 𝐻𝑆(0) 𝑒𝑥𝑝 [− {(𝜇𝐻 + 𝜒)𝑡 + ∫ 𝜆𝐻(𝜏)𝑑𝜏
𝑡

0
}] +

𝑒𝑥𝑝 [− {(𝜇𝐻 + 𝜒)𝑡 + ∫ 𝜆𝐻(𝜏)𝑑𝜏
𝑡

0
}] ×  

(1 − 𝑧)Π𝐻 ∫ [𝑒𝑥𝑝{(𝜇𝐻 + 𝜒)𝑔 + ∫ 𝜆𝐻(𝜏)𝑑𝜏
𝑔

0
}]

𝑡

0
𝑑𝑔  

This implies that but 𝐻𝑆(𝑡) > 0 for 𝑡 > 0, hence, 𝐻𝑆(𝑡) > 0 

for 𝑡 > 0. 

Consider the second equation of system (1) 
𝑑𝐿𝑆

𝑑𝑡
= 𝑧Π𝐻 + 𝜒𝐻𝑆 − ((1 − 𝜑)𝜆𝐻 + 𝜇𝐻)𝐿𝑆 (9) 

suppose 𝐻𝑆 > 0, then (9) becomes 
𝑑𝐿𝑆

𝑑𝑡
+ ((1 − 𝜑)𝜆𝐻 + 𝜇𝐻)𝐿𝑆 ≥ 𝑧Π𝐻  

solving using integral factor method, we obtain 
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𝑑

𝑑𝑡
{𝐿𝑆 𝑒𝑥𝑝 [𝜇𝐻𝑡 + ∫ (1 − 𝜑)𝜆𝐻(𝜏)𝑑𝜏

𝑡

0
]}  

≥ (1 − 𝑧)Π𝐻 𝑒𝑥𝑝 [𝜇𝐻𝑡 + ∫ (1 − 𝜑)𝜆𝐻(𝜏)𝑑𝜏
𝑡

0
]  

Integrating both sides, we have  

𝐿𝑆(𝑡) 𝑒𝑥𝑝 [𝜇𝐻𝑡 + ∫ (1 − 𝜑)𝜆𝐻(𝜏)𝑑𝜏
𝑡

0
] − 𝐿𝑆(0) ≥

𝑧Π𝐻 ∫ [𝑒𝑥𝑝{𝜇𝐻𝑔 + ∫ (1 − 𝜑)𝜆𝐻(𝜏)𝑑𝜏
𝑔

0
}]

𝑡

0
𝑑𝑔  

so that 

𝐿𝑆(𝑡) ≥ 𝐿𝑆(0) 𝑒𝑥𝑝 [− {𝜇𝐻𝑡 + ∫ (1 − 𝜑)𝜆𝐻(𝜏)𝑑𝜏
𝑡

0
}] +

𝑒𝑥𝑝 [− {𝜇𝐻𝑡 + ∫ (1 − 𝜑)𝜆𝐻(𝜏)𝑑𝜏
𝑡

0
}] × 𝑧Π𝐻 ∫ [𝑒𝑥𝑝{𝜇𝐻𝑔 +

𝑡

0

∫ (1 − 𝜑)𝜆𝐻(𝜏)𝑑𝜏
𝑔

0
}]𝑑𝑔  

Thus, 𝐿𝑆(𝑡) > 0 for 𝑡 > 0, therefore, 𝐿𝑆(𝑡) > 0 for 𝑡 > 0. In 

the same manner, it can be shown that 𝐼𝐻(𝑡) > 0, 𝑅𝐻(𝑡) >
0, 𝐿𝑏(𝑡) > 0,𝑈𝐹(𝑡) > 0, 𝐶𝐹(𝑡) > 0.  

 

Existence and uniqueness of solutions 

Theorem 3: The model equation (1) defined by ℝ+
7 ∈

Ω has a solution that exists, and the solution is unique in the 

region Ω if ∀𝑡 ≥ 0. 

|
∂𝑓𝑖

∂𝑋
| < ∞, 𝑖 = 1(1)7 and 𝑋 = {𝐻𝑆, 𝐿𝑆, 𝐼𝐻 , 𝑅𝐻, 𝐿𝑏 , 𝑈𝐹 , 𝐶𝐹}; 

|𝑓(𝑡, 𝑋2) − 𝑓(𝑡, 𝑋1)| ≤ 𝑀|𝑋2 − 𝑋1|, where 𝑀 is Lipchitz 

constant. 

