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ABSTRACT 

The increasing sophistication and prevalence of banking malware pose significant challenges to cybersecurity, 

threatening the confidentiality, integrity, and availability of financial systems and user data. This study 

evaluates the efficacy of hybrid and single-classification algorithms in detecting banking malware, addressing 

a critical gap in existing research. A total of eight classification algorithms were analyzed, including three 

hybrid models—Stacked Ensemble with Gradient Boosting, AdaBoost, and Stacking with Decision Trees and 

Random Forest. Additionally, five single classifiers—Support Vector Machine (SVM), Decision Tree, k-NN, 

Random Forest and Logistic Regression were assessed. The research methodology incorporated principal 

component analysis (PCA) for feature selection and techniques like Adasyn and Tomek Link to address data 

imbalance. Classification performance was evaluated using key metrics: accuracy, precision, recall, and F1-

score. Results demonstrated that hybrid models, particularly an ensemble combining Random Forest and 

Decision Tree, outperformed other classifiers, achieving superior accuracy (0.98), precision, and recall. While 

Gradient Boosting and AdaBoost also exhibited robust performance, Logistic Regression showed room for 

improvement in precision and recall metrics. This research highlights the effectiveness of hybrid classification 

models in enhancing the detection of banking malware and underscores their potential for strengthening 

cybersecurity defenses in financial systems. The study contributes to the growing literature on machine 

learning applications in malware detection and provides insights into the strengths and limitations of diverse 

classification algorithms.  
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INTRODUCTION 

As the term implies, malware refers to software that, when 

executed maliciously, carries out damaging activities against 

a victim as intended by its creator. Typically, these programs 

are designed to disable, disrupt, or destroy computer systems 

or networks (Zolkipli et al., 2010). The threat posed by 

malware is steadily increasing, owing to the advancements in 

communication networks and computer technology (Rieck et 

al., 2008). In today's digital landscape, malware and other 

cyber threats are pervasive, leading to a wide range of 

misconduct, including fraudulent internet activities, invasion 

of personal information, data theft, and various forms of 

cybercrime. These incidents expose fundamental 

vulnerabilities and flaws in software platforms, raising 

concerns about cybersecurity, with a particular emphasis on 

malware detection (Pawlicka et al., 2023). Malware has 

evolved into a profit-oriented endeavor, with creators 

employing techniques to make it as stealthy and undetectable 

as possible (Pawlicka et al., 2023). These malware programs 

are crafted by skilled programmers with a deep understanding 

of digital forensic techniques, making forensic analysis 

challenging and complex. The more vulnerable a technology 

or system is, the greater the risk of exploitation by malware. 

The sophistication and adaptability of malware contribute to 

its longevity and pose significant risks to end-users and 

organizations (Fuhr et al, 2022). However, there exist 

infection mechanisms and user behaviors that can mitigate 

these risks. 

Internet users encounter malware threats on a daily basis, 

especially in the field of digital forensics. Malware attacks 

have become increasingly profit-driven, organized by illicit 

entities, and executed with a low profile and targeted 

approach. The proliferation of malware takes on various 

forms and continues to expand (Pawlicka et al., 2023). Given 

the widespread use of the internet and networks, the 

likelihood of encountering malware is amplified, as it exploits 

the effectiveness of these technologies. Many malware 

distributions require user permission for access, making user 

awareness a significant factor in infection risk. Regrettably, 

many internet users are unaware of security threats and 

remain oblivious to the presence of malware on their devices 

(Aboaoja et al., 2022). Moreover, they lack the necessary 

knowledge to secure their information systems, further 

elevating the risks associated with malware (Aslan & Samet, 

2020).  

Targeted cybercrime focuses on compromising the integrity, 

confidentiality, and availability of networks and systems 

(Aboaoja et al., 2022). Unauthorized access, often referred to 

as "hacking," is a prominent example of such cybercrimes. 

Various methods are employed, including deceiving 

individuals into providing credentials, using computational 

power to crack passwords, or exploiting software 

vulnerabilities. Criminals can employ malicious software or 

malware to gain remote access to a victim's computer. It is 

essential to note that creating and distributing such malware 

is illegal (Aslan & Samet, 2020). Malware can grant 

unauthorized access to a computer through pre-programmed 

backdoors or by utilizing remote administrative tools (RATs), 

enabling remote control over computer systems. Certain 

features, such as webcams and microphones, can be remotely 

activated and deactivated (Pawlicka et al., 2023). 

Additionally, malware controlled by other computers can 

become part of a botnet, possessing substantial computing 

power and capable of initiating distributed denial-of-service 
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(DDoS) attacks. As the malware problem continues to 

escalate, various approaches have been developed to mitigate 

the threat and safeguard systems. However, these efforts face 

significant challenges due to the advanced tactics employed 

by hacking communities and the lucrative nature of their illicit 

activities (Aboaoja et al., 2022). This issue remains a 

prominent topic of debate, necessitating attention in the 

banking system and contributing to the existing literature on 

malware intrusion detection systems. 

In light of these observations, this research proposes an 

exploration of eight distinct classification algorithms. This 

diversified selection comprises three hybrid models, three 

single classifiers, and one artificial neural network (ANN). 

The motivation behind this broader selection is to facilitate a 

comprehensive evaluation of these algorithms, enabling us to 

discern their relative strengths and weaknesses. The inclusion 

of hybrid models is particularly significant, as previous 

research has indicated their potential to outperform certain 

single algorithms. Additionally, the work seeks to address a 

recognized concern from the benchmark study: the issue of 

data imbalance within the malware dataset. Data imbalance 

can significantly hinder classification accuracy, and thus, this 

research will employ techniques to mitigate this challenge. 

