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ABSTRACT 

High-dimensional classification problems, such as gene expression analysis in medical research, require 

effective variable selection techniques to improve predictive accuracy and interpretability. Traditional 

penalized logistic regression methods, such as LASSO and Elastic Net, have been widely applied for 

simultaneous variable selection and coefficient estimation. However, these methods suffer from limitations, 

including selection bias and inefficiencies in handling correlated predictors. This study introduces the Modified 

Adaptive LASSO (MALASSO), a novel approach that enhances high-dimensional classification by 

incorporating an improved weighting mechanism based on ridge regression estimates. The new weighting 

scheme mitigates the selection bias observed in LASSO-based methods and improves classification 

performance in datasets with highly correlated features. To evaluate MALASSO’s effectiveness, extensive 

simulations and real-world applications were conducted using leukemia and colon cancer gene expression 

datasets. Results indicate that MALASSO outperforms existing methods, achieving superior classification 

accuracy (98.45% for leukemia and 100% for colon cancer) while selecting fewer, more relevant variables. 

Compared to Adaptive LASSO (ALASSO) and Adaptive Elastic Net (AEnet), MALASSO demonstrated 

improved robustness and model sparsity, highlighting its potential for high-dimensional medical diagnostics 

and biomarker discovery. This study contributes to the advancement of penalized regression techniques by 

addressing critical shortcomings in existing methods. Future work will explore MALASSO’s applicability to 

multiclass classification and other high-dimensional domains.  

 

Keywords: High-dimensional data, Modified Adaptive LASSO (MALASSO), Penalized logistic regression,  
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INTRODUCTION 

Logistic regression has become a fundamental tool for binary 

classification tasks, particularly in medical research (Hosmer 

& Lemeshow, 2000; Bag et al., 2022). It is widely used to 

predict binary outcomes such as disease status (present or 

absent) or intervention outcomes (success or failure) based on 

explanatory variables. The rise of high-dimensional data, such 

as gene expression datasets, has transformed various fields, 

including medical research, genetics, and bioinformatics 

(Algamal & Lee, 2015; Wahid, 2022). These datasets, 

characterized by a large number of features and relatively few 

observations, pose unique challenges in variable selection and 

predictive modeling [5]. Application of logistic regression in 

high-dimensional settings often leads to issues such as 

multicollinearity, overfitting, and poor variable selection 

(Ismah et al., 2021). 

To address these challenges, penalized regression methods 

such as the Least Absolute Shrinkage and Selection Operator 

(LASSO) (Tibshirani, 1996) and Elastic Net (Zou and Hastie, 

2005) have been widely adopted. LASSO achieves variable 

selection and coefficient estimation by shrinking some 

coefficients to zero, effectively selecting a subset of 

predictors. While LASSO has been revolutionary, it has 

notable limitations. It exhibits selection bias by penalizing 

coefficients equally and lacks the ability to handle groups of 

correlated variables effectively, often selecting just one 

variable from a group of highly correlated predictors (Qian 

and Yang, 2013). Elastic Net, which combines LASSO’s L_1 

penalty with Ridge regression’s L_ 2 penalty, partially 

addresses this issue by encouraging the grouping of correlated 

variables, but it still falls short in some scenarios. 

Further advancements led to the development of Adaptive 

LASSO (ALASSO) (Zou, 2006) which incorporates adaptive 

weights for penalizing coefficients, thus reducing LASSO’s 

bias and improving its ability to satisfy the oracle property—

an ideal characteristic where a method selects the correct set 

of predictors with consistent estimates (Fan and Lv, 2008). 

However, ALASSO relies on initial weights often derived 

from biased LASSO estimates, which compromises its 

effectiveness in high-dimensional settings (Buhlmann and 

Van De Geer, 2011). Similarly, Adaptive Elastic Net (AEnet) 

combines Elastic Net with adaptive weighting, yet it too 

inherits the drawbacks of relying on biased initial estimates 

(Zou & Zhang, 2009; Hastie et al., 2001; 2017). 