Proof:  We write the model equation (1) as  

𝑓1 = (1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆 
𝑓2 = 𝑧Π𝐻 + 𝜒𝐻𝑆 − ((1 − 𝜑)𝜆𝐻 + 𝜇𝐻)𝐿𝑆 
𝑓3 = 𝜆𝐻𝐻𝑆 + (1 − 𝜑)𝜆𝐻𝐿𝑆 − (𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻)𝐼𝐻  
𝑓4 = 𝛼𝐻𝐼𝐻 − 𝜇𝐻𝑅𝐻 

𝑓5 = 𝑐1𝐿𝑏 (1 −
𝐿𝑏
𝑑𝐿
) − 𝜇𝐿𝐿𝑏 

𝑓6 = Π𝐹 − (𝜆𝐹 + 𝜇𝐹)𝑈𝐹  
𝑓7 = 𝜆𝐹𝑈𝐹 − 𝜇𝐹𝐶𝐹 

With 

𝜆𝐻 = 𝛽1𝐶𝐹 and  𝜆𝐹 = 𝛽2𝐶𝐹 + 𝛽3𝐿𝑏 

taking the partial derivative of 𝑓1 with respect to each state 

variable defined by 𝑋, we have 

|
∂𝑓1

∂𝐻𝑆
| = |𝜆𝐻 + 𝜇𝐻 + 𝜒| < ∞, |

∂𝑓1

∂𝐶𝐹
| = |𝛽1| < ∞ 

and  

|
∂𝑓1

∂𝐿𝑆
| = |

∂𝑓1

∂𝐼𝐻
| = |

∂𝑓1

∂𝑅𝐻
| = |

∂𝑓1

∂𝐿𝑏
| = |

∂𝑓1

∂𝑈𝐹
| = 0 < ∞  

repeating the same for other functions 𝑓2, 𝑓3, … , 𝑓7, and the 

first condition of theorem 3 is satisfied. For the second 

condition of theorem 3, we let 𝑋1 and 𝑋2 be any two points 

in the region Ω for the system of equations (1), we check each 

variable of 𝑋 at these points to see if the system satisfies the 

Lipchitz condition, i.e. Consider; 

𝑓1 = (1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆 

this function at any two points of 𝐻𝑆 is 

𝑓1 = (1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆
2 

𝑓1 = (1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆
1 

therefore, 

|𝑓1(𝑡, 𝐻𝑆
2) − 𝑓1(𝑡, 𝐻𝑆

1)| = |(1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 +

𝜒)𝐻𝑆
2 − ((1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻 + 𝜒)𝐻𝑆

1)| ≤ |−(𝜆𝐻 +

𝜇𝐻 + 𝜒)||𝐻𝑆
2 −𝐻𝑆

1|  

where 𝑀 = (𝜆𝐻 + 𝜇𝐻 + 𝜒) and is Lipchitz constant. The 

process is repeated for other variables of 𝑋 ∈ 𝑓1 and functions, 

which establishes the Lipchitz condition. Hence, this 

completes the proof.  

 

Model Steady States and Stability Analysis 

Model Steady States 

To solve for the steady states of model equation (1), we equate 

the RHS to zero as follows and obtain; 

0 = (1 − 𝑧)Π𝐻 − (𝛽1𝐶𝐹
* + 𝜇𝐻 + 𝜒)𝐻𝑆

*

0 = 𝑧Π𝐻 + 𝜒𝐻𝑆
* − ((1 − 𝜑)𝛽1𝐶𝐹

* + 𝜇𝐻) 𝐿𝑆
*

0 = 𝛽1𝐶𝐹
*𝐻𝑆

* + (1 − 𝜑)𝛽1𝐶𝐹
*𝐿𝑆
* − (𝛼𝐻 + 𝜇𝐻 +𝜙𝐻)𝐼𝐻

*

0 = 𝛼𝐻𝐼𝐻
* − 𝜇𝐻𝑅𝐻

*

0 = 𝑐1𝐿𝑏
* (1 −

𝐿𝑏
*

𝑑𝐿
) − 𝜇𝐿𝐿𝑏

*

0 = Π𝐹 − (𝛽2𝐿𝑏
* + 𝛽3𝐶𝐹

* + 𝜇𝐹)𝑈𝐹
*

0 = (𝛽2𝐿𝑏
* + 𝛽3𝐶𝐹

*)𝑈𝐹
* − 𝜇𝐹𝐶𝐹

* }
 
 
 
 

 
 
 
 

 (10) 

from the last three equations of (10), we can solve for the 

values of 𝐿𝑏
* , 𝑈𝐹

*  and 𝐶𝐹
*  as follows: From the fifth equation of 

(10), we have that; 

𝐿𝑏
* = 0 or 𝐿𝑏

* = 𝑑𝐿 (1 −
𝜇𝐿

𝑐1
)   (11) 

Now, If 𝐿𝑏
* = 0, we can solve for 𝑈𝐹

*  from second to the last 

equation of (10) as  

𝑈𝐹
* =

Π𝐹

𝛽3𝐶𝐹
*+𝜇𝐹

    (12) 

we substitute (12) into the last equation of (10) to obtain 

𝛽3Π𝐹𝐶𝐹
* − 𝛽3𝜇𝐹𝐶𝐹

*2 − 𝜇𝐹
2𝐶𝐹

* = 0  (13) 

Simplifying (13), we obtain 

𝐶𝐹
*0 = 0 or 𝐶𝐹

*1 =
𝜇𝐹

𝛽3
(𝑅𝐿 − 1)  

where 𝑅𝐿 =
Π𝐹𝛽3

𝜇𝐹
2  denotes the contaminated food threshold. 