 

Classification methods  

From a machine learning perspective, malware detection can 

be viewed as either a classification or clustering problem. The 

objective is to cluster unknown malware types into distinct 

groups based on specific properties determined by the 

algorithm. Conversely, when a model is trained on a 

comprehensive dataset of malicious and benign files, the 

problem can be simplified to classification. For known 

malware families, the challenge becomes primarily a matter 

of classification. With a limited set of predefined classes, each 

malware sample can be accurately assigned to the appropriate 

class. This approach tends to yield more accurate results 

compared to clustering algorithms.  

 

XGBoost (XGB) 

The XGBoost (eXtreme Gradient Boosting) algorithm, which 

implements the gradient boosting method introduced by Chen 

& Guestrin (2016), is a widely employed and versatile tool. It 

empowers tree-boosting algorithms to attain advanced 

classification and high efficiency levels (Ma et al., 2020). In 

XGBoost, a set of regression trees collectively generates the 

final outcome. The final score is computed using the formula 

provided below: 

�̂� = ∑ 𝑔ℎ(𝑥)       𝐻
ℎ=1    (1) 

In this equation, there are H trees, and each tree has leaf scores 

denoted as K. Another advantage of XGBoost is its resilience 

to multicollinearity. By employing XGBoost, model 

performance can be maximized. However, XGBoost requires 

careful parameter tuning to avoid issues like overfitting and 

excessive misunderstanding, which can be challenging due to 

the numerous parameters it utilizes. To optimize the 

hyperparameter values, we applied the grid search approach 

along with cross-validation. 

 

AdaBoost  

The AdaBoost approach involves using weighted duplicates 

of the training data over multiple rounds to build classifiers, 

denoted as n = 1,..., N. This process adjusts the weight 

distribution, Dn, which determines the significance of samples 

in the dataset for classification, by assigning greater weight to 

samples that were incorrectly classified. The training set 

consists of samples (x1, y1), (x2, y2),..., where xi falls within a 

specific domain space X. The label set, Y = 1, +1, 

encompasses all labels, yi. Dn represents the weight of this 

distribution on training sample i in round n. 

𝜀𝑛 = ∑ 𝐷𝑛(𝑖)𝑖:ℎ𝑛(𝑥𝑖)≠𝑦     (2) 

Initially, all weights are set to be equal. As each round 

progresses, the vulnerable learner is compelled to prioritize 

the challenging samples in the training set, as the weights of 

incorrectly classified samples increase. The objective of the 

weak learner is to find a weak hypothesis, denoted as hn() = X 

1, + 1, that aligns with the distribution Dn. The error rate of a 

weak hypothesis serves as an indicator of its quality. 

 

Random Forest (RF) 

Popular machine learning (ML) techniques like Random 

Forest (R.F.) are employed for data classification. This 

method finds applications in various fields, including 

investment (Jabeur, 2017), physical security (Ozigis et al., 

2020; Kaminska, 2018), and marketing research (Salminen et 

al., 2019). Random Forest relies on multiple trees to enhance 

robustness, aggregating the mean prediction value after each 

tree's creation. Each tree is constructed using a randomly 

chosen subset of input variables. The expression for the 

estimated model is as follows: 

�̂� =
1

𝑛
 ∑ 𝑔𝑖(𝑥)𝑛

𝑖=1        (3) 

The set of random trees from the kth learner is denoted as g(x), 

with x representing the vector of input features. The Random 

Forest (R.F.) final estimate is derived by averaging the results 

from all the trees, each contributing to the estimate with 

specific weights. Yesilkanat (2020) asserts the superiority of 

the R.F. algorithm over other machine learning techniques. 

This superiority arises from the R.F.'s ability to generate trees 

using random methods and autonomously collect training data 

from subsets. The R.F. approach accomplishes training 

through bootstrapping on randomly selected independent 

subsets of datasets, which effectively mitigates overfitting. 

 

Support Vector Machine (SVM) 

In the realm of binary classification, Support Vector 

Machines (SVM) were developed to create or define an ideal 

hyperplane that effectively separates a dataset into distinct 

classes (Hagedoorn et al., 2017). SVM, a rapidly evolving 

field within machine learning, encompasses various concepts, 

including VC theory, statistical modeling, maximum margin 

optimal hyperplanes, kernel methods, and other innovative 

ideas. This sets it apart from more commonly used empirical 

risk reduction techniques like neural network models. SVMs, 

which stand for Support Vector Machines, represent 

supervised learning approaches for both regression and 

classification tasks. These methods have found successful 

applications across a wide range of classification and machine 

learning scenarios, with their foundations laid in 1996 by 

pioneers such as Vapnik, Harris Drucker, and others. 