Empirical studies have further highlighted the strengths and 

limitations of these methods. Algamal and Lee (2015) 

demonstrated the effectiveness of penalized regression in 

high-dimensional genomic data but emphasized the trade-offs 

between sparsity and predictive accuracy. Farhadi et al. 

(2008) explored the application of hybrid penalties to enhance 

variable selection and predictive performance, particularly in 

datasets with strong multicollinearity. Other recent 

contributions like (Wahid, 2022; Wu, 2021; Araveeporn, 

2021; Greenwood et al., 2020) have underscored the 

importance of developing methods that simultaneously 

address correlation, sparsity, and model interpretability 

To overcome these limitations, this study introduces a novel 

approach: the Modified Adaptive LASSO (MALASSO). 

MALASSO leverages a new weighting mechanism based on 

the ratio of the standard errors to ridge regression estimates, 

enhancing its ability to handle correlated predictors and 

improve classification and prediction accuracy. By 

integrating ridge regression properties, MALASSO 

effectively addresses the weaknesses of existing penalized 

methods, particularly in datasets with highly correlated 

variables. 
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MATERIALS AND METHODS 

This section outlines the methodology used to develop and 

evaluate the Modified Adaptive LASSO (MALASSO) 

method. Building on penalized logistic regression techniques, 

the MALASSO introduces a novel weighting mechanism to 

address limitations in existing methods for high-dimensional 

data analysis. The methodology includes the formulation of 

the MALASSO model, performance evaluation metrics, and 

its application to simulated and real-world datasets 

 

The Logistic Regression Model 

Logistic regression is a standard statistical method for binary 

classification problems. For an outcome yi the logistic model 

estimates the probability 𝜋(𝑥𝑖) = 𝑃(𝑦𝑖 =  1|𝑥𝑖),  and xi= (x1, 

. . . , xk) is the vector of covariates for the ith observation. The 

logistic regression model is expressed as: 

𝑦𝑖=𝜋(𝑥𝑖)  + 𝜀𝑖  ,        i =  1, 2, . . . , n,    (1) 

Where yi denotes the value of a dichotomous outcome 

variable, 𝜋(𝑥𝑖) denotes the probability of the Bernoulli 

distribution depended on independent variable, 𝑥𝑖 and 𝜀𝑖 is 

called the error and follows a normal distribution with mean 

zero and variance equal to 𝜋(𝑥𝑖)[1 − 𝜋(𝑥𝑖)] 

𝜋(𝑥𝑖) =
𝑒𝑥𝑝(𝛽𝑜 + 𝛽1𝑥1𝑖 +𝛽2𝑥2𝑖+,…,+𝛽𝑘𝑥𝑘𝑖)

1+𝑒𝑥𝑝(𝛽𝑜 + 𝛽1𝑥1𝑖 +𝛽2𝑥2𝑖+,…,+𝛽𝑘𝑥𝑘𝑖)
      

=  
1

1+𝑒𝑥𝑝(−(𝛽𝑜 + 𝛽1𝑥1𝑖 +𝛽2𝑥2𝑖+,…,+𝛽𝑘𝑥𝑘𝑖))
      (2)  

The parameter vector  𝛽 =  𝛽𝑜 , 𝛽1 , 𝛽2, … , +𝛽𝑘 is estimated 

by maximizing the log-likelihood function. 

The transformation of 𝜋(𝑥𝑖) is called logit function and is 

defined as: 

𝑔(𝑥𝑖) = 𝑙𝑛
𝜋(𝑥𝑖)

1+𝜋(𝑥𝑖)
= 𝛽𝑜 +  𝛽1𝑥1𝑖  + 𝛽2𝑥2𝑖+, … , +𝛽𝑘𝑥𝑘𝑖 =

𝑥𝑖𝛽,         (3) 

The probability distribution function to contribute the 

likelihood function is expressed as 

𝑃(𝑌𝑖 = 𝑦𝑖) = (𝜋(𝑥𝑖))
𝑦𝑖

(1 − 𝜋(𝑥𝑖))
1−𝑦𝑖

 ,       𝑦 = 0,1    

     (4) 

