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ABSTRACT 

This study employs spectral methods to capture the behaviour of wave equation with dispersive-nonlinearity. 

We describe the evolution of hump initial data and track the conservation of the mass and energy functionals. 

The dispersive-nonlinearity results to solution in an extended Schwartz space via analytic approach. We 

construct numerical schemes based on spectral methods to simulate soliton interactions under Schwartzian 

initial data. The computational analysis includes validation of energy and mass conservation to ensure 

numerical accuracy. Results show that initial data from the Schwartz space decompose into smaller wave-

packets due to the weaker dispersive-nonlinearity but leads to wave collapse as a result of stronger dispersive-

nonlinearity. We conjecture that the hyperbolic equation with a positive nonlinearity and exponent 𝜎 ≥ 2 

admits global solutions, while lower exponents lead to localized solutions. A stability analysis of solitonic 

solutions of the equation is provided via the perturbation approach.  

 

Keywords: Dispersive-nonlinearity, Spectral method, Blow-up, Energy conservation, Stability analysis,  

Fourier Spectrum 

 

INTRODUCTION 

Nonlinearity is an interesting phenomenon, which is, 

apparently, everywhere. However, dispersion, that is 

ubiquitous in nature, when it interacts with nonlinearity, it 

gives more interesting behaviour. These interactions could 

result in the the so-called solitons.  Nonlinear dispersive 

equations appear in many fields such as water-wave models, 

nonlinear optics and their likes. Example of such equations 

include the Korteweg-de-Vries (KdV) equations and 

Boussinesq models. Extensive studies on nonlinear dispersive 

equations have been conducted by Whitham (1974) and 

Zabusky (1965). These equations appear as asymptotic 

models. The presence of a quadratic nonlinearity in the wave 

speed introduces new challenges in stability and soliton 

interactions.  

The most basic asymptotic dispersive equation is probably the 

nonlinear Schrodinger equation, which describes wave trains 

or frequency envelopes close to a given frequency, and their 

self-interactions (Taghizadeh and Mirzazadeh., 2012). 

Different methods have been used to obtain the solution of the 

Korteweg de Vries (KdV) equation. However, in this research 

work we construct a similar nonlinear equation of 

Schrodinger type with power nonlinearity(σ ≥  2), wish to 

study its dynamic’s nature and make comparisons with the 

existing nonlinear Schrodinger equation:   

𝑖𝜕𝑡𝑢 + ∆𝑢 + 𝜎|𝑢|𝑝𝑢 = 0           
𝑢(0, 𝑥) =  𝑢0(𝑥), 𝑥 ∈ ℝ𝑛         

In this study, we are interested in the dynamics' nature of the 

Cauchy problem with power-nonlinearity(σ ≥  2). 

ψ𝑡𝑡 − [𝛼1 + 3𝛼2ψ2
𝑥]ψ𝑥𝑥 + 𝛼3ψ𝜎 = 0    in  Ω ⊂  ℝ+  × ℝ   

ψ(0, 𝑥)  =  ψ0(𝑥)  ∈  𝑆(ℝ)        on   𝜕Ω    (1) 

where ψ: Ω ⊂ ℝ+ × ℝ → ℂ is a Schwartz function, 𝛼𝑗  for 𝑗 =

1,2,3 are arbitrary constants. This equation (1), without the 

power nonlinearity, is asymptotic model that showed up in 

studies like that of DNA dynamics for the descriptions of the 

dynamics of DNA molecules (Qian et al., 2014). The 

nonlinearity 𝜓𝜎 here is used to capture the behaviour of 

nonlinear waves of optics, where wave collapse is possible, 

but interestingly in the setting where nonlinearity and 

dispersion behave according to the law 𝜓𝑥
2𝜓𝑥𝑥. 

This equation governs the evolution of nonlinear dispersive 

waves influenced by both quadratic nonlinearity and higher-

order nonlinear terms. Such equations arise in nonlinear 

elasticity and nonlinear field theory. A similar structure is 

found in Boussinesq-type equations, which model shallow 

water waves, and in relativistic field equations with nonlinear 

potentials.   

Furthermore, this equation, generalizes the standard 

Korteweg–de Vries (KdV) equation and Boussinesq 

equations, which have been extensively studied in soliton 

theory. Quadratic nonlinearity in the wave speed gives rise to 

a diverse range of wave phenomena, including soliton 

interactions, energy transfer mechanisms, and possible wave 

breaking scenarios.   