 

Decision Trees (DT) 

The C4.5 Decision Tree Classification Method, developed by 

Ross Quinlan, represents an improvement over the ID3 

algorithm. In the realm of machine learning, these classifiers 

construct decision trees based on data samples. They employ 

an information gain measure to select a variable as the dataset 

for the tree and utilize an edge-based segmentation approach 

to build decision tree models. In this research, a trial is 

conducted with n outcomes that partition the training samples 

and dataset L into subgroups (L1, L2, L3, ..., Ln). If P is any 

collection of samples, then |P| represents the total number of 

samples in P, and (Ci, P) signifies the total number of samples 

in P belonging to category Ci. The entropy of set P is defined 

as follows: 
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𝑖𝑛𝑓𝑜𝑟(𝑃) = − ∑
𝑓𝑟𝑒𝑞(𝐶𝑖,𝑃)

|𝑃|
 𝐿𝑜𝑔2  (

𝑓𝑟𝑒𝑞(𝐶𝑖,𝑃)

|𝑃|
)   𝑘

𝑖=0  (4) 

Once L is partitioned based on the outcomes of a specific 

feature with respect to z, we can calculate the overall 

knowledge content of L. By employing computational 

information, we can estimate the information content of L (L). 

The total information content of L is equal to the weighted 

sum of the entropies of each subgroup. 

 

Logistic regression (LR) 

Logistic regression models are employed to uncover 

relationships between categorical and other factors. In many 

studies, the outcome variable is binary, typically denoted as 1 

for the occurrence of a specific event and 0 for its absence. 

Using a set of predictors, the logistic regression model 

computes the probability of an event happening. The logistic 

regression model's predicted outcome can be expressed as 

follows: While Li ranges between 0 and 1, Zi represents a 

linear combination of the input variables and can span from 

negative to positive values. Logistic regression encounters 

various statistical challenges in practice. 

𝐿1 = ln (
𝑃1

1−𝑃1
) =  ℤ𝑖 = 𝛽𝑋𝑖 + 𝜇𝑖  (5) 

Two common issues in this context are multicollinearity and 

reduced performance accuracy. According to Jabeur (2017), 

logistic regression (L.R.) typically removes most of the input 

variables that exhibit strong correlations with the analysis's 

outcome. He emphasized that achieving the best results 

doesn't always involve using the maximum likelihood 

estimator. 

  

Malware Classification using Machine learning 

The increasing use of internet-enabled devices has heightened 

vulnerability to cyberattacks, prompting the development of 

advanced malware detection methods (Enem and Awujoola, 

2023). Traditional machine learning techniques, while 

effective, often suffer from long processing times and are 

being overshadowed by deep learning, which reduces the 

need for manual feature engineering. Recent research 

highlights the effectiveness of machine learning and deep 

learning in malware detection and classification. 

Liu et al. (2017) proposed a machine learning-based system 

for malware analysis, achieving 98.9% accuracy in 

classifying unknown malware and detecting 86.7% of new 

threats. Kedziora et al. (2019) focused on Android malware 

detection, finding that Support Vector Machines (SVM) and 

Random Forest (RF) were the most effective algorithms, with 

accuracy rates up to 80.7%. Vinayakumar et al. (2019) 

explored deep learning's potential to eliminate manual feature 

engineering, demonstrating its superiority over traditional 

methods, especially in zero-day malware detection. 

He and Kim (2019) highlighted the limitations of traditional 

Malware Detection Systems (MDS) and proposed a 

Convolutional Neural Network (CNN)-based approach, 

which proved resilient to API injection attacks. Alzaylaee et 

al. (2020) introduced DL-Droid, a deep learning method for 

Android malware detection, achieving up to 99.6% accuracy 

by combining dynamic and static features. Qiu et al. (2020) 

systematically addressed challenges in applying deep learning 

to Android malware detection, emphasizing the importance of 

code semantics and feature extraction. 

Singh and Singh (2021) analyzed machine learning-based 

malware detection systems, highlighting the challenges in 

creating effective classifiers. Usman et al. (2021) proposed a 

big data forensics approach to preemptively detect malicious 

IP addresses, demonstrating its effectiveness in mitigating 

zero-day attacks. Kazi et al. (2022) focused on detecting Zeus 

malware using machine learning, with Random Forest 

achieving 97% accuracy in identifying both old and new 

variants. 

 

MATERIALS AND METHODS  

This study aims to bridge the gap by employing a diverse set 

of classifiers on the malware dataset. The classifiers include 

three hybrid models: Ensemble with Gradient Boosting, 

AdaBoost, and staking Random Forest and Decision Tree.. 

Additionally, five single classifiers, namely Support Vector 

Machine (SVM), Decision Trees (DT), K-Nearest Neighbors 

(k-NN), Random Forest (RF) and Logistic Regression (LR) 

will be used. 

Before proceeding with classification, a feature selection 

technique such as principal component analysis will be 

applied to the dataset. Furthermore, to address class 

imbalance issues, the dataset will be pre-processed using 

techniques like Adasyn and Tomek link. Following data 

preprocessing, the dataset will be split into training and testing 

subsets for evaluation. 

The step towards achieving the research objectives 

commenced with a comprehensive grasp of the research 

context and its potential advantages. The procedure for 

implementing the machine learning algorithm for an intrusion 

detection system focused on identifying banking malware 

within network traffic aimed at customers' accounts. The 

workflow of the research methodology, depicted in Figure 1, 

illustrates the path towards realizing the research objectives 

and goals. This path comprises four essential steps to facilitate 

the process: 

 

 
Figure 1: Proposed methodology Flow 

 

System Description 

Figure 1 illustrates the flow of the proposed methodology. While various approaches have been employed by researchers, this 

work seeks to adopt the benchmark method outlined by Kazi et al. (2019) as a foundation while identifying gaps that require 

further exploration. Furthermore, this study sources an open-source dataset from the University of Irvine, California repository 

website, which will serve as the input for the algorithms under evaluation during performance assessment. 

