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ABSTRACT 

This study explores the orbital behaviour surrounding out-of-plane equilibrium points (OEPs) within the 

circular restricted three-body problem (CR3BP) framework, with a particular emphasis on binary star systems 

where the primary stars are represented as oblate and radiating entities. The research centres on the stability 

(Lyapunov-wise) of two pairs of OEPs, 𝐿6,7(𝑥0, 0, ±𝑧0)and𝐿8,9(𝑥0, 0, ±𝑧0), respectively, which are influenced 

by the oblateness and radiation pressure coefficients of the primary stars. By applying the theoretical 

framework to five specific binary systems—Lalande 21258, BD+195116, Ross 614, 70 Ophiuchi, and 61 

Cygni—we assess the stability properties of these equilibrium points. Our findings indicate that the OEPs 

exhibit instability across all five systems, as evidenced by the positive real parts of the complex roots linked 

to their perturbations. This instability implies that any perturbations will amplify over time, resulting in 

significant deviations from the equilibrium states. The implications of this research are significant for the 

design of satellite constellations and the planning of space missions, as a thorough understanding of the stability 

of these equilibrium points is essential for successful mission execution and orbital insertion strategies. This 

work contributes to the wider domain of celestial mechanics by deepening our comprehension of dynamical 

behaviours in intricate binary systems.  
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INTRODUCTION 

The examination of equilibrium points in orbital systems is a 

fundamental aspect of celestial mechanics, essential for 

comprehending the stability and dynamics of celestial bodies. 

Within the frameworks of the classical circular restricted 

three-body problem (CRTBP) (see Szebehely (1967a), 

Szebehely (1967b)), and the elliptical restricted three-body 

problem (ERTBP), the characteristics of equilibrium points 

situated in the orbital plane have been extensively studied. 

Notably, the collinear equilibrium points denoted as 𝐿𝑖 , 𝑖 =
1,2,3, where gravitational forces are aligned, are recognized 

as unstable, while the triangular equilibrium points denoted 

by𝐿4,5 generally exhibit stability for the mass ratio 𝜇, 0 < 𝜇 ≤
1

2
. Numerous adaptations of these models have been 

investigated, incorporating factors such as perturbations from 

Coriolis and centrifugal forces, the non-sphericity of the 

primary bodies (including oblateness and triaxiality), as well 

as additional influences like radiation pressure and drag forces 

(Szebehely, 1967; Chernikov, 1970; Bhatnagar and Hallan, 

1978; Schuerman, 1980; Kunitsyn and Tureshbaev, 1985; 

Elipe, 1992; Ragos et al., 1995; Singh and Ishwar, 1999; 

Singh and Umar, 2012; Sharma et al., 2001; Papadakis, 2005; 

AbdulRaheem and Singh, 2006; Singh and Begha, 2011; 

Singh and Taura, 2013; Jain and Aggarwal, 2015; Idrisi and 

Jain, 2016); Singh and Taura (2012).  

In particular, when analyzing the plane that is perpendicular 

to the motion of the primary body, out-of-plane equilibrium 

points (OEPs) can be identified. The emergence of these 

points may be attributed to photogravitational effects or the 

significant oblateness of the primary bodies. The existence of 

OEPs was questioned by Todoran (1993), who challenged 

earlier assertions made by Radzevskii (1950) and other 

scholars. Nevertheless, Ragos and Zagouras (1993) refuted 

Todoran's claims, affirming the existence of these equilibrium 

points. Roman (2001) further explored OEPs in relation to 

radiation pressure within the context of the photogravitational 

restricted three-body problem (RTBP), identifying a pair of 

OEPs 𝐿6(−0.055; 0; +1.07) and𝐿7(−0.055; 0; −1.07) in the 

binary RW-Monocerotis system. 

Douskos and Markellos (2006) discovered the presence of 

OEPs when analyzing scenarios involving one or both 

primaries emitting radiation, as well as situations where one 

primary is oblate and the other radiates. Their findings 

provided numerical proof that the OEPs are not stable. 

However, Wu et al. (2018) argued that the explanation given 

by Douskos and Markellos (2006) did not align with the 

common physical perspective, which suggests that 

gravitational force is the sole force acting in the z-direction. 

Singh and Umar (2012) investigated the elliptic restricted 

three-body problem (ERTBP) featuring an oblate primary and 

a luminous secondary, concluding that OEPs exhibited 

instability across a range of parameter combinations. Huda et 

al. (2015) reported periodic behaviour of OEPs influenced by 

the radiation from the primary and the oblateness of the 

secondary. Abouelmagd and Mostafa (2015) delved into 

OEPs and restricted regions within the restricted three-body 

problem (RTBP) characterized by non-isotropic mass 

distributions, emphasizing their significance for small 

celestial bodies and spacecraft dynamics. Suraj et al. (2018) 

analyzed OEPs in a photogravitational RTBP framework 

involving heterogeneous spheroids. Idrisi and Ullah (2021, 

2022) studied OEPs considering albedo effects and within the 

context of the restricted six-body problem, respectively, while 

Leke and Singh (2023) concentrated on OEPs in extra-solar 

planetary systems. Most recently, Idrisi and Ullah (2024) 

discovered unstable symmetric OEPs in the circular restricted 

three-body problem (CRTBP), particularly under conditions 

of significant oblateness. 