The likelihood function is obtained from the terms of (4) as 

𝑙(𝛽) = ∏ (𝜋(𝑥𝑖))
𝑦𝑖

(1 − 𝜋(𝑥𝑖))
1−𝑦𝑖

 𝑛
𝑖=1   (5) 

The likelihood from (5) can be expressed by taking log as 

𝐿(𝛽) = 𝑙𝑛𝑙(𝛽) = ln [∏ (𝜋(𝑥𝑖))
𝑦𝑖

(1 − 𝜋(𝑥𝑖))
1−𝑦𝑖

 𝑛
𝑖=1 ]    

= ∑ [𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑛(1 − 𝜋(𝑥𝑖))]   𝑛
𝑖=1  (6) 

In high-dimensional settings, where the number of predictors 

k exceeds the number of observations n, logistic regression 

often suffers from overfitting and multicollinearity. Penalized 

regression addresses these challenges by introducing a 

penalty term 𝐽(𝛽) to the likelihood function. The penalized 

log-likelihood is expressed as: 

 𝐿∗(𝛽) = −𝐿(𝛽) +  𝜆𝐽(𝛽)   (7) 

Here, λ > 0 is the tuning parameter that controls the strength 

of the penalty. The value of 𝜆 depends on the data, it can be 

determined using cross-validation method (Tibshirani, 2019). 

The tuning parameters find balance between the bias and 

variance to minimize the misclassification error 

The penalized log-likelihood is 

𝐿∗(𝛽)  

= [− ∑ {𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑛(1 − 𝜋(𝑥𝑖))}𝑛
𝑖=1 + 𝜆𝐽(𝛽)]

     (8) 

Where β = ( β1, β2, . . . , βk)T  𝜖 ℝk+1 vector of unknown gene 

coefficients 

Minimize to estimate the β vector 

 �̂�𝑃𝐿𝑅 = arg
𝑚𝑖𝑛

𝛽𝜖ℝ𝑘 [− ∑ {𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑛(1 −𝑛
𝑖=1

𝜋(𝑥𝑖))} + 𝜆𝐽(𝛽)]      (9) 

 

 

Penalized Regression Methods 

Popular penalized regression methods include LASSO, 

Elastic Net, and Adaptive LASSO: 

 

Least Absolute Shrinkage and Selection Operator (LASSO) 

LASSO [6] uses an L1-norm penalty, which shrinks some 

regression coefficients to exactly zero, facilitating variable 

selection. The LASSO L1-norm penalty term is defined by: 

𝐽(𝛽) = ∑ |𝛽𝑗|𝑘
𝑗=1       (10) 

The LASSO estimator is obtained by minimizing: 

�̂�𝑗(𝐿𝑎𝑠𝑠𝑜) = arg
𝑚𝑖𝑛

𝛽𝜖ℝ𝑘 [− ∑ {𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 −𝑛
𝑖=1

𝑦𝑖)𝑙𝑛(1 − 𝜋(𝑥𝑖))} + 𝜆 ∑ |𝛽𝑗|𝑘
𝑗=1 ]   (11) 

The tuning parameter 𝜆 is used to try out different values by 

the cross-validation method 

 

Elastic Net (Enet)  

Elastic Net combines ℓ1-norm and ℓ2-norm penalties, 

addressing issues in correlated variable selection (Zou and 

Hastie, 2005):  

𝐽(𝛽) = 𝜆1 ∑ |𝛽𝑗| + 𝜆2 ∑ 𝛽𝑗
2𝑘

𝑗=1
𝑘
𝑗=1   , 0 < 𝜆1 + 𝜆2 < 1   

     (12) 

The elastic net estimate �̂�  is regularized from (6) and (8) as: 

�̂�𝑗(𝐸𝑛𝑒𝑡) = arg
𝑚𝑖𝑛

𝛽𝜖ℝ𝑘 [− ∑ {𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 −𝑛
𝑖=1

𝑦𝑖)ln (1 − 𝜋(𝑥𝑖))} + 𝜆1 ∑ |𝛽𝑗| + 𝜆2 ∑ 𝛽𝑗
2𝑘

𝑗=1
𝑘
𝑗=1 ] (13) 

 