Data 

Collection 

Network 

IDS 

Dataset 

Data Preprocessing 

Training 

Data 

Test Data 

Data 

Normalization 

Data Class 

Balancing 

(Adasyn +  

Tomek link) 

Feature 

selection 

(PCA) 

Training 

Learning 

Algorithms 
Trained 

Models 

Output 



COMBATTING BANKING MALWARE…            Dauda et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 284 – 293 287 

Dataset Preprocessing 

The first crucial step involves preprocessing the malware 

dataset. This preprocessing phase aims to prepare the data for 

subsequent analysis. The following steps are part of the 

dataset preprocessing: 

Normalization: The dataset will undergo normalization to 

ensure that all features are on the same scale. This is essential 

for machine learning algorithms to perform optimally, as 

features with different scales can lead to biased model 

outcomes. 

 

Feature Selection  

Feature selection techniques will be employed to identify the 

most relevant and informative features. Two potential 

methods under consideration are Principal Component 

Analysis (PCA) and Correlation-Based Feature Selection. 

PCA reduces dimensionality while preserving important 

information, while Correlation-Based Feature Selection 

identifies features that are highly correlated with the target 

variable. However, only one will be selected for this study. 

 

Class Balancing  

Addressing class imbalance is critical in malware 

classification. Two class balancing techniques, namely 

Adasyn and Tomek link, will be applied to ensure a balanced 

distribution of samples from different classes. Adasyn 

generates synthetic samples for the minority class to balance 

the dataset, while Tomek link identifies and removes 

overlapping samples from different classes. 

 

Dataset Splitting 

Once preprocessing is complete, the dataset will be divided 

into two subsets: a training set and a testing set. The training 

set will be used to train machine learning models, while the 

testing set will be employed to evaluate their performance. 

With these preprocessing steps in place, the dataset will be 

ready for classification using various machine learning 

algorithms, and their performance will be rigorously assessed. 

 

Evaluation Method 

The evaluation method is a pivotal component of any research 

or study, as it serves as the compass guiding the assessment 

of hypotheses, methodologies, and the ultimate success of a 

project. In the context of this research, the evaluation method 

takes center stage as we aim to measure the performance, 

accuracy, and efficacy of the machine learning models 

employed in the classification of malware (Awujoola et al., 

2021). An effective evaluation method is essential in ensuring 

the credibility and reliability of the research findings. It 

provides a structured framework for systematically analyzing 

the outcomes and drawing meaningful conclusions. In this 

section, we delve into the core principles of the evaluation 

method that will be applied in our study. 

The primary objective of the evaluation method is to answer 

critical questions related to the performance of the machine 

learning models in classifying malware. We seek to determine 

how well these models can discern malicious software from 

benign files, and whether they can effectively address the 

challenges posed by evolving threats in the cybersecurity 

landscape. 

 

Metrics 

To achieve these objectives, this work employed a range of 

evaluation metrics and techniques, each tailored to specific 

aspects of model performance. These metrics will encompass 

measures of accuracy, precision, recall, F1-score, and the area 

under the receiver operating characteristic curve (AUC-

ROC). Additionally, we will explore the use of confusion 

matrices and visualizations to gain deeper insights into model 

behaviour as shown in Table 1 

 

Table 1: Confusion Matrix for binary classification 

Parameter 
Prediction 

Malware Benign 

Malware True Positive False Positive 

Benign False Negative True Negative 

 

The evaluation metrics are calculated using the confusion 

matrix, from which the values are generated. These variables 

serve as performance indicators for the model. IDS is assessed 

based on the following common standards: 

True Positive Rate (TPR): This quantity is determined by 

dividing all attacks by the share of attacks that have been 

properly anticipated. If every incursion is identified, the TPR 

is 1, which is especially fantastic for an IDS. The Detection 

Rate (DR) or Sensitivity are other names for TPR. The TPR 

is mathematically represented in equation 6 (Awujoola et al., 

2023): 

 𝑇𝑃𝑅 =  
𝑇𝑃

𝐹𝑁+𝑇𝑃
       (6) 

False Positive Rate (FPR): This statistic is calculated by 

dividing the total dollar amount of its occurrences by the 

percentage of incident types that are incorrectly classified as 

assaults. 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝐹𝑃𝑅
=  

𝐹𝑃

𝐹𝑃+𝐹𝑁
     (7) 

False Negative Rate (FNR): False negatives arise while a 

detector incorrectly classifies an aberration as regular rather 

than detecting it. The FNR can be mathematically stated as 

shown in equation 8.: 
𝑅𝑒𝑐𝑎𝑙𝑙

𝐹𝑁𝑅
=  

𝐹𝑁

𝐹𝑁+𝑇𝑃
     (8) 

Classification Rate (CR): The CR measures how well the IDS 

can distinguish among standard and surprising traffic conduct. 

It is described as the proportion of activities to all times 

wherein the forecasts had been correct: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (9) 

Finally the F1 score can be identified as follows: 

𝐹 1𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
  (10) 

The accuracy rate (ACC) is derived using the total sample size 

(FN + FP + TP + TN) and the sum of all classified 

observations (TP + TN). This allows us to assess the 

classification model's estimate result as 1 when the actual 

value of a class is 1 and as 0 when the true value of a class is 

0. ACC can be determined using the following formula: 

𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁)
   (11) 

Area Under Curve: Additionally, using a confusion matrix, 

we can calculate sensitivity and specificity rates. AUC values 

between 0 and 1 imply a more accurate model when they are 

closer to 1. When the area under the ROC curve is substantial 

and the distributions of T.N. and T.P. do not overlap, it 

indicates that the classes have been sufficiently separated 

(Mai and Liao, 2019). Finally, we compare the areas under the 

curves using a suggested method. 
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RESULTS AND DISCUSSION 

Results Analysis 

In this section, the evaluation results of eight classification 

algorithms, including an ensemble, are presented. Tables 2 

through 9 depict the classification reports obtained from the 

evaluations of these algorithms, while Figures 2 through 10 

visualize their confusion matrix and ROC. 