This study aims to explore the dynamics of the infinitesimal 

body around OEPs in the CRTBP framework, specifically 

when both primaries exhibit radiative and oblate 
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characteristics. The analysis is applied to particular binary star 

systems—Lalande 21258, BD+195116, Ross 614, 70 

Ophiuchi, and 61 Cygni—offering valuable insights into the 

behaviour and stability of these out-of-plane equilibrium 

points. 

In this analytical framework, the symbols 𝑚1, 𝑚2and 

represent the masses of the larger and smaller primary bodies, 

respectively, while 𝑚3denotes the mass of the infinitesimal 

body. The model assumes that the two primary celestial 

entities revolve in circular orbits around their mutual centre 

of mass. Meanwhile, the infinitesimal body moves within the 

same plane as the primaries' motion, without affecting their 

orbital paths.  

The mass parameter, denoted as 𝜇, is defined by the equation  

𝜇 =
𝑚2

𝑚1+𝑚2
. The distance between the primary bodies is 

adopted as the reference unit of length, with the gravitational 

constant normalized to𝐺 = 1. The unit of mass is selected 

such that𝑚1 + 𝑚2 = 1, resulting in dimensionless masses for 

the primary bodies expressed as 𝑚1 = 1 − 𝜇 and 𝑚2 = 𝜇, 

respectively. 

The present investigation utilizes the synodic coordinate 

framework, in which the infinitesimal body's location is 

characterized by 𝑃(𝑥, 𝑦, 𝑧), while the primary and secondary 

bodies' positions are represented by 𝑃1(𝜇, 0,0) and 𝑃2(−(1 −
𝜇),0,0), respectively (refer to Fig. 1).  

 

 
Figure 1: The configuration of the rotating coordinate system for the Restricted Three-Body Problem 

(RTBP), where the masses are represented by radiating oblate primaries and an infinitesimal body 

 

Thus, the equations of motion of the infinitesimal body in the dimensionless synodic coordinate system with radiation pressure 

parameters and  and oblateness parameters and  (Singh & Ishwar (1999)) are   
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In Table 1, we present the physical parameters of the binary systems. The parameters MA and MB are the masses of the more 

massive and less massive stars in each binary system as compared to the mass of the Sun. The symbol μ as shown earlier is 

the mass parameter. The luminosity of the binary systems denoted by LA and LB respectively are obtained from the relation 

(Mia and Kushvah, (2016)) 

, 

Where LS and MS are the luminosity and mass of the Sun.  

Radiation pressure has had a key effect on the formation of stars and the shaping of clouds of dust and gases on a wide range 

of scales. The mass reduction factor is represented as 𝑞𝑖 = 1 −
𝐹𝑃

𝐹𝑔
, 𝑖 = 1,2  ( FP 

 
and Fg are the radiation pressure and the 

gravitational attraction forces being exerted by the binary systems on objects around them) or 𝑞𝑖 = 1 − 𝛽, 𝑖 = 1,2 or based on 

the Stefan-Boltzmann’s law (Xuetang and Lizhong, (1993)) as 

, 

Where M, L and k, and are the mass, luminosity, and radiation pressure efficiency factor of a star. Also, α and ρ are the radius 

and density of the dust grain particles moving in the binary systems while 𝐴 =
3

16𝜋𝑐𝐺
 is a constant with c and G as the speed 

of light and Gravitational constant.  

The values of the luminosity and mass reduction factor qi = 1,2 have been obtained by computing in the C.G.S. system of unit, 

using , , ,  and . Also, we 

have assumed the values for the radius and density of the dust grain particles as  and ((Xuetang 

and Lizhong (1993)). Arbitrary values are been used for the oblateness coefficients  and  as shown in Table 1. 

 

Table 1.  Physical Parameters of the Five Binary Systems 

Parameters      

      

      

  0.3265 0.3704 0.3855 0.4739 

  0.00265 0.000492 0.47  

    0.0895  

 0.972692 0.983475 0.994045 0.0518079 0.73925 

 0.999292 0.995241 0.999407 0.712233 0.864775 

 0.10 0.12 0.14 0.16 0.18 

 0.11 0.13 0.15 0.17 0.19 

 

The OEPs are obtained by solving equations (3) and (5) to get  

    (7) 

and      (8) 

 

Stability of the Out-of-plane Equilibrium Points 

Variational Equations 
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Equations (10) are known as the variational equations of motion and we have , while the superscript 0 indicates that 

the derivatives are to be evaluated at the OEPs and . 