Several works have investigated related nonlinear wave 

models. For instance, the Boussinesq equation for shallow 

water waves (Whitham, 1974) and the generalized KdV 

equation (Zabusky & Kruskal, 1965) have been analyzed 

using spectral and inverse scattering methods. More recent 

studies on nonlinear dispersive PDEs like Frauendiener et. al 

(2022), Sabo et. al. (2025). In the former, blow-up study is 

carried out on a 2- dimensional form of the NLS equation 

(1.0) in case 𝑝 = 2, while in the latter, higher dispersive type 

of the equation is considered. For more available results and 

advanced studies on the dispersive equations read the 

monograph by Klien and Saut (2021).   However, the study is 

motivated by the work of Bona & Smith (1975) and Craig et 

al. (2010), which explore stability and numerical 

approximations. 

The nonlinear dispersive equations such as NLS equations, 

may have the tendencies of not admitting an exact solution, 

thus, in such cases numerical approach becomes the final 

resort. Since these equations are evolutionary, one finds a 

mapping method that uses a coordinates transformation that 

could transform them to a system of ordinary differential 

equations which are then time-integrated numerically. For 

instance, Niamh (2019) constructed an exact solutions for the 

NLS equation. Mehri (2013) presented the numerical 

Solutions of Korteweg de-Vries and Korteweg de Vries-

Burger’s equations using computer program.   

Methodology 
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Let us consider some properties of the underlying equation. 

The equation (1), has, associated to it, the Hamiltonian 

density ℋ  

ℋ =
1

2
[ψ2

𝑡 + (𝛼1 +
𝛼2

2
ψ2

𝑥
) ψ2

𝑥 + 2
𝛼3

𝜎+1
ψ𝜎+1   (2) 

the mass of the system is defined as:  

𝑀[𝜓(𝑡)] = ∫ℝ𝜓(𝑥, 𝑡)𝑑𝑥       (3) 

The energy of the system is defined, using equation (2), 

𝐸[𝜓(𝑡)] = ∫ ℋ𝑑𝑥
ℝ

=
1

2
∫ (ψ2

𝑡 − (𝛼1 +
𝛼2

2
ψ2

𝑥
) ψ2

𝑥 +
ℝ

2𝛼3

𝜎+1
ψ𝜎+1) 𝑑𝑥     (4) 

Thus, mass (3) and energy (4) of the system are conserved if 

their time derivatives are zero, i.e.  
𝑑

𝑑𝑡
M[ψ(t)] = 0  and 

𝑑

𝑑𝑡
E[ψ(t)] = 0. 

Both mass and energy are conserved quantities for the 

nonlinear wave equation under consideration, meaning that 

they remain constant in time during the evolution of the 

solution. 

The underlying equation (1) is derived by using the 

variational derivative of the Hamiltonian 𝐻(𝑡) = 𝐸(𝑡) and its 

density ℋ:   
𝛿𝐻

𝛿ψt
=

𝜕ℋ

𝜕ψt
−

𝜕

𝜕𝑡
[

𝜕ℋ

𝜕(𝜕𝑡ψt)
] +

𝜕2

𝜕𝑡2
[

𝜕ℋ

𝜕(𝜕𝑡𝑡ψt)
] + ⋯  

whose Lagrangian density ℒ is given by 

ℒ = Πψt − ℋ =
1

2
ψ2

𝑡 +
1

2
(𝛼1 +

𝛼2

2
ψ2

𝑥
) ψ2

𝑥 −
𝛼3

𝜎+1
ψ𝜎+1  

where ∏  = 𝜓𝑡. 

Dispersion relation  

Dispersion relation tells more how the wave propagates in 

space and time.  

For small-amplitude waves, we assume a solution of the form  

𝜓(𝑡, 𝑥) = 𝑒𝑖(𝑘𝑥−𝜔𝑡)     (5) 

Substituting (5) into the main equation (1), we obtain the 

dispersion relation: 

−𝜔2𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝛼1(−𝑖𝑘)2𝑒𝑖(𝑘𝑥−𝜔𝑡) +

3𝛼2 (−𝑖𝑘)2𝑒𝑖(𝑘𝑥−𝜔𝑡) ⋅ (−𝑖𝑘)2𝑒2𝑖(𝑘𝑥−𝜔𝑡).  

Or  

−𝜔2 ≈ 𝛼1(−𝑖𝑘)2 + 3𝛼2 (−𝑖𝑘)4 ⋅ [1 + 𝑂(𝑘𝑥 − 𝜔)]  

leading to the dispersion relation 

𝜔2 ≈  𝛼1𝑘2 − 3𝛼2𝑘4 .  