 

Disease-free Equilibrium state 

The case when 𝐿𝑏
* = 0, and 𝐶𝐹

*0 = 0 reduces system (10) to 

0 = (1 − 𝑧)Π𝐻 − (𝜇𝐻 + 𝜒)𝐻𝑆
0 

0 = 𝑧Π𝐻 + 𝜒𝐻𝑆
0 − 𝜇𝐻𝐿𝑆

0 
0 = Π𝐹 − 𝜇𝐹𝑈𝐹

0 

which gives the disease-free equilibrium state given as 

𝐸0
𝑑 = [

(1−𝑧)Π𝐻

𝜇𝐻+𝜒
,
Π𝐻(𝑧𝜇𝐻+𝜒)

𝜇𝐻(𝜇𝐻+𝜒)
, 0,0,0,

Π𝐹

𝜇𝐹
, 0]  

 

Bacteria-free Equilibrium state 

The case when 𝐿𝑏
* = 0, 𝐶𝐹

*1 =
𝜇𝐹

𝛽3
(𝑅𝐿 − 1) and 𝑅𝐿 > 1, 

system (10) reduces to 

0 = (1 − 𝑧)Π𝐻 − (
𝛽1𝜇𝐹
𝛽3

(𝑅𝐿 − 1) + 𝜇𝐻 + 𝜒)𝐻𝑆
* 

0 = 𝑧Π𝐻 + 𝜒𝐻𝑆
* − ((1 − 𝜑)

𝛽1𝜇𝐹
𝛽3

(𝑅𝐿 − 1) + 𝜇𝐻)𝐿𝑆
*  

0 =
𝛽1𝜇𝐹
𝛽3

(𝑅𝐿 − 1)𝐻𝑆
* + (1 − 𝜑)

𝛽1𝜇𝐹
𝛽3

(𝑅𝐿 − 1)𝐿𝑆
*

− (𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻)𝐼𝐻
*  

0 = 𝛼𝐻𝐼𝐻
* − 𝜇𝐻𝑅𝐻

*  
0 = Π𝐹 − (𝜇𝐹(𝑅𝐿 − 1) + 𝜇𝐹)𝑈𝐹

*  

 

this gives the bacteria-free equilibrium state given as 

𝐸0
𝑏 = [𝐻𝑆

*, 𝐿𝑆
* , 𝐼𝐻

* , 𝑅𝐻
* , 0,

𝜇𝐹

𝛽3
,
𝜇𝐹

𝛽3
(𝑅𝐿 − 1)]  

where: 

𝐻𝑆
* =

(1−𝑧)𝛽3Π𝐻

𝛽1𝜇𝐹(𝑅𝐿−1)+𝛽3(𝜇𝐻+𝜒)
,  

𝐿𝑆
* =

𝛽3𝑧Π𝐻+𝛽3𝜒𝐻𝑆
*

𝛽1𝜇𝐹(1−𝜑)(𝑅𝐿−1)+𝛽3𝜇𝐻
  

𝐼𝐻
* =

(𝛽1𝜇𝐹𝐻𝑆
*+𝜇𝐹(1−𝜑)𝐿𝑆

* )(𝑅𝐿−1)

𝛽3(𝛼𝐻+𝜇𝐻+𝜙𝐻)
,  

𝑅𝐻
* =

(𝛽1𝜇𝐹𝛼𝐻𝐻𝑆
*+𝛼𝐻𝜇𝐹(1−𝜑)𝐿𝑆

* )(𝑅𝐿−1)

𝛽3𝜇𝐻(𝛼𝐻+𝜇𝐻+𝜙𝐻)
  

 

Endemic Equilibrium state 

If 𝐿𝑏
* = 𝑑𝐿 (1 −

𝜇𝐿

𝑐1
)

 

then we obtain the Listeria endemic 

equilibrium express as 

  𝐸0
𝑒 = [𝐻𝑆

**, 𝐿𝑆
**, 𝐼𝐻

**, 𝑅𝐻
**, 𝑑𝐿 (1 −

𝜇𝐿

𝑐1
) , 𝑈𝐹

**, 𝐶𝐹
**] 
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where: 

𝐻𝑆
** =

(1−𝑧)Π𝐻𝑐1(𝜇𝐹−𝛽2𝑈𝐹
**)