Table 2 shows the classification report of the eight evaluated 

machine learning models without class balancing technique 

with Api calls malware Dataset 

 

Table 2: Precision, Recall and FI-Score Values of the Evaluated Machine Learning Models without Balancing 

Technique 

S/N Classifier 

Benign Instances Malicious Instances Overall 

Accuracy 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 

1 GB 0.95 0.97 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 

2 AB 0.92 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 0.93 

3 Stacking(RF 

+ DT) 
0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 

4 SVM 0.99 1.00 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 

5 DT 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 

6 KNN 0.95 1.00 0.97 1.00 0.95 0.97 0.97 0.97 0.97 0.97 

7 RF 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 

8 LR 0.90 0.60 0.54 0.90 0.60 0.54 0.90 0.60 0.54 0.51 

 

Tables 2 illustrate the classification reports resulting from the 

evaluation of eight algorithms. The results obtained from the 

analysis of the eight evaluated machine learning models on 

the API calls malware dataset, without the application of class 

balancing techniques, provide insights into the performance 

of these models in handling imbalanced data. The metrics 

used to assess the models include precision, recall, F1-score, 

and overall accuracy for both benign and malicious instances. 

These results highlight the strengths and weaknesses of each 

model under unbalanced conditions. 

Among the models, the Random Forest (RF) classifier 

demonstrated the highest performance across all metrics, 

achieving an overall accuracy of 1.00. This result indicates 

that RF effectively handles the dataset's imbalance without 

requiring class balancing techniques. Similarly, the Support 

Vector Machine (SVM) and Decision Tree (DT) classifiers 

performed exceptionally well, both achieving an overall 

accuracy of 0.99 and 0.98, respectively. These models 

exhibited strong precision and recall scores for both benign 

and malicious instances, showcasing their reliability in 

distinguishing between the two classes. 

The Stacking ensemble classifier also performed remarkably, 

with an overall accuracy of 0.98. This model displayed 

balanced precision, recall, and F1-scores for both classes, 

suggesting its robustness in combining the strengths of 

multiple classifiers to improve classification outcomes. The 

Gradient Boosting (GB) and Adaptive Boosting (AB) 

classifiers achieved slightly lower accuracies of 0.96 and 

0.93, respectively. These models maintained consistent 

performance across both benign and malicious instances, 

although their results indicate a marginal decline in 

effectiveness compared to the top-performing models. 

The K-Nearest Neighbors (KNN) classifier achieved an 

overall accuracy of 0.97. Despite its relatively high accuracy, 

the performance was slightly affected by the imbalanced data, 

as seen in its precision and recall scores for benign and 

malicious instances. The Logistic Regression (LR) classifier, 

however, displayed the weakest performance, with an overall 

accuracy of 0.51. This result reflects significant challenges in 

distinguishing between the two classes, as evidenced by its 

lower precision, recall, and F1-scores. 

Overall, the results suggest that ensemble-based models, such 

as RF and Stacking, and algorithms like SVM, are better 

suited for handling imbalanced datasets without requiring 

class balancing techniques. Conversely, simpler models like 

LR struggle under these conditions, emphasizing the 

importance of model selection when addressing class 

imbalance challenges in machine learning 

 

Confusion Matrix 

Table 3 shows the results of the confusion matrix for eight 

machine learning models evaluated with with Api calls 

malware Dataset without class balancing techniques 

 

Table 3: Confusion Matrices for the Evaluated Machine Learning Models without Balancing Technique 

S/N Classifier 
True 

Positives 

False 

Positives 

True 

Negatives 

False 

Negatives 

Total 

Instances 

1 Gradient Boosting 10349 373 10150 527 21399 

2 AdaBoost 10022 700 9791 886 21399 

3 Stacking (RF+ DT) 10586 136 10462 215 21399 

4 Support Vector Machine 10707 15 10579 98 21399 

5 Decision Tree 10592 130 10461 216 21399 

6 K Nearest Neighbor 10707 15 10095 582 21399 

7 Random Forest 10698 24 10607 70 21399 

8 Logistic Regression 9617 1105 1193 9484 21399 

 

The confusion matrices obtained for the eight evaluated 

machine learning classifiers on the API calls malware dataset 

without class balancing techniques reveal key insights into the 

performance of these models in distinguishing between 

benign and malicious instances as shown in Table 2. Each 

classifier's true positives, false positives, true negatives, and 

false negatives highlight their strengths and weaknesses in 
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correctly identifying the respective classes under imbalanced 

data conditions. 

The Random Forest classifier achieved the best performance, 

with 10,698 true positives and 10,607 true negatives, and only 

24 false positives and 70 false negatives. This indicates a 

remarkable ability to correctly classify both benign and 

malicious instances, with minimal misclassifications. 

Similarly, the Support Vector Machine displayed exceptional 

results, with 10,707 true positives, 10,579 true negatives, 15 

false positives, and 98 false negatives. These metrics reflect 

its robustness and precision in handling the dataset's 

imbalance. 