The dispersion relation is purely real if 𝛼1𝑘2 ≥ 3𝛼2𝑘4 and 

satisfies the relation that  

vg ≔ ∇𝜔 = ±
𝛼1𝑘−6𝛼2𝑘3

√𝛼1𝑘2−3𝛼2𝑘4 
≠

𝜔

𝑘
≔ 𝑣𝑝.  

meaning that the group velocity 𝑣𝑔 is not equal to the phase-

velocity 𝑣𝑝. A classic example of dispersion relation is 𝜔 =

𝛼𝑘 − 𝛽𝑘3 for the Korteweg-de-Vries (KdV) equation: 

𝜓𝑡 + 𝛽𝜓𝜓𝑥 + 𝛼𝜓𝑥𝑥𝑥 = 0.  

 
Figure 1: Dispersion relation for KdV and the nonlinear wave equations 

 

Analytical and Spectral Approaches 

It is observed that the full linear form of the equation is the 

classical wave equation 𝜙𝑡𝑡 = 𝑐2𝜙𝑥𝑥, therefore, it is not an 

interesting problem worth studying at the moment. We 

therefore, consider dispersive-nonlinearity term while 

neglecting the power nonlinearity term 𝜓𝜎. 

Let us consider the partially-linearized form of the equation 

in (1):  

𝜓𝑡𝑡 − (𝛼1 + 𝛼2𝜓𝑥
2)𝜓𝑥𝑥 = 0.  

We are interested in an exponentially decaying solution in the 

Schwartz Space 𝑆(ℝ), that is such 𝜓 having itself and its 

derivatives vanishing at the boundary. Using  

𝜉 = 𝑥 − 𝑐𝑡,     and       𝜓(𝑥, 𝑡) ≡ 𝜙(𝜉), 

the equation transformed as 

(𝑐1 −  𝛼1)𝜙𝜉𝜉 − 𝛼2𝜙𝜉
2𝜙𝜉𝜉 = 0.  

Upon integrating both-sides w.r.t. 𝜉 once, we have 

(𝑐2 − 𝛼1)𝜙𝜉 −
𝛼2

3
𝜙𝜉

3 = 𝐶.  

As the equation involves only first order derivative terms, we 

solve for 𝜙𝜉 . However, given that 

lim
𝜉→ ±∞

𝜙 =  lim
𝜉→ ±∞

𝜙′ = lim
𝜉→ ±∞

𝜙′′ = ⋯ = 0,  

then 𝐶 = 0, the equation reduces to  

(𝑐2 − 𝛼1)𝜙𝜉 −
𝛼2

3
𝜙𝜉

3 = 0.  

The solution to the equation is  

𝜙𝜉 = 0,   or 𝜙𝜉 =  ±√
3

𝛼2
(𝑐2 − 𝛼1).  

Implying that, for arbitrary constants, the solutions read:  

𝜙 = 𝑐1,    or  𝜙 = ± √
3

𝛼2
(𝑐2 − 𝛼1)𝜉 + 𝑐2.  

It is observed that, the solution to the equation with 

dispersive-nonlinearity is  
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𝜓 = const,        or           𝜓 = ±√
3

𝛼2
(𝑐2 − 𝛼1)(𝑥 − 𝑐𝑡) + const.  

Obviously, this is not fully in the Schwartz space since 𝜓 itself 

is not in 𝑆(ℝ) but in the extended Schwartz Space 𝑆𝜔(ℝ), the 

Beurling space, that allows functions to grow at infinity with 

controlled by weight 𝜔 = 𝜔(𝑥) while having the derivatives 

decaying sufficiently fast at ∞.  

 

Numerical Method: Spectral 

Spectral method is an efficient method that uses global basis 

and useful in determining the numerical solution of the of 

evolutionary PDEs. The method is applied as follows. As 

there are linear terms involved in the equation, we apply 

Fourier transform in space and use any finite difference 

techniques, such as RK4, to determine the time evolution of 

the equation.  