𝛽1𝛽3𝑑𝐿(𝑐1−𝜇𝐿)𝑈𝐹
**+𝑐1(𝜇𝐻+𝜒)(𝜇𝐹−𝛽2𝑈𝐹

**)
,  

𝐿𝑆
** =

𝑧Π𝐻(𝛽1𝐶𝐹
**+𝜇𝐻+𝜒)+Π𝐻𝜒(1−𝑧)

((1−𝜑)𝛽1𝐶𝐹
**+𝜇𝐻)(𝛽1𝐶𝐹

**+𝜇𝐻+𝜒)
  

𝐼𝐻
** =

𝛽1𝛽3𝑑𝐿(𝑐1−𝜇𝐿)(𝐻𝑆
**+(1−𝜑)𝐿𝑆

**)𝑈𝐹
**

𝑐1(𝜇𝐹−𝛽2𝑈𝐹
**)(𝛼𝐻+𝜇𝐻+𝜙𝐻)

,  

𝑅𝐻
** =

𝛼𝐻𝛽1𝛽3𝑑𝐿(𝑐1−𝜇𝐿)(𝐻𝑆
**+(1−𝜑)𝐿𝑆

**)𝑈𝐹
**

𝜇𝐻𝑐1(𝜇𝐹−𝛽2𝑈𝐹
**)(𝛼𝐻+𝜇𝐻+𝜙𝐻)

,  

𝑈𝐹
** =

Π𝐻𝑐1

𝑐1𝛽2𝐶𝐹
**+𝛽3𝑑𝐿(𝑐1−𝜇𝐿)+𝑐1𝜇𝐿

,  

𝐶𝐹
** =

𝛽3𝑑𝐿(𝑐1−𝜇𝐿)𝑈𝐹
**

𝑐1(𝜇𝐹−𝛽2𝑈𝐹
**)

 

 

Local Stability of Disease-free equilibrium state 

The Disease-free equilibrium point 𝐸0
𝑑 is locally 

asymptotically stable whenever 𝑐1 < 𝜇𝐿,  𝑅𝐿 < 1 and 

unstable otherwise.  

 

Proof: The Jacobian of system of equation (1) evaluated at 

disease-free equilibrium is given as  

 

𝐽(𝐸0
𝑑) =

[
 
 
 
 
 
 
 
−𝐴1 0 0 0 0 0 −𝛽1𝐻𝑆

0

𝜒 −𝜇𝐻 0 0 0 0 −(1 − 𝜑)𝛽1𝐿𝑆
0

0 0 −𝐴2 0 0 0 𝛽1𝐻𝑆
0 + (1 − 𝜑)𝛽1𝐿𝑆

0

0 0 𝛼𝐻 −𝜇𝐻 0 0 0
0 0 0 0 𝑐1 − 𝜇𝐿 0 0

0 0 0 0 −𝛽3𝑈𝐹
0 −𝜇𝐹 −𝛽2𝑈𝐹

0

0 0 0 0 𝛽3𝑈𝐹
0 0 𝛽2𝑈𝐹

0 − 𝜇𝐹 ]
 
 
 
 
 
 
 

     (14)

 

where: 

𝐴1 = (𝜒 + 𝜇𝐻) and 𝐴2 = (𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻)  

The eigenvalues of (14) is given as:  

𝜆1 = −(𝜒 + 𝜇𝐻),  

𝜆2 = −𝜇𝐻,   

𝜆3 = −(𝛼𝐻 + 𝜇𝐻 +𝜙𝐻),  

𝜆4 = −𝜇𝐻,   

𝜆5 = 𝑐1 − 𝜇𝐿,  

𝜆6 = −𝜇𝐹 and   

𝜆7 = 𝜇𝐹(𝑅𝐿 − 1)  

Hence, the eigenvalues of (14) have negative real parts 

whenever 𝑐1 < 𝜇𝐿

 

and 𝑅𝐿 < 1. 

 

Local Stability of Bacteria-free equilibrium state 

The Bacteria-free equilibrium point 𝐸0
𝑏 is locally 

asymptotically stable whenever 𝑅𝐿 < 1, 𝑐1 < 𝜇𝐿 and
 
unstable 

otherwise.  