The Stacking ensemble classifier, which combines the 

strengths of Random Forest and Decision Tree models, also 

performed well, recording 10,586 true positives, 10,462 true 

negatives, 136 false positives, and 215 false negatives. The 

Decision Tree classifier, analyzed individually, achieved 

comparable results with 10,592 true positives, 10,461 true 

negatives, 130 false positives, and 216 false negatives. These 

results suggest that ensemble-based methods and tree-based 

algorithms are effective in this context. 

The Gradient Boosting classifier displayed solid performance, 

with 10,349 true positives and 10,150 true negatives, but it 

recorded a higher number of false positives (373) and false 

negatives (527) compared to the top-performing models. 

Similarly, the K-Nearest Neighbor classifier achieved 10,707 

true positives and 10,095 true negatives, with 15 false 

positives and a higher count of false negatives (582), 

suggesting some difficulty in managing the dataset’s 

imbalance. 

AdaBoost showed relatively moderate performance, with 

10,022 true positives, 9,791 true negatives, 700 false 

positives, and 886 false negatives. This reflects its limitations 

in distinguishing between the classes compared to other 

ensemble models. Logistic Regression, however, 

demonstrated the weakest performance, with 9,617 true 

positives and only 1,193 true negatives. It also recorded the 

highest number of false positives (1,105) and false negatives 

(9,484), indicating significant challenges in handling the 

imbalanced dataset. 

The confusion matrices underscore the superiority of 

ensemble-based and tree-based models in managing 

imbalanced data without the application of class balancing 

techniques. Conversely, simpler models like Logistic 

Regression struggle to achieve accurate classification under 

these conditions. The results emphasize the importance of 

selecting robust classification algorithms for applications 

involving imbalanced datasets. 

Table 4 provides a summary of the total number of correct 

classifications and misclassification for each of the eight 

machine learning models. For the ensemble models, the 

stacked Random Forest and Decision Tree model has the 

highest number of correct classifications followed by the 

Gradient Boosting and AdaBoost models. For the single 

classifiers, the Random Forest model has the highest number 

of correct classification and lowest number of misclassified 

instances, followed by the Support Vector Machine model 

then the Decision Tree, K Nearest Neighbor and Logistic 

Regression models.  

 

Table 4: Summary of Correct and Misclassified Instances of Banking Malware 

S/N Classifier Correct Classifications Misclassifications 

1 Gradient Boosting 20499 900 

2 AdaBoost 19813 1586 

3 Stacking (RF+ DT) 21048 351 

4 Support Vector Machine 21286 113 

5 Decision Tree 21053 346 

6 K Nearest Neighbor 20802 597 

7 Random Forest 21305 94 

8 Logistic Regression 10810 10589 

 

Generally, the Random Forest and Support Vector Machine 

models have the highest number of correctly classified 

instances of 21,305 and 21,286 instances respectively for the 

analysis conducted using API calls malware dataset with 

Adasyn and Tomek Link data balancing technique. 

These insights derived from the confusion matrices offer 

valuable guidance for refining and optimizing classification 

algorithms for detecting banking malware. By understanding 

the patterns of correct and incorrect classifications, 

cybersecurity professionals can tailor strategies to enhance 

the accuracy and reliability of malware detection systems. 

 

Classification Results 

The results in Table 5 show the performance of the eight 

machine learning models. These algorithms were evaluated 

based on precision, recall, and F1-score for detecting banking 

malware using the "API Calls Malware Dataset. 

 

Table 5: Precision, Recall and FI-Score Values of the Evaluated Machine Learning Models with Balancing Technique 

S/N Classifier 

Benign Instances Malicious Instances Overall 

Accuracy 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 
Precision Recall 

F1- 

score 

1 GB 0.96 0.95 0.96 0.95 0.97 0.96 0.96 0.96 0.96 0.96 

2 AB 0.93 0.92 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 

3 Stacking 

(RF+DT) 
0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98 

4 SVM 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 

5 DT 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98 

6 KNN 1.00 0.95 0.97 0.95 1.00 0.97 0.97 0.97 0.97 0.97 

7 RF 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

8 LR 0.90 0.89 0.89 0.89 0.90 0.89 0.89 0.89 0.89 0.89 
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The classification report presented in Table 5 highlights the 

performance metrics of eight machine learning classifiers 

evaluated using precision, recall, and F1-score for detecting 

benign and malicious instances with class balancing 

techniques applied to the dataset. Gradient Boosting exhibited 

consistent performance, achieving a precision, recall, and F1-

score of 0.96 across benign and malicious instances, resulting 

in an overall accuracy of 96%. Similarly, AdaBoost 

demonstrated reliable outcomes with an overall accuracy of 

93%, supported by balanced precision, recall, and F1-score 

values of 0.93 for both benign and malicious instances. 

The stacking ensemble model, combining Random Forest and 

Decision Tree, displayed superior performance with an 

overall accuracy of 98%. It achieved precision, recall, and F1-

scores of 0.98 and 0.99 for benign and malicious instances, 

respectively, reflecting the robustness of ensemble techniques 

in enhancing classification outcomes. Support Vector 

Machine achieved near-perfect results with an overall 

accuracy of 99%. It demonstrated precision and recall values 

of 1.00 and 0.99, respectively, for benign instances, while 

attaining 0.99 and 1.00 for malicious instances. 