From above, the elastic net estimation is a ridge regression 

when 𝜆1 is zero as 

�̂�𝑗(𝑅𝑖𝑑𝑔𝑒) = arg
𝑚𝑖𝑛

𝛽𝜖ℝ𝑘 [− ∑ {𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 −𝑛
𝑖=1

𝑦𝑖)𝑙𝑛(1 − 𝜋(𝑥𝑖))} + 𝜆2 ∑ 𝛽𝑗
2𝑘

𝑗=1 ]  (14) 

The lasso estimator is in form of (11) when 𝜆2 is zero. The 

tuning parameters of 𝜆1 and 𝜆2 control the shrinkage of 

�̂�𝑗(𝐸𝑛𝑒𝑡) using cross-validation (Hastie et al., 2001; 2017) 

 

Adaptive Lasso (ALASSO) 

ALASSO improves upon LASSO by introducing adaptive 

weights  �̂�𝑗 , reducing the bias in variable selection. The 

adaptive lasso penalty is defined as: 

  𝐽(𝛽) =   𝜆 ∑ �̂�𝑗|𝛽𝑗| , 𝑤ℎ𝑒𝑟𝑒 �̂�𝑗 =
1

|�̂�𝑗(𝐿𝑎𝑠𝑠𝑜)|
𝑟  , 𝑗 =𝑘

𝑗=1

1, 2, … , 𝑘,   𝑟 > 0     (15) 

The Adaptive LASSO estimator is expressed as:   

�̂�𝑗(𝐴𝐿𝑎𝑠𝑠𝑜) = arg
𝑚𝑖𝑛

𝛽𝜖ℝ𝑘 [− ∑ {𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 −𝑛
𝑖=1

𝑦𝑖)𝑙𝑛(1 − 𝜋(𝑥𝑖))} + 𝜆 ∑ �̂�𝑗|𝛽𝑗|𝑘
𝑗=1 ]  (16) 

The tuning parameter 𝜆 and the order of adaptive weight 𝑟 are 

used as the two-dimensional cross-validation to tune the 

adaptive lasso 

 

Adaptive Elastic net (AEnet) 

The Adaptive elastic net penalty function combines the elastic 

net and adaptive lasso method (Zou and Zhang, 2009). The 

adaptive elastic net penalty is defined as: 

𝐽(𝛽) = 𝜆1 ∑ �̂�𝑗|𝛽𝑗| + 𝜆2 ∑ 𝛽𝑗
2𝑘

𝑗=1
𝑘
𝑗=1      (17) 

�̂�𝑗(𝐴𝐸𝑛𝑒𝑡) = arg
𝑚𝑖𝑛

𝛽𝜖ℝ𝑘 [− ∑ {𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 −𝑛
𝑖=1

𝑦𝑖)𝑙𝑛(1 − 𝜋(𝑥𝑖))} + 𝜆1 ∑ �̂�𝑗|𝛽𝑗| + 𝜆2 ∑ 𝛽𝑗
2𝑘

𝑗=1
𝑘
𝑗=1 ],

𝑤ℎ𝑒𝑟𝑒  �̂�𝑗 =
1

(|�̂�𝑗(𝐸𝑛𝑒𝑡)+
1

𝑛
|)

𝑟  ,    𝑗 = 1, 2, … . , 𝑘, 𝑟 > 0            

     (18) 

�̂�𝑗(𝐸𝑛𝑒𝑡) is obtained from (13),  𝑟 is the power of the adaptive 

weight, which is concentrated as the adaptive lasso. 
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The Proposed Method 

MALASSO improves the weighting mechanism in Adaptive 

LASSO by introducing weights based on the ratio of the 

standard error to ridge regression estimates. This ensures 

better handling of correlated variables and enhances 

prediction accuracy. 

The MALASSO weight for each variable is defined as: 

�̂�𝑗 =
�̂�𝑗

𝑆�̂�𝑗

            (19)       

Where  𝑆�̂�𝑗
 is the standard error, and �̂�𝑗   is the ridge regression 

coefficient for the jth predictor. A good weight is non-negative 

and the jth weight value �̂�𝑗  is the weight for the ith observation. 