Fourier Transform: Apply the Fourier transform of the both 

sides of the equation of the form 

𝜓𝑡 = 𝐿𝜓 + 𝑁[𝜓]  

to have a set of ODEs of the form  

�̂�𝑡 = ℱ[𝐿𝜓] + ℱ[𝑁[𝜓]]  

where ℱ[𝑢] stands for the Fourier transform of a function 𝑢 ∶ 

ℱ[𝑢](𝑘) = ∫ 𝑒−𝑖𝑘 𝑥𝑢(𝑥)𝑑𝑥
∞

−∞
≔ �̂�(𝑘),             

 ℱ−1[�̂�(𝑘)] = 𝑢(𝑥) = ∫ 𝑒𝑖𝑘 𝑥  �̂�(𝑘)𝑑𝑘
∞

−∞
  

 and its inverse defined by ℱ−1[�̂�]. 
Time Integration: one use numerical time integration method, 

in our case, the RK4 method or simple time-stepping (e.g. 

Euler) as the case may be, to integrate the obtained ODE, in 

the Fourier Space. 

Inverse Fourier Transform: invert the obtained solution for the 

ODEs in the Fourier space to the physical space. This way, 

one construct the solution to the equation.  

Implementation: The given problem, is written as 

𝜓𝑡 =  𝛼1𝜓𝑥𝑥 + [3𝛼2𝜓𝑥𝑥𝜓𝑥
2 + 𝛼3𝜓𝜎] = 𝐿𝜓 + 𝑁[𝜓]  

where the nonlinear term is 𝑁[𝜓] = 3𝛼2𝜓𝑥𝑥𝜓𝑥
2 + 𝛼3𝜓𝜎 

while the linear term is 𝛼1𝜓𝑥𝑥.  
The nonlinear part may be further split into two parts, the 

dispersive-nolinear and the power nonlinearity terms: 

𝑁[𝜓] = 𝐷𝑁[𝜓] + 𝑃𝑁[𝜓].  

In this regard, the Fourier transform of the equation gives 

�̂�𝑡 = 𝛼1(−𝑖𝑘)2  �̂� + 3𝛼2ℱ[𝜓𝑥𝑥𝜓𝑥
2] + 𝛼3ℱ[𝜓𝜎].  

Then the time stepping method is applied to solve the 

problem, numerically.  

Let us describe how the Fourier transform is applied in 

solving the given PDE using the spectral method with RK4 

time-stepping: 

The given the fully nonlinear equation (1): 

Convert to First-Order System of odes: introduce 

�̂� = ℱ[𝜓],         𝑉 = ℱ[𝜓𝑡], 
Then, rewrite as:  

  �̂�𝑡 = 𝑉    

𝑉𝑡 =   ℱ [𝛼1 + 3𝛼2 (ℱ−1[�̂�𝑥])
2

ℱ−1(𝜓𝑥�̂�) − 𝛼3(ℱ−1[�̂�])
𝜎

 ].   

where  �̂� is the Fourier transform of 𝜓, and  𝑉 is the Fourier 

transform of 𝜓. 

Spectral Differentiation:  compute the 𝜓𝑥 and 𝜓𝑥𝑥 in Fourier 

Space to have 

ℱ[𝜓𝑥] = (−𝑖𝑘) �̂�,                  ℱ[𝜓𝑥𝑥] = (−𝑖𝑘)2 �̂�,  
Then, re-compute the nonlinear terms in physical space:  

ℱ−1[�̂�] ↦ 𝜓,             ℱ−1[𝜓�̂�] ↦ 𝜓𝑥 ,              ℱ−1[𝜓𝑥�̂�] ↦ 𝜓𝑥𝑥;  

Next, we compute  

 ℱ [𝛼1 + 3𝛼2 (ℱ−1[�̂�𝑥])
2

ℱ−1(𝜓𝑥�̂�) ]  

using Pseudo-spectral multiplication. 

Time volution with RK4: Use the Runge-Kutta 4th order 

(RK4) method for time-stepping: 

We define 

-  𝑘1 , 𝑘2, 𝑘3, 𝑘4 that approximate  �̂� at different stages. 

- 𝑙1, 𝑙2, 𝑙3, 𝑙4 approximate  �̂�𝑡 (denoted as 𝑉) at different RK4 

steps.  

These steps are computed as follows: 

First step (Euler’s method part): 

 𝑘1 = 𝑑𝑡 ⋅ 𝑉;                 

𝑙1 = 𝑑𝑡 ⋅ 𝐹(𝜓�̂�, 𝑉).  

where 𝐹(𝜓�̂�, 𝑉) is the right-hand side of the equation. 