3.2 Characteristic equations 

Let the solution of system (9) be 

, and  

where and  are constants. Then equations (10) can be written as 

           (12) 

By representing system (12) in matrix notation, we obtain the non-trivial solution if  

.          (13) 

Expanding the system (13), we obtain 

𝜆6 + 𝑁1𝜆4 + 𝑁2𝜆2+N3 = 0,               (14) 

where 
 

            

 

The last equation is the characteristic equation to system (10) and its roots are 

𝜆1 = −[−
𝑁1

3
+

(2
1
3𝑁1

2)

3(−2𝑁1
3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1

2𝑁2
2 + 4𝑁2

3 + 4𝑁1
3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3

2))
1
3

 

      −
(2

1
3𝑁2)

(−2𝑁1
3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1

2𝑁2
2 + 4𝑁2

3 + 4𝑁1
3𝑁3 − 18𝑁1𝑁2𝑁3 + 273

2))
1
3

 

       +
1

(3 × 2
1
3)(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
2𝑁2

2 + 4𝑁2
3 + 4𝑁1

3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3
2))

1
3

]
1
2, 

𝜆2 = [−
𝑁1

3
+

(2
1
3𝑁1

2)

3(−2𝑁1
3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1

2𝑁2
2 + 4𝑁2

3 + 4𝑁1
3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3

2))
1
3

 

      −
(2

1
3𝑁2)

(−2𝑁1
3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1

2𝑁2
2 + 4𝑁2

3 + 4𝑁1
3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3

2))
1
3

 

       +
1

(3 × 2
1
3)(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
2𝑁2

2 + 4𝑁2
3 + 4𝑁1

3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3
2))

1
3

]
1
2, 

2 2 2 2
0 2 1 1 0 0 1 1 0 1 1 0 1 1

9 7 7 5

10 10 10 10

2 2 2 2

1 0 2 2 0 0 2 2 01

5 3 9 7

10 10 20 20

2 2

105 (1 ) ( ) 15 (1 ) ( ) 15 (1 ) 3 (1 )

2 2 2 2

3(1 ) ( ) 105 ( 1 ) 15 ( 1 )(1 )
        

2 2

15
        

xx

A q x z A q x A q z A q
n

r r r r

q x A q x z A q xq

r r r r

A q z

     

     



− − − − − −
 = − + + −

− − + − + −−
+ − − +

+
2 2

0 2 02 2 2

7 5 5 3

20 20 20 20

3 ( 1 )3
,

2 2

q xA q q

r r r r

  + −
− + −

2 2
0 2 1 1 0 2 2 01 1 1 2 2 2

7 5 3 7 5 3

10 10 10 20 20 20

15 (1 ) 153 (1 ) (1 ) 3
,

2 2 2 2
yy

A q z A q zA q q A q q
n

r r r r r r

    − − −
 = + − − + − + −

4 2 2
0 1 1 0 1 1 0 1 01 1 1

9 7 5 5 3

10 10 10 10 10

4 2 2

2 2 0 2 2 0 2 02 2 2

9 7 5 5 3

20 20 20 20 20

105 (1 ) 45 (1 ) 3(1 )9 (1 ) (1 )

2 2

105 45 39
        ,

2 2

zz

A q z A q z q zA q q

r r r r r

A q z A q z q zA q q

r r r r r

   

   

− − −− −
 = − + − + −

− + − + −

3
0 1 1 0 0 1 1 0 0 1 0 0

9 7 5

10 10 10

3

2 2 0 0 2 2 0 0 2 0 0

9 7 5

10 10 10

105 (1 ) ( ) 45 (1 ) ( ) 3(1 ) ( )

2 2

105 ( 1 ) 45 ( 1 ) 3 ( 1 )
        .

2 2

xz

A q x z A q x z q x z

r r r

A q x z A q x z q x z

r r r

     

     

− − − − − −
 = − + +

+ − + − + −
− + +

0 0

xz zx =

6,7 0 0( ,0, )L x z 8,9 0 0( ,0, )L x z

te =
te =

te =

, ,   
2 0 0

2 0

2 0 0

2 ,

2 ,

                  .

t t t t

xx xz

t t t

yy

t t t

zx zz

e n e e e

e n e e

e e e

   

  

  

    

   

   

− =  +

+ = 

= +

2 0 0

2 0

0 2 0

     2       

2                   0 0

            0           

xx xz

yy

zx zz

n

n

 

 



− − −

− =

− −

,4 0002

1 zzyyxxnN −−−=

,)(4 2002000000

2 xzzzxxzzzzyyyyxx nN −−++=

.)( 000020

3 zzyyxxyyxzN −=



MOTIONS AROUND THE OUT-OF-PLANE…            Gyegwe et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 2, February, 2025, pp 116 – 122 120 