The resampling technique will be used to find the weight �̂�𝑗   , 

then the new weight will be plug into the Adaptive Lasso. The 

MALASSO estimator is obtained by minimizing the 

penalized likelihood function: 

�̂�𝑗(𝑀𝐴𝐿𝐴𝑆𝑆𝑂) = arg
𝑚𝑖𝑛

𝛽𝜖ℝ𝑘 [− ∑ {𝑦𝑖𝑙𝑛(𝜋(𝑥𝑖)) + (1 −𝑛
𝑖=1

𝑦𝑖)ln (1 − 𝜋(𝑥𝑖))} + 𝜆 ∑ �̂�𝑗|𝛽𝑗|𝑘
𝑗=1     ]     (20) 

This approach leverages the ridge regression properties to 

assign more effective weights, addressing the biases in 

existing methods. 

Performance Metrics and Evaluation 

The performance of MALASSO was assessed using 

classification accuracy (CA), AUC (Area Under the Curve) 

and Geometric mean metrics.  

 

Classification Accuracy (CA) 

Proportion of correctly classified observations 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 x 100%  (21) 

 

Area Under the Curve (AUC) 

Measures the model's ability to distinguish between classes, 

with higher values indicating better performance (Muhammad 

et al., 2024) 

 

Geometric Mean (G-Mean) 

Combines sensitivity and specificity:  

𝐺 − 𝑀𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 x 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦      (22) 

 

RESULTS AND DISCUSSION 

Simulation Studies 

Simulated datasets were generated to evaluate MALASSO in 

high-dimensional settings. Independent variables were 

sampled from a normal distribution N(0,1), with the number 

of predictors ranging from 500 to 3571 and sample sizes 

varying from 50 to 150. A 10-fold cross-validation procedure 

was performed to determine the optimal tuning parameter λ. 

 

 

Table 1: Average Percentage Classification Accuracy (CA) and number of Selected Variables () for Simulation Data 

No. of Variables Sample Size MALASSO ALASSO AEnet LASSO Enet Ridge 

500 50 96.67(24) 90.00(21) 90.00 (11) 70.00(27) 83.33(68) 70.00(500) 

 65 90.00(30) 80.00(26) 85.00(19) 75.00(35) 85.00(75) 85.00(500) 

 100 96.67(42) 90.00(40) 95.00(19) 83.33(53) 90.00(104) 83.33(500) 

 150 96.67(65) 84.44(54) 90.00(5) 83.33(80) 93.33(151) 92.33(500) 

1000 50 97.67(25) 90.00(24) 95.00 (13) 86.67 (30) 93.33(74) 90.33(1000) 

 65 90.00(29) 80.00(26) 88.00(9) 80.00(33) 85.00(89) 85.00(1000) 

 100 95.33(44) 85.00(43) 95.00(19) 86.67(65) 93.33(128) 86.67(1000) 

 150 98.89(61) 88.89(59) 94.00(11) 80.22(77) 93.33(138) 92.22(1000) 

2000 50 93.33(19) 86.00(17) 90.67(2) 83.33(30) 91.33(86) 88.33(2000) 

 65 95.00(31) 90.00(27) 94.00(19) 85.00(34) 90.00(98) 90.00(2000) 

 100 96.67(34) 90.00(37) 95.00(5) 86.67(59) 96.67(122) 95.67(2000) 

 150 95.11(69) 85.56(67) 92.22(11) 85.33(82) 93.33(151) 93.33(2000) 

3571 50 96.67(24) 86.67(22) 96.67(5) 80.00(35) 93.00(99) 90.00(3571) 

 65 95.00(32) 85.00(26) 95.00(2) 90.00(36) 92.00(107) 90.00(3571) 

 100 95.00(32) 86.67(50) 90.00(2) 83.33(63) 93.33(145) 83.33(3571) 

 150 95.00(32) 88.44(56) 94.67(11) 84.22(83) 91.11(174) 90.22(3571) 

 