Proof: The Jacobian of system of equation (1) evaluated at 

bacteria-free equilibrium is given as  

𝐽(𝐸0
𝑏) =

[
 
 
 
 
 
 
 
𝑄0 0 0 0 0 0 −𝛽1𝐻𝑆

*

𝜒 𝑄1 0 0 0 0 −(1 − 𝜑)𝛽1𝐿𝑆
*

𝑄0 𝑄1 −𝑄2 0 0 0 𝛽1𝐻𝑆
* + (1 − 𝜑)𝛽1𝐿𝑆

*

0 0 𝛼𝐻 −𝜇𝐻 0 0 0
0 0 0 0 𝑐1 − 𝜇𝐿 0 0

0 0 0 0 −𝛽3𝑈𝐹
* −𝑄3 −𝛽2𝑈𝐹

*

0 0 0 0 𝛽3𝑈𝐹
* 𝑄2 𝛽2𝑈𝐹

* − 𝜇𝐹 ]
 
 
 
 
 
 
 

     (15) 

where: 

𝑄0 =
𝛽1𝜇𝐹

𝛽3
(𝑅𝐿 − 1) − (𝜒 + 𝜇𝐻)

,     

𝑄1 =
(1−𝜑)𝛽1𝜇𝐹

𝛽3
(𝑅𝐿 − 1) − 𝜇𝐻 

 
𝑄2 = (𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻)

 
 

     

 
𝑄3 =

𝛽2𝜇𝐹

𝛽3
(𝑅𝐿 − 1) − 𝜇𝐹

, 

𝑄4 =
𝛽2𝜇𝐹

𝛽3
− 𝜇𝐹    (16) 

The eigenvalues of (15) are:  

𝜆1 = −𝜇𝐻 ,   

𝜆2 = 𝑐1 − 𝜇𝐿,  

𝜆3 = −(𝛼𝐻 + 𝜇𝐻 +𝜙𝐻), 
 

𝜆4 =
(1−𝜑)𝛽1𝜇𝐹

𝛽3
(𝑅𝐿 − 1) − 𝜇𝐻  and   

 𝜆5 =
𝛽1𝜇𝐹

𝛽3
(𝑅𝐿 − 1) − (𝜒 + 𝜇𝐻) 

 
The remaining eigenvalues can be obtained from the solutions 

to the characteristic’s polynomial of the sub-matrix   

𝐽1(𝐸0
𝑏) = [

−𝑄3 −𝛽2𝑈𝐹
*

𝑄2 𝛽2𝑈𝐹
* − 𝜇𝐹

] 

 
given by 

𝜆2 + 𝜃0𝜆 + 𝜃1 = 0    (17) 

in which 

𝜃0 =
𝛽2𝜇𝐹

𝛽3
(𝑅𝐿 − 1) + 2𝜇𝐹 −

𝛽2𝜇𝐹

𝛽3
   and   

 𝜃1 =
𝛽2𝜇𝐹

2

𝛽3
(𝑅𝐿 − 1) −

𝜇𝐹
2𝛽2

𝛽3
+ 𝜇𝐹

2  

 We have that 𝜃1 and 𝜃0

 

are positive if 𝑅𝐿 > 1. Hence, by 

Routh-Hurwitz stability criterion, we have that all the 

eigenvalues of the polynomial (17) have negative real parts. 

Thus, 𝐸0
𝑏

 

is locally asymptotically stable if and only if 𝑐1 <
𝜇𝐿

 
and unstable otherwise. 

 

Local Stability of Endemic equilibrium state 

The Endemic equilibrium point 𝐸0
𝑒 is locally asymptotically 

stable whenever contamination control ratio (food safety 

index) is less than unity (𝑅𝑐 < 1) and 𝑐1 > 𝜇𝐿, and unstable 

otherwise.  

 

Proof: We define the contamination control ratio (food 

safety index), 𝑅𝑐 =
𝑈𝐹
**

𝐶𝐹
** and thus the Jacobian of system of 

equation (1) evaluated at endemic equilibrium is given as  

 
𝐽(𝐸0

𝑒) =

[
 
 
 
 
 
 
 
−𝑄5 0 0 0 0 0 −𝛽1𝐻𝑆

*

𝜒 −𝑄6 0 0 0 0 −𝐵1
𝛽1𝐶𝐹

** (1 − 𝜑)𝛽1𝐶𝐹
** −𝑄7 0 0 0 𝐵2

0 0 𝛼𝐻 −𝜇𝐻 0 0 0
0 0 0 0 𝜇𝐿 − 𝑐1 0 0

0 0 0 0 −𝛽3𝑈𝐹
** −𝑄8 − 𝜇𝐹 −𝛽2𝑈𝐹

**

0 0 0 0 𝛽3𝑈𝐹
** 𝑄8 𝛽2𝑈𝐹

** − 𝜇𝐹]
 
 
 
 
 
 
 

     (18) 

where: 

𝑄5 = −(𝛽1𝐶𝐹
** + 𝜒 + 𝜇𝐻),  

𝑄6 = −(1 − 𝜑)𝛽1𝐶𝐹
** − 𝜇𝐻 ,  

𝑄7 = −(𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻),  

𝑄8 = 𝛽2𝐶𝐹
** + 𝑑𝐿𝛽3 (1 −

𝜇𝐿

𝑐1
)  