Second step (Midpoint estimate 1): 

𝑘2 = 𝑑𝑡 ⋅ (𝑉 +
1

2
𝑙1) ;                        

𝑙2 =  𝑑𝑡 ⋅ 𝐹 (�̂� +
1

2
𝑘1, 𝑉 +

1

2
𝑙1).  

Third step (Midpoint estimate 2): 

𝑘3 = 𝑑𝑡 ⋅ (𝑉 +
1

2
𝑙2) ;                        

𝑙3 =  𝑑𝑡 ⋅ 𝐹 (�̂� +
1

2
𝑘2,   𝑉 +

1

2
𝑙2)  

Fourth step (Final correction):  

𝑘4 = 𝑑𝑡 ⋅ (𝑉 +
1

2
𝑙3) ;                        

𝑙4 =  𝑑𝑡 ⋅ 𝐹 (�̂� +
1

2
𝑘3, 𝑉 +

1

2
𝑙3).  

Final update of  �̂� and 𝑉: 

𝜓�̂� = �̂�𝑡 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4);   

𝑉 = 𝑉 +
1

6
(ℓ1 + 2ℓ2 + 2ℓ3 + ℓ4),  

where 𝑉 represents   𝜓�̂�, and ℓ𝑖 are the intermediate 

approximations for its evolution. 

Thus,  ℓ𝑖 for 𝑖 = 1,2,3,4 are RK4 estimates for the 

acceleration  𝜓𝑡�̂� at different stages of the method. 

 

RESULTS AND DISCUSSION 

The energy and mass of the system were shown to be 

conserved, confirming its Hamiltonian structure. Spectral 

methods combined with RK4 time integration were 

implemented to solve the equation efficiently. The stability of 

the numerical method was examined through mass and energy 

evolution, as well as the growth of Fourier modes. The 

interaction of solitons showed elastic collisions in some 

regimes, while energy was transferred in highly nonlinear 

regimes. 
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Figure 2: The close-up view of the solution 𝜓 for 𝛼1 = 𝛼2 = 𝛼3 = 1 with 𝜓0(𝑥) = 𝑒−𝑥2

 

 

These figures, Fig.2 and Fig.3., show the evolution of the 

solution 𝜓(𝑡, 𝑥). The solutions exhibit similar behaviour 

where a single initial soliton is decomposes into two solitons 

of virtually same size. They propagate over time and maintain 

their shapes. In either of the cases, defocusing (repulsive) 

nonlinearity (𝛼1 = 𝛼2 = −𝛼3 = 1) and attracting 

nonlinearity (𝛼1 = 𝛼2 = 𝛼3 = 1) there is soliton 

fragmentation or fission behaviour as shown in Fig.2-3.     

 
Figure 3: The close-up view of the solution 𝜓 for 𝛼1 = 𝛼2 = −𝛼3 = 1 with 𝜓0(𝑥) = 𝑒−𝑥2

 

 

This phenomenon, of soliton fission, occurs as a result of 

energy redistribution that leads to the formation of multiple 

solitons from the initial solitary wave in nonlinear dispersive 

systems. The splitting is the effect of the dispersive 

nonlinearity term 𝜙𝑥
2𝜙𝑥𝑥  . 

Given that the equation is Hamiltonian, we could track the 

stability of the solution via evolution of the mass and energy. 

Moreover, to verify the numerical stability of the spectral 

method, one uses the Fourier spectrum which indicates rapid 

convergence when there is quick convergence of the Fourier 

modes.  

In the result, we observed the evolution of the mass and the 

energy via the log10 −plot as this helps to closely study the 

behaviour of the mass and energy at smaller scale. For the 

case when 𝛼1 = 𝛼2 = 𝛼3 = 1, the mass and energy evolution 

are presented in Fig.4.    
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Figure 4: Evolution of the mass and energy functions 

 
Figure 5: Fourier modes for the case 𝛼1 = 𝛼2 = 𝛼3 = 1, at the final time 𝑡 = 2 

 

The Fourier spectrum in Fig. 5 shows remarkable fall-off up 

to 10−15, thereby showing stability of the spectral method. 

The evolutions of the mass and energy fluctuate and the 

effective behaviour are clearly understood for long time. 

However, longer time causes numerical instability of our 

method resulting from accumulation of numerical rounding 

errors.    

On the other hand, it is important to check the stability of the 

solution to the equation per se. Therefore, we carry out the 

stability analysis of the solution associated with the equation 

(1) as follows. Since longer time could suffer potential 

numerical instability, it is wiser to study the stability in 

comparison to a perturbed solution. We will also keep track 

of the energy and the mass as they have to be bounded for the 

stability of the system.  