Table 2: Prediction Performance (AUC) for Simulation Data 

No. of Variables Sample Size MALASSO ALASSO AEnet LASSO Enet Ridge 

500 50 0.9148 0.8556 0.9030 0.8000 0.9111 0.9000 

 65 0.9484 0.9034 0.9204 0.9000 0.9200 0.9143 

 100 0.9750 0.9075 0.9560 0.9000 0.9500 0.9400 

 150 0.9695 0.9050 0.9550 0.9000 0.9500 0.9515 

1000 50 0.9464 0.9036 0.9179 0.9000 0.9107 0.9071 

 65 0.9820 0.8720 0.9590 0.9000 0.9620 0.9480 

 100 0.9804 0.9540 0.9560 0.9200 0.9500 0.9464 

 150 0.9799 0.9235 0.9609 0.9000 0.9560 0.9548 

2000 50 0.9929 0.9350 0.9579 0.9500 0.9574 0.9464 

 65 0.9800 0.9530 0.9650 0.8000 0.9520 0.9490 

 100 0.9773 0.9109 0.9520 0.8500 0.9565 0.9000 

 150 0.9393 0.8766 0.9012 0.9000 0.9200 0.9012 

3571 50 0.9481 0.8852 0.9370 0.8500 0.9296 0.9000 

 65 0.9380 0.8796 0.9252 0.9000 0.9247 0.8900 

 100 0.9593 0.8732 0.9502 0.9000 0.9000 0.8959 

 150 0.9598 0.9164 0.9504 0.9000 0.9324 0.9276 
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Application 

The proposed Modified Adaptive LASSO (MALASSO) 

method was applied to two high-dimensional gene expression 

datasets: the Leukemia dataset and the Colon dataset. These 

datasets were chosen due to their well-documented use in 

benchmarking classification methods and their high-

dimensional nature, which challenges traditional logistic 

regression techniques. The performance of MALASSO was 

compared with other penalized logistic regression methods, 

including LASSO, Elastic Net, Adaptive LASSO (ALASSO), 

and Adaptive Elastic Net (AEnet). 

 

Table 3: The detail information for the used datasets 

Datasets No. of Genes No. of Samples No. of Classes (Class1: Class2) Classes 

Leukemia 3571 72 2(25:47) ALL/AML 

Colon 2000 62 2(22:40) Tumor/Non Tumor 

 

Leukemia Dataset 

The Leukemia dataset comprises 72 samples with 3571 gene 

expression features. It includes two classes: acute 

lymphoblastic leukemia (ALL) and acute myeloid leukemia 

(AML), with 47 and 25 samples, respectively (Golub et al., 

1999). The high dimensionality (k =3571, n=72) and the 

biological complexity of the dataset make it a suitable 

candidate for testing MALASSO’s effectiveness. 

MALASSO exhibited superior performance compared to 

competing methods across all key metrics, including 

classification accuracy (CA), area under the curve (AUC), 

sensitivity, specificity, and the geometric mean (G-Mean). 

Table 1 summarizes these results. 

 

Table 4: Performance Metrics for the Leukemia Dataset         

Method 
No. of Variables 

Selected 

Classification 

Accuracy (CA) 
AUC Sensitivity Specificity G-Mean 

MALASSO 8 98.45% 0.990 1.00 0.933 0.965 

ALASSO 7 94.91% 0.969 1.00 0.883 0.940 

AEnet 8 96.45% 0.952 1.00 0.857 0.926 

LASSO 16 63.64% 0.924 1.00 0.857 0.926 

Elastic Net 76 92.90% 0.924 1.00 0.857 0.926 

Ridge 3571 92.45% 0.952 1.00 0.857 0.926 

 

MALASSO achieved the highest classification accuracy 

(98.45%) and AUC (0.990) while selecting only eight 

variables, demonstrating both its predictive power and model 

sparsity. Compared to ALASSO and AEnet, MALASSO 

selected a similar number of variables but achieved better 

classification performance, highlighting the advantage of its 

novel weighting mechanism. Traditional methods like 

LASSO and Elastic Net selected significantly more variables 

(16 and 76, respectively) but failed to match the predictive 

performance of MALASSO 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 1: Non-Zero Coefficients vs. Penalty Parameter (log(λ)) for Leukemia Dataset 

 

This figure illustrates how MALASSO selects fewer variables compared to ALASSO, AEnet, and LASSO as log(λ) increases. 