The eigenvalues of equation (18) are 𝜆1 = 𝜇𝐿 − 𝑐1 , 𝜆2 =
−𝜇𝐻, 𝜆3 = −(𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻)and the solutions to the 

characteristic polynomial obtained from the sub-matrix 

𝐽1(𝐸0
𝑒) = [

−(𝛽1𝐶𝐹
** + 𝜒 + 𝜇𝐻) 0

𝜒 −(1 − 𝜑)𝛽1𝐶𝐹
** − 𝜇𝐻

] 

 

given as 

𝜆2 + 𝜃2𝜆 + 𝜃3 = 0    (19) 

where 

𝜃2 = (1 − 𝜑)𝛽1𝐶𝐹
** + 𝛽1𝐶𝐹

** + 2𝜇𝐻 + 𝜒 > 0,  

𝜃3 = 𝛽1𝜇𝐻𝐶𝐹
** + (1 − 𝜑)𝛽1

2𝐶𝐹
**2 + 𝜇𝐻(𝜒 + 𝜇𝐻) +

𝛽1𝐶𝐹
**(1 − 𝜑)(𝜇𝐻 + 𝜒) > 0  

The remaining eigenvalues are determined from determinant 

of the sub-matrix 𝐽2(𝐸0
𝑒) below 

𝐽2(𝐸0
𝑒) = [

−(𝛽2𝐶𝐹
** + 𝜇𝐹 + 𝛽3𝑑𝐿 (1 −

𝜇𝐿

𝑐1
)) −𝛽2𝑈𝐹

**

𝛽2𝐶𝐹
** + 𝛽3𝑑𝐿 (1 −

𝜇𝐿

𝑐1
) 𝛽2𝑈𝐹

** − 𝜇𝐻

]  



MATHEMATICAL ANALYSIS OF A RISK…            Alkali et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 302 – 308 307 

Given by the characteristics polynomial 

𝜆2 + 𝜃4𝜆 + 𝜃5 = 0    (20) 

where: 

𝜃4 =
𝛽2𝑐1𝐶𝐹

**(1−𝑅𝑐)+𝛽3𝑑𝐿(𝑐1−𝜇𝐿)+2𝑐1𝜇𝐹

𝑐1
  

𝜃5 =
𝛽2𝑐1𝜇𝐹𝐶𝐹

**(1−𝑅𝑐)+𝛽3𝜇𝐹𝑑𝐿(𝑐1−𝜇𝐿)+𝑐1𝜇𝐹
2

𝑐1
  

Clearly, 𝜃4 > 0, and 𝜃5 > 0 if and only if 𝑐1 > 𝜇𝐿 and 𝑅𝑐 <
1. This implies that, there must be more contaminated food 

products than uncontaminated for Listeriosis to be endemic. 

Hence, by the principle of Routh-Hurwitz stability condition, 

all the eigenvalues of (19) and (20) have negative real parts.  

 

Global Stability of Disease-free equilibrium state 

To prove the global asymptotic stability (GAS) of the disease-

free equilibrium 𝐸0
𝑑 for the model equations (1) using the 

conditions of Castillo-Chavez et al., (2002) as used in 

Danjuma et al., (2024). First, our model system (1) is written 

in the form 
𝑑𝑄

𝑑𝑡
= 𝐹(𝑄,𝑊),

𝑑𝑊

𝑑𝑡
= 𝐺(𝑄,𝑊), 𝐺(𝑄, 0) = 0

}  (21) 

Where 𝑄 = (𝐻𝑆, 𝐿𝑆, 𝑅𝐻, 𝑈𝐹) ∈ ℝ
𝑚 represents the number of 

uninfected individuals 𝑊 = (𝐼𝐻 , 𝐿𝑏, 𝐶𝐹) ∈ ℝ
𝑛 denotes the 

number of infected population and 𝐸0
𝑑 = (𝑄*, 0) represents 

the disease-free equilibrium. The following assumptions must 

be satisfied for disease-free equilibrium of system (1) to be 

globally asymptotically stable: 

𝐻1 =
𝑑𝑄

𝑑𝑡
= 𝐹(𝑄*, 0), 𝑄* is globally asymptotically stable. 

 𝐻2 = 𝐺(𝑄,𝑊) = 𝐴𝑊 − �̂�(𝑄,𝑊) where �̂�(𝑄,𝑊) ≥ 0 for 

(𝑄,𝑊) ∈ Ω, and 𝐴 = 𝐷𝑤𝐺(𝑄
*, 0) is an M-matrix (the off-

diagonal elements are nonnegative). 