We introduce small parameter 𝜀 ≪ 1 and real number 𝑘 and 

assume the perturbation of the form 

𝜓pert(𝑡, 𝑥) = 𝜓(𝑡, 𝑥) + 𝜀 cos(𝑘𝑝𝑥)  (6) 

The growth-rate is computed via the expression 

𝛾 ≔ log10 |
|| 𝜓pert(𝑡,𝑥)−𝜓(𝑡,𝑥)||

||𝜓(𝑡,𝑥)||
| < ∞,   (7) 

 
Figure 6: Plot of the perturbed solution with 𝛼1 = 𝛼2 = 𝛼3 = 1 and initial data 

sech2(𝑥) , with 𝜀 = 10−3, and 𝑘 = 2 
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Fig.6 represents the plot of the perturbed solution which 

appears smaller in amplitude. In particular, we use 𝜀 = 0.001 

with sech(𝑥)2 initial data and 𝑘𝑝 = 1/4 in the perturbed term 

cos(𝑘𝑝𝑥). As this oscillates between −1 to 1, then 𝜓 + 𝜀 ⋅

cos(𝑘𝑝𝑥), in (6), is not far away from the solution 𝜓 itself. 

The growth rate 𝜅  in  equation (7) is expected to be small.   

 
Figure 7: Plot of the unperturbed solution with 𝛼1 = 𝛼2 = 𝛼3 = 1 and initial data sech2(𝑥) 

 
Figure 8: The growth rate via log −plot of the difference 𝜓pert − 𝜓 for longer time for 𝛼1 =

𝛼2 = 𝛼3 = 1 using initial data 𝜓0 = sech2 𝑥 

 

The growth rate shows boundedness for longer time. In 

principle, for the stability of the system, we must have steady 

evolution of the 𝛾 as 𝑡 → ∞. As it stays bounded, we conclude 

the underlying nonlinear equation (1) is stable. Similarly, we 

plot the stability of the spectral implementation in Fig.9. via 

the Fourier spectrum.  
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Figure 9: The Fourier modes of the perturbed (solid line) and unperturbed (broken 

line) in the case 𝛼1 = 𝛼2 = 𝛼3 = 1 having initial data sech2(𝑥) 

 

Hence, the numerical results presented here suggested the 

following conjecture. 

 

Main Result: Conjecture  

For Schwartzian initial data 𝜓0(𝑥) with positive coefficients 

𝛼1, 𝛼2, 𝛼2  and 𝜎 ≥ 2  the solution 𝜓(𝑡, 𝑥) to the equation (1) 

decomposes into small wave-packets.  

For 𝜓pert(𝑡, 𝑥), then 

𝛾 ≔ log10 [
|| 𝜓pert(𝑡,𝑥)−𝜓(𝑡,𝑥)||

||𝜓(𝑡,𝑥)||
] < ∞,  

provided that 𝛼1, 𝛼2, 𝛼2 stay positive, where ||𝜓|| is the norm 

of 𝜓. 

lim
𝑡→∞

||𝜓(𝑡, 𝑥)||  stays finite for small 𝑡 if 𝛼1, 𝛼2, 𝛼2 are 

negative values for any 𝜎 ≥ 2.   

This conjecture implies that (I) a Schwartzian initial lump 

decomposes into smaller lumps, any other possible 

combination of different signs would lead to singularity of the 

solution (II) the stability is guaranteed over 𝑡 provided that the 

quantity 𝛾 < ∞ stays finite over time; and (III) Solution to the 

equation exists locally, i.e. for finite time. This is to say that 

singularity or blow-up sets in after a finite time. In fact, the 

singularity emerges at any time 𝑡 ≥
1

2
. 

 

CONCLUSION   

This study investigated a nonlinear dispersive wave equation 

with quadratic nonlinearity in the wave speed. The spectral 

method was implemented to solve the PDE numerically, 

demonstrating energy and mass conservation and whose 

stability is determined via its Fourier spectrum. The 

dispersion relation was compared with the classical KdV 

equation, highlighting key differences in wave propagation 

behaviour. We show that, via conjecture, that the equation is 

stable in the focusing case and blow-up is possible for 

repulsive nonlinearity due to the hyperbolic nature of the 

equation. Future work could focus on establishing the proof 

of the stated conjecture on the stability of the solution, 

application of alternate numerical approaches and other 

integrability properties of the equation can be explored.  
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