MALASSO’s ability to shrink coefficients efficiently highlights its sparsity. 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Mean Squared Error (MSE) vs. Penalty Parameter (log(λ)) for Leukemia Dataset 

 

This figure shows the MSE and the number of selected variables obtained through 10-fold cross-validation. MALASSO 

achieves lower MSE with fewer variables compared to competing methods, reflecting its superior generalization performance 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 3: AUC Plots for the Leukemia Dataset 

 

Subplots illustrate AUC values, sensitivity, and specificity for 

MALASSO, ALASSO, AEnet, and LASSO. MALASSO 

achieves the highest AUC, demonstrating its superior 

classification performance 

 

Colon Dataset 

The Colon dataset includes 62 samples and 2000 gene 

expression features. The samples are divided into two classes: 

tumor tissues (40 samples) and normal tissues (22 samples) 

(Alon et al., 1999). The smaller sample size and high-

dimensional nature (k=2000, n=62 k = 2000, n = 62) make 

this dataset a challenging benchmark for classification 

methods. 

As shown in Table 5, MALASSO outperformed all other 

methods, achieving perfect classification accuracy (100%) 

and the highest AUC (0.986). 

 

Table 5: Performance Metrics for the Colon Dataset 

Method 
No. of Variables 

Selected 

Classification 

Accuracy (CA) 
AUC Sensitivity Specificity G-Mean 

MALASSO 9 100% 0.986 0.929 1.00 0.964 

ALASSO 5 89.47% 0.914 0.786 1.00 0.887 

AEnet 4 84.21% 0.957 0.857 1.00 0.926 

LASSO 15 73.68% 0.929 0.786 1.00 0.887 

Elastic Net 31 94.74% 0.929 0.857 1.00 0.926 

Ridge 2000 89.47% 0.900 0.929 0.800 0.862 

 

MALASSO’s perfect classification accuracy (100%) 

demonstrates its robustness and reliability in high-

dimensional datasets. While ALASSO and AEnet selected 

fewer variables (5 and 4, respectively), their performance 

metrics were significantly lower than MALASSO, indicating 

inferior predictive power. MALASSO maintained sparsity by 

selecting only nine variables, compared to LASSO (15 

variables) and Elastic Net (31 variables). 

In both the Leukemia and Colon datasets, MALASSO 

exhibited remarkable performance. It achieved the highest 

classification accuracy and area under the curve (AUC) 

scores, while selecting fewer variables compared to 

traditional methods. Specifically, in the Leukemia dataset, 

MALASSO attained an accuracy of 98.45%, selecting only 

eight variables, compared to LASSO, which selected 16 

variables with an accuracy of just 63.64%. Similarly, in the 
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Colon dataset, MALASSO achieved a perfect classification 

accuracy (100%) while selecting nine variables, 

outperforming ALASSO and AEnet, which selected 5 and 4 

variables, respectively. These results highlight MALASSO’s 

ability to balance model sparsity and predictive accuracy, a 

critical requirement in high-dimensional data analysis. 

The novel weighting mechanism used in MALASSO proved 

to be a key innovation. Unlike ALASSO, which relies on 

potentially biased initial estimates derived from LASSO, 

MALASSO uses ridge regression estimates to assign weights. 

This adjustment enhances its capacity to handle correlated 

predictors and avoids the selection bias often observed in 

LASSO-based methods (Qian and Yang, 2013). The results 

also align with studies such as Zou, (2006) and Zou and Zhang 

(2009), which emphasized the importance of adaptive weights 

in penalized regression. However, MALASSO extends these 

approaches by introducing a more robust weighting strategy, 

making it particularly effective for complex datasets with 

strong multicollinearity. 

The performance of MALASSO aligns with findings from 

previous works that have explored the limitations of 

traditional penalized logistic regression methods. For 

instance, Tibshirani (1996) introduced LASSO, which 

became a benchmark for sparse modeling but struggled with 

highly correlated variables. Zou and Hastie (2005) addressed 

this limitation by developing Elastic Net, which promotes 

grouping of correlated predictors but tends to select larger 

numbers of variables, as observed in this study’s results. 