Theorem 3: The equilibrium point, 𝐸0
𝑑 of the system (1) is 

globally asymptotically stable if 𝑅𝐿 < 1 (locally 

asymptotically stable) and the assumptions 𝐻1 and 𝐻2 are 

satisfied. 

Proof: Rewrite the model equations (1) in the form of (21) 

as 

𝐹(𝑄,𝑊) =

[
 
 
 
(1 − 𝑧)Π𝐻 − (𝜆𝐻 + 𝜇𝐻)𝐻𝑆 − 𝜒𝐻𝑆
𝑧Π𝐻 + 𝜒𝐻𝑆 − ((1 − 𝜑)𝜆𝐻 + 𝜇𝐻)𝐿𝑆

𝛼𝐻𝐼𝐻 − 𝜇𝐻𝑅𝐻
Π𝐹 − (𝜆𝐹 + 𝜇𝐹)𝑈𝐹 ]

 
 
 

 

 
Which gives the reduced system 

𝐹(𝑄, 0) = [

(1 − 𝑧)Π𝐻 − (𝜒 + 𝜇𝐻)𝐻𝑆
𝑧Π𝐻 + 𝜒𝐻𝑆 − 𝜇𝐻𝐿𝑆

0
Π𝐹 − 𝜇𝐹𝑈𝐹

]  (22)

 
Consider the reduced system (22), solving for 𝐻𝑆

 

we have  
𝑑𝐻𝑆

𝑑𝑡
= (1 − 𝑧)Π𝐻 − (𝜒 + 𝜇𝐻)𝐻𝑆  

= −(𝜒 + 𝜇𝐻) (𝐻𝑆 −
(1−𝑧)Π𝐻

𝜇𝐻+𝜒
) 

 

which gives that 

𝑙𝑛 |𝐻𝑆 −
(1−𝑧)Π𝐻

𝜇𝐻+𝜒
| = 𝑒𝑥𝑝[−(𝜒 + 𝜇𝐻)𝑡] + 𝐶 

 

Simplifying gives  

𝐻𝑆(𝑡) =
(1−𝑧)Π𝐻

𝜇𝐻+𝜒
+ (𝐻𝑆(0) −

(1−𝑧)Π𝐻

𝜇𝐻+𝜒
) 𝑒𝑥𝑝[−(𝜒 + 𝜇𝐻)𝑡] 

     (22a) 

Similarly, solving for 𝐿𝑆

 

we have  
𝑑𝐿𝑆

𝑑𝑡
= 𝑧Π𝐻 + 𝜒𝐻𝑆 − 𝜇𝐻𝐿𝑆  

= −𝜇𝐻 (𝐿𝑆 −
𝑧Π𝐻+𝜒𝐻𝑆

𝜇𝐻
) 

 

which gives that 

𝑙𝑛 | 𝐿𝑆 −
𝑧Π𝐻+𝜒𝐻𝑆

𝜇𝐻
| = 𝑒𝑥𝑝[−𝜇𝐻𝑡] + 𝐶 

 

Simplifying gives  

𝐿𝑆(𝑡) =
𝑧Π𝐻+𝜒𝐻𝑆

𝜇𝐻
+ (𝐿𝑆(0) −

𝑧Π𝐻+𝜒𝐻𝑆

𝜇𝐻
) 𝑒𝑥𝑝[−𝜇𝐻𝑡] 

     (22b) 

Also, solving for 𝑈𝐹

 

we have  
𝑑𝑈𝐹

𝑑𝑡
= Π𝐹 − 𝜇𝐹𝑈𝐹  

= −𝜇𝐹 (𝑈𝐹 −
Π𝐹

𝜇𝐹
) 

 

which gives that 

𝑙𝑛 | 𝑈𝐹 −
Π𝐹

𝜇𝐹
| = 𝑒𝑥𝑝[−𝜇𝐹𝑡] + 𝐶 

 

Simplifying gives  

𝑈𝐹(𝑡) =
Π𝐹

𝜇𝐹
+ (𝑈𝐹(0) −

Π𝐹

𝜇𝐹
) 𝑒𝑥𝑝[−𝜇𝐹𝑡] (22c) 

as 𝑡 → ∞, 𝐸0
𝑑 = [𝐻𝑆

0, 𝐿𝑆
0 , 𝑅𝐻

0 , 𝑈𝐹
0] →

[
(1−𝑧)Π𝐻

𝜇𝐻+𝜒
,
Π𝐻(𝑧𝜇𝐻+𝜒)

𝜇𝐻(𝜇𝐻+𝜒)
, 0,

Π𝐹

𝜇𝐹
] regardless of the initial conditions. 