Decision Tree yielded an accuracy of 98%, with consistent 

precision, recall, and F1-scores of 0.98 and 0.99 across benign 

and malicious instances. The K-Nearest Neighbor classifier 

showed satisfactory performance, achieving an overall 

accuracy of 97%. It attained a precision of 1.00 and a recall of 

0.95 for benign instances, while achieving a precision of 0.95 

and a recall of 1.00 for malicious instances, indicating slight 

variations in class predictions. Random Forest emerged as the 

top-performing classifier, achieving a perfect accuracy of 

100%. It consistently scored 1.00 across precision, recall, and 

F1-score for both benign and malicious instances, 

demonstrating its capability to handle the balanced dataset 

effectively. 

Logistic Regression, while comparatively less effective, 

achieved an overall accuracy of 89%. It demonstrated 

consistent precision, recall, and F1-scores of 0.89 and 0.90 for 

benign and malicious instances, respectively. These results 

suggest that while Logistic Regression is functional, its 

performance is relatively limited compared to other 

classifiers. Overall, the application of class balancing 

techniques significantly enhanced the performance of the 

machine learning models, with Random Forest and Support 

Vector Machine standing out as the most effective classifiers 

in this evaluation. 

 

Confusion matrix 

The confusion matrix results obtained from the experiment 

with the class balancing technique.  

 

Table 6: Confusion Matrices for the Evaluated Machine Learning Models with the class balancing Technique 

S/N Classifier True Positives False Positives True Negatives False Negatives Total Instances 

1 Gradient Boosting 164 119 13 10673 10969 

2 AdaBoost 125 158 33 10653 10969 

3 Staking (RF + DT) 192 122 70 10585 10969 

4 Support Vector Machine 128 155 2 10684 10969 

5 Decision Tree 181 102 83 10603 10969 

6 K Nearest Neighbor 129 154 11 10675 10969 

7 Random Forest 170 113 8 10678 10969 

8 Logistic Regression 135 111 6 10717 10969 

 

The results of the confusion matrices in Table 6 provide 

insight into the classification performance of the evaluated 

machine learning models after applying class balancing 

techniques. The metrics, including true positives, false 

positives, true negatives, and false negatives, reveal the 

models' ability to correctly identify benign and malicious 

instances while minimizing errors. 

Gradient Boosting displayed a relatively balanced 

performance, with 164 true positives and 119 false positives, 

alongside 13 true negatives and 10,673 false negatives. This 

indicates the model effectively identified some malicious 

instances but struggled with benign detection, as reflected by 

the higher number of false negatives. 

AdaBoost exhibited a slightly lower true positive count of 125 

and a higher false positive count of 158. It recorded 33 true 

negatives and 10,653 false negatives, suggesting moderate 

performance with a tendency to misclassify a higher 

proportion of benign instances as malicious. 

Staking (RF + DT) performance with 192 true positive. 

Balanced performance with relatively high true negative of 70 

and fewer false negative of 10,585 compared to others. 

Support Vector Machine achieved 128 true positives and 155 

false positives while maintaining one of the lowest false 

negative counts, with 10,684 instances. Its true negative count 

stood at 2, indicating its ability to correctly classify benign 

instances was limited but effective in identifying malicious 

ones. 

The Decision Tree model had the highest true positive count 

at 181, coupled with 102 false positives and 83 true negatives. 

However, it recorded 10,603 false negatives, showcasing 

strong benign detection at the cost of some misclassifications 

in malicious instances. 

The K-Nearest Neighbor classifier demonstrated a true 

positive count of 129 and a relatively low false positive count 

of 154. Its true negatives were recorded at 11, with false 

negatives totaling 10,675. This performance highlights its 

capability to balance benign and malicious instance 

classification, though it still exhibited a notable number of 

misclassifications. 

Random Forest emerged as one of the most consistent models, 

with a true positive count of 170 and only 113 false positives. 

It achieved a very low false negative count of 10,678 and 

recorded 8 true negatives, showcasing its effectiveness in both 

benign and malicious classification tasks. 

Logistic Regression emerged with relatively low false 

positive of 111 with the weakness of high false negatives of 

10,717 and moderate of true positives of 135.  

The confusion matrices reveal that Random Forest performed 

most effectively, with a well-balanced capability to minimize 

false positives and false negatives. Other models, such as 

Support Vector Machine and Gradient Boosting, showed 

specific strengths in certain aspects but faced challenges in 

achieving a balanced classification. The class balancing 

techniques contributed to improving the models' performance 

by addressing prior imbalances, though the effectiveness 

varied across classifiers. Summary of Correct and 

Misclassified Instances of Banking Malware is presented in 

table 7 
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Table 7: Summary of Correct and Misclassified Instances of Banking Malware 

S/N Classifier Correct Classifications Misclassifications 

1 Gradient Boosting 177 10792 

2 AdaBoost 158 10811 

3 Staking (RF + DT} 262 10707 

4 Support Vector Machine 130 10839 

5 Decision Tree 264 10705 

6 K Nearest Neighbor 140 10829 

7 Random Forest 178 10791 

8 Logistic Regression 241 10828 

 

The summary of correct and misclassified instances for the 

evaluated machine learning models highlights their ability to 

distinguish between benign and malicious cases of banking 

malware after applying data class balancing techniques. The 

results reflect varying degrees of accuracy and 

misclassification across the classifiers. 

Gradient Boosting achieved 177 correct classifications, but it 

misclassified 10,792 instances, indicating that while the 

model performed relatively well in identifying some cases 

correctly, it struggled with a significant proportion of errors. 