ALASSO Zou (2006) introduced adaptive weighting to 

improve variable selection consistency. However, its reliance 

on biased LASSO estimates for weight calculation often 

undermines its effectiveness in high-dimensional settings, as 

reported by Buhlmann and Van De Geer (2011). MALASSO 

overcomes this limitation by using ridge regression estimates, 

thereby improving its robustness and oracle property. This 

study also builds on the work of Araveeporn (2021), who 

compared ALASSO, AEnet, and Elastic Net, and reported 

that ALASSO performed better in high-variance datasets. 

MALASSO not only outperforms ALASSO in terms of 

classification accuracy but also demonstrates better stability 

in variable selection. 

Moreover, the results are consistent with Farhadi et al. (2019), 

who highlighted the advantages of Elastic Net over LASSO 

in handling correlated predictors. While Elastic Net selected 

more variables in this study, MALASSO achieved 

comparable or superior predictive performance with fewer 

variables, highlighting its efficiency in model sparsity and 

interpretability. 

The significance of MALASSO extends beyond its numerical 

performance. In fields like genomics and bioinformatics, 

where datasets often contain thousands of predictors with 

intricate correlations, the ability to select a manageable subset 

of relevant variables is invaluable. MALASSO’s success in 

achieving high classification accuracy while maintaining 

sparsity makes it an excellent tool for applications such as 

biomarker discovery and personalized medicine. For 

example, in the Leukemia dataset, MALASSO’s selection of 

only eight variables with near-perfect accuracy offers 

potential candidates for further biological validation. 

Additionally, the weighting mechanism introduced in 

MALASSO can inspire new methodologies in penalized 

regression, particularly in other types of high-dimensional 

models like Cox regression for survival analysis or mixed-

effects models for longitudinal data. 

Despite its strengths, MALASSO’s reliance on ridge 

regression for weight computation introduces computational 

complexity, particularly for extremely large datasets. Future 

research could explore scalable algorithms for weight 

calculation to improve its applicability in real-time settings. 

Furthermore, while this study focused on binary 

classification, extending MALASSO to multiclass 

classification and regression problems would be a valuable 

direction for future exploration. 

Finally, while MALASSO has been validated on two well-

known cancer datasets, its generalizability to other types of 

high-dimensional data, such as imaging or proteomics 

datasets, warrants further investigation. Future studies could 

also incorporate domain-specific constraints or priors to tailor 

MALASSO for specific applications. 

 

CONCLUSION  

This study introduced the Modified Adaptive LASSO 

(MALASSO) as an innovative and robust method for 

classification and variable selection in high-dimensional 

datasets. By integrating a novel weighting mechanism based 

on ridge regression estimates, MALASSO addresses key 

limitations of existing penalized logistic regression methods, 

including LASSO, Elastic Net, Adaptive LASSO (ALASSO), 

and Adaptive Elastic Net (AEnet). The results from extensive 

simulations and real-world applications on the Leukemia and 

Colon datasets demonstrate that MALASSO outperforms 

competing methods in terms of classification accuracy, 

prediction performance (AUC), and sparsity. Specifically, 

MALASSO achieved the highest accuracy (98.45% and 100% 

for the Leukemia and Colon datasets, respectively) while 

selecting fewer variables, enhancing model interpretability 

and reducing computational overhead. MALASSO’s success 

highlights its utility in applications where high-dimensional 

data is prevalent, such as genomics, bioinformatics, and 

medical diagnostics. Its ability to handle correlated predictors 

effectively and select a parsimonious set of relevant variables 

makes it a valuable tool for researchers and practitioners. 

Future work could explore extensions of MALASSO to 

multiclass classification, regression problems, and other 

model types, such as Cox regression for survival analysis. 

Additionally, improving the computational efficiency of the 

weighting mechanism will broaden its applicability to larger 

datasets. Overall, MALASSO is a significant contribution to 

the field of high-dimensional statistical modeling, with the 

potential to impact diverse scientific and medical 

applications. 
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