Hence, the first condition 𝐻1 holds. Now for the second 

condition, we compute the matrix 𝐴 as 𝐴 =
∂𝐺

∂𝑍
[𝐸0

𝑑 , 0], now, 

𝐺 = [

𝛽1𝐶𝐹𝐻𝑆 + (1 − 𝜑)𝛽1𝐶𝐹𝐿𝑆 − (𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻)𝐼𝐻

𝑐1𝐿𝑏 (1 −
𝐿𝑏

𝑑𝐿
) − 𝜇𝐿𝐿𝑏

(𝛽2𝐿𝑏 + 𝛽3𝐶𝐹)𝑈𝐹 − 𝜇𝐹𝐶𝐹

]  

So that 

𝐴 =
∂𝐺

∂𝑍
[𝐸0

𝑑 , 0] =

[

−(𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻) 0 𝛽1𝐻𝑆
0 + (1 − 𝜑)𝛽1𝐿𝑆

0

0 𝑐1 − 𝜇𝐿 0

0 𝛽2𝑈𝐹
0 𝛽3𝑈𝐹

0 − 𝜇𝐹

]  

 

We observe that matrix 𝐴 is an M-matrix since all its off 

diagonal are non-negative. We compute 𝐴𝑍 as 

𝐴𝑍 = 𝐴 × [
𝐼𝐻
𝐿𝑏
𝐶𝐹

] ⇒ 𝐴𝑍 =

[

−(𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻) 0 𝛽1𝐻𝑆
0 + (1 − 𝜑)𝛽1𝐿𝑆

0

0 𝑐1 − 𝜇𝐿 0

0 𝛽2𝑈𝐹
0 𝛽3𝑈𝐹

0 − 𝜇𝐹

] [
𝐼𝐻
𝐿𝑏
𝐶𝐹

]  

= [

−(𝛼𝐻 + 𝜇𝐻 + 𝜙𝐻)𝐼𝐻 + 𝛽1𝐶𝐹𝐻𝑆
0 + (1 − 𝜑)𝛽1𝐶𝐹𝐿𝑆

0

(𝑐1 − 𝜇𝐿)𝐿𝑏
𝛽2𝑈𝐹

0𝐿𝑏 + (𝛽3𝑈𝐹
0 − 𝜇𝐹)𝐶𝐹

]  

Now, 𝐺(𝑄,𝑊) = 𝐴𝑊 − �̂�(𝑄,𝑊), then; 

�̂�(𝑄,𝑊) =

[
 
 
 
 
 𝛽1𝐶𝐹 [1 −

𝐻𝑆

𝐻𝑆
0]𝐻𝑆

0 + (1 − 𝜑)𝛽1𝐶𝐹 [1 −
𝐿𝑆

𝐿𝑆
0] 𝐿𝑆

0

𝑐1
𝐿𝑏
2

𝑑𝐿

𝛽2𝐿𝑏 [1 −
𝑈𝐹

𝑈𝐹
0]𝑈𝐹

0 + 𝛽3𝐶𝐹 [1 −
𝑈𝐹

𝑈𝐹
0]𝑈𝐹

0
]
 
 
 
 
 

  

Since, 𝐻𝑆 ≤ 𝐻𝑆
0, 𝐿𝑆 ≤ 𝐿𝑆

0 and 𝑈𝐹 ≤ 𝑈𝐹
0, then, �̂�(𝑄,𝑊) is non-

negative, i.e. the second condition 𝐻2 also holds. Thus, the 

disease-free equilibrium, 𝐸0
𝑑 is GAS. 

 

CONCLUSION 

In this work, we adopted an SIR-based deterministic model 

for the Listeriosis dynamics to study the transmission 

dynamics of Listeriosis. The model consists of a non-linear 

ordinary 7-dimensional system of ordinary differential 

equations. Basic properties of the model are established and 

showed that the proposed model is mathematically and 

epidemiologically well-posed. Three equilibrium points were 

obtained; disease free equilibrium point, 𝐸0
𝑑, bacteria free 

equilibrium point, 𝐸0
𝑏, and endemic equilibrium point, 𝐸0

𝑒. 

The local stability analyses of the disease-free and Bacteria-

free equilibrium points were conducted and analyses showed 

that the disease free and bacteria free equilibrium points are 

locally asymptotically stable whenever the contaminated food 

threshold is found to be less than unity (𝑅𝐿 < 1) and 𝑐1 < 𝜇𝐿. 

In a similar way, the endemic equilibrium point, 𝐸0
𝑒, is found 

to be locally asymptotically stable whenever 𝑅𝑐 < 1 and 𝑐1 >
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𝜇𝐿. Also, the global stability analyses of the disease-free 

equilibrium point, 𝐸0
𝑑 was conducted using Castillo-Chavez 

method and result shows that the disease-free equilibrium 

point is globally asymptotically stable. 
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