𝜆3 = −[−
𝑁1

3
−

𝑁1
2

3 × 2
2
3(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
2𝑁2

2 + 4𝑁2
3 + 4𝑁1

3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3
2))

1
3

 

      +
𝑖ℵ1

2

2
2
3√3(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
2𝑁2

2 + 4𝑁2
3 + 4𝑁1

3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3
2))

1
3

 

      +
𝑁2

2
2
3(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
2𝑁2

2 + 4𝑁2
3 + 4𝑁1

3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3
2))

1
3

 

      −
𝑖√3𝑁2

2
2
3(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
2𝑁2

2 + 4𝑁2
3 + 4𝑁1

3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3
2))

1
3

 

      −
1

(6 × 2
1
3)(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
2𝑁2

2 + 4𝑁2
3 + 4𝑁1

3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3
2))

1
3

 

      −
1

(2 × 2
1
3√3)𝑖(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
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2 + 4𝑁2
3 + 4𝑁1
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2))

1
3

]
1
2, 

𝜆4 = [−
𝑁1

3
−
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2
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3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
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2 + 4𝑁2
3 + 4𝑁1

3𝑁3 − 18𝑁1𝑁2𝑁3 + 27𝑁3
2))

1
3

 

      +
𝑖ℵ1

2

2
2
3√3(−2𝑁1

3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
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3 + 4𝑁1
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2))

1
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      +
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2
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3 + 9𝑁1𝑁2 − 27𝑁3 + 3√3√(−𝑁1
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1
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      −
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1
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1
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      −
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1
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3
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1
3

]
1
2. 
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Lyapunov's theorem posits that equilibrium points exhibit 

stability when their characteristic roots are either complex 

numbers with negative real parts, purely imaginary values, or 

solely negative real numbers. Conversely, equilibrium points 

are deemed unstable in all other cases. The physical 

parameters listed in Table 1 are applied to calculate the 

numerical values of these characteristic roots, as derived from 

Equation (14). This calculation is subsequently used to assess 

the linear stability of the out-of-plane equilibrium points 

across five binary systems. The results of this analysis are 

summarized in Tables 2 and 3. 

 

Table 2: The roots of the characteristic equations of the five binary systems for the OEPs  𝑳𝟔,𝟕(𝒙, 𝟎, ±𝒛) 
 

 Binary Systems                                            

    

    

    
    

    
 

Table 3: The roots of the characteristic equations of the five binary systems for the OEPs  𝑳𝟖,𝟗(𝒙, 𝟎, ±𝒛) 
 

Binary Systems                                            

    

    

    
    

    
 

It is observed from Tables 2 and 3 that the out-of-plane 

equilibria are unstable since we found no case in which the 

roots are pure imaginary.  

 

Discussion 

The stability of out-of-plane equilibrium points (OEPs) was 

examined through simulations of the primaries as radiating 

and oblate bodies within the context of the Circular Restricted 

Three-Body Problem (CRTBP). The analysis encompassed 

five binary systems: 21258, BD+19 5116, Ross 614, 70 

Ophiuchi, and 61 Cygni. We established plausible values for 

the radiation components and made assumptions regarding 

the oblateness parameters based on the physical 

characteristics of these systems. As part of the stability 

analysis, we derived the characteristic equation, and a 

numerical assessment of its roots revealed four complex roots 

alongside two distinct pure imaginary roots. The presence of 

positive real parts in the complex roots indicates that all 

binary systems demonstrate instability at the OEPs, 

corroborating findings from previous studies. 

These results are in agreement with: 

Perezhogin (1976) when  𝐴1 = 0 = 𝐴2, 𝑞2 = 1, 𝑟1 → 𝑟, 𝑟2 →
𝑟,and 𝑞1 → 𝑞 and  

Singh and Umar (2012) when 𝑒 ≠ 0, 𝑎 ≠ 1, 𝑞2 = 1, 𝐴1 =
0, 𝐴1 → 𝐴and 𝑞2 → 𝑞. 

And contradict those of: 

Ragos and Zagouras (1988) when 𝐴1 = 0 = 𝐴2, and 

Das et al. (2009) in the absence of PR-drag and when 𝐴1 =
0 = 𝐴2.  

 

CONCLUSION 

This study demonstrates that the inclusion of oblateness and 

radiation significantly impacts the stability of OEPs in the 

CRTBP. For the five binary systems analyzed, the numerical 

results show that the OEPs are unstable due to the presence of 

complex roots with positive real parts. This instability implies 

that any perturbations will amplify over time, resulting in 

significant deviations from the equilibrium states. These 

results underline the importance of considering both 

oblateness and radiative effects in the stability analysis of 

binary systems. 
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