Similarly, AdaBoost demonstrated 158 correct classifications, 

with a higher count of 10,811 misclassifications. This 

outcome suggests that AdaBoost, although functional, faced 

challenges in accurately separating the two classes. 

Stacking (Random Forest + Decision Tree) Closely followed 

with 262 correct classifications and 10,707 misclassifications. 

Support Vector Machine correctly classified 130 instances 

while misclassifying 10,839. This performance reflects a 

strong focus on identifying one class over the other, 

potentially at the expense of overall balance in the 

classification task. In contrast, the Decision Tree classifier 

demonstrated a higher count of correct classifications, 

reaching 264, with 10,705 misclassifications. This suggests 

that Decision Tree achieved a better balance in detecting both 

classes compared to several other models. 

The K-Nearest Neighbor classifier achieved 140 correct 

classifications but exhibited 10,829 misclassifications. This 

performance highlights its limitations in accurately 

identifying a substantial portion of the instances. Random 

Forest achieved one of the higher correct classification 

counts, with 178 correctly identified instances and 10,791 

misclassified cases. Its performance indicates a more 

consistent ability to differentiate between classes, although 

misclassifications remained notable. 

While the summary underscores variations in the classifiers' 

abilities, Decision Tree and Random Forest stood out with 

comparatively higher correct classification counts, 

showcasing better adaptability to the balanced data. Gradient 

Boosting, Support Vector Machine, and K-Nearest Neighbor 

struggled with significant misclassification rates, reflecting 

areas where further optimization may enhance their 

performance. Logistic Regression moderately performed with 

241 correct classifications, performing better than many 

models but with slightly higher misclassifications of 10,828. 

These findings emphasize the importance of selecting suitable 

algorithms and fine-tuning them to improve classification 

accuracy for banking malware detection tasks. 

 

 
Figure 2:  Receiver Operating Characteristic (ROC) curves 

 

The analysis of the performance of multiple machine learning 

models, as illustrated by their confusion matrices and 

Receiver Operating Characteristic (ROC) curves, provides 

valuable insights into their effectiveness in classification 

tasks. The models under consideration include K-Nearest 

Neighbors (KNN), Decision Tree, Logistic Regression, 

Ensemble (Random Forest + Decision Tree), Gradient 

Boosting, Random Forest, and Support Vector Machine 

(SVM). Each model demonstrates varying levels of accuracy, 

precision, and robustness, as reflected in their respective 

confusion matrices and AUC scores. 

The KNN model exhibits a strong performance with a high 

number of true positives (10,094) and true negatives (10,707). 

It maintains a minimal false positive rate, with only 15 

instances, but has a moderate false negative count of 583. This 

suggests that while the model effectively identifies most 
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positive cases, there is room for improvement in minimizing 

missed classifications. Similarly, the Decision Tree model 

performs well, achieving 10,461 true positives and 10,592 

true negatives. Although it records slightly more false 

positives (130) compared to KNN, it reduces the number of 

false negatives to 216, indicating a better balance between 

precision and recall. 

Logistic Regression, in contrast, struggles to match the 

performance of the other models. It has a significantly higher 

number of false positives (1,105) and false negatives (1,193), 

resulting in lower overall accuracy. This model’s predictive 

capability appears weaker, which is reflected in its 

performance metrics. On the other hand, the ensemble model 

combining Random Forest and Decision Tree offers robust 

results with 10,462 true positives and 10,586 true negatives. 

Its false positive and false negative rates, at 136 and 215 

respectively, are comparable to those of the standalone 

Decision Tree model, suggesting that the ensemble approach 

can enhance reliability while maintaining precision. 

Gradient Boosting emerges as a competitive model, 

delivering a commendable performance with 10,349 true 

positives and 10,373 true negatives. However, it records a 

relatively higher number of false positives (373) and false 

negatives (527) compared to some other models, which may 

limit its suitability in scenarios requiring strict error 

minimization. Among all the models analyzed, Random 

Forest stands out as the top performer. With 10,607 true 

positives and 10,698 true negatives, it achieves minimal 

errors, recording only 70 false positives and 98 false 

negatives. This exemplary performance highlights its 

robustness and reliability in classification tasks. 

SVM also ranks as one of the best-performing models, with 

10,579 true positives and 10,602 true negatives. Its false 

positive and false negative rates, at 15 and 98 respectively, 

align closely with those of the Random Forest model. 

Furthermore, the ROC curve analysis reinforces these 

observations, with Random Forest and SVM achieving 

perfect AUC scores of 1.0, indicating their superior 

classification capabilities. Gradient Boosting, KNN, and 

Decision Tree also perform well, with AUC values of 

approximately 0.99, while Logistic Regression lags slightly 

with a comparatively lower AUC. 

 

CONCLUSION 

This study demonstrates the efficacy of hybrid and single-

classification algorithms in detecting banking malware, with 

a particular emphasis on hybrid models. The ensemble 

approach, combining Random Forest and Decision Tree, 

emerged as the most robust classifier, achieving superior 

accuracy, precision, recall, and F1-score. The findings 

underscore the importance of employing advanced 

classification techniques and addressing data imbalance to 

enhance malware detection in cybersecurity applications. 

Future research could explore the integration of deep learning 

architectures, such as Convolutional Neural Networks 

(CNNs) or Recurrent Neural Networks (RNNs), to capture 

complex malware behavior patterns. Additionally, extending 

the dataset with real-time malware samples and investigating 

adversarial resilience in detection models could further 

strengthen banking malware detection systems. 
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