
IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 154

8

IMPLEMENTATION AND COMPARISON OF SOFTWARE-DEFINED NETWORK CONTROLLERS IN

VARIOUS SIMULATED NETWORK ENVIRONMENTS

*1Osuolale Abdramon Tiamiyu, 1Samuel Olusayo Onidare, 1Hakeem Babalola Akande,
2Oluwaseun Tolani Ajayi and 1Abdraheem Ojonugwa Ogbotobo

1Department of Telecommunication Science, University of Ilorin

2Department of Electrical and Computer Engineering, Illinois Institute of Technology

*Corresponding authors’ email: tiamiyu.oa@unilorin.edu.ng; ozutiams@yahoo.com

ABSTRACT

In today's ever-evolving networking landscape, Software Defined Networking (SDN) has emerged as a

paradigm-shifting technology that promises greater flexibility, agility, and control over network

infrastructures. However, how easy are the configuration, extensibility, and programmability of these SDN

controllers, considering the practical implications for network administrators and developers? Despite the

growing adoption of SDN, there is limited research on the comparative performance of controllers across

multiple simulation environments. This study aims to explore the practical implementation and comparative

evaluation of different SDN Controllers within diverse simulated network environments. Prominent controllers

such as POX and Faucet are meticulously configured and deployed in simulated network environments created

using GNS3 (Graphical Network Simulator-3), OPNET (Optimized Network Engineering Tools), NS3

(Network Simulator-3), OMNET++ (Objective Modular Network Testbed in C++) and MININET platforms.

Furthermore. the study employs a range of performance metrics like controller latency, network throughput,

packet loss, CPU (Central Processing Unit) and memory utilization to assess the efficacy and efficiency of

each SDN Controller. The Results indicated that Mininet provided the lowest latency, whereas OPNET

demonstrated better scalability for large-scale networks. NS3, though useful for SDN network design and

visualization, exhibited higher CPU and memory utilization that might limit its scalability for large-scale SDN

controller simulations. While GNS3 offered a balanced performance and resource utilization, making it a

suitable choice for SDN controller simulation that prioritizes realistic network modelling, OMNET++, on the

other hand, exhibited moderate performance metrics with efficient resource utilization, making it suitable for

SDN controller simulations requiring a balance between performance and resource efficiency.

Keywords: SDN Controller, Network Simulator, POX, FAUCET, Performance Metrics, OpenFlow

INTRODUCTION

Software-Defined Networking (SDN) is transforming

network architecture by separating the control plane from the

data plane, offering centralized management and dynamic

network resource control (Adekunle & Oluwaseyi, 2023). The

core component of SDN is the SDN controller, which acts as

the brain of the network, providing network visibility,

managing traffic, and implementing policies.

In global telecommunications networks, SDN,

technologically, is a game-changer. Its adoption has emerged

as a probable paradigm change in the perpetually changing

landscape of modern network architecture. SDN allows for

centralized network control that eventually improves the

flexibility, scalability, and manageability of networks. The

SDN controller optimizes traffic flow and resource allocation,

acting as the network’s central management unit. Its selection

is an important SDN component (Franco-Almazan et al

(2019)). SDN gives flexibility, in addition to scalability and

programmability, to the existing networks. Separation of the

control plane and data plane of SDN allows central

management of the network resources and automation of the

network configuration, provisioning, and orchestration by

network administrators.

Traditional networking uses dedicated network devices, like

routers and switches, to manage network traffic. It has

distributed architecture and it is hardware-based, unlike SDN

that is software-based. Its topologies are based on the intimate

connection of network devices and their management

software. These drawbacks of the traditional networking

topologies are addressed by the emergence of SDN as a

feasible method. In typical networks, network components

(e.g., switches, routers, and firewalls) handle data forwarding

and execute network policies. The control software that

configures and regulates these devices is widely distributed.

Thus, automating network administration tasks and enhancing

network performance becomes difficult. Having a centralized

controller in charge of managing the network architecture,

SDN overcomes these limitations. A standard protocol like

OpenFlow is been used by the controller to communicate with

the network devices, thus the network could be designed and

configured in a more flexible and efficient manner.

In the early 2000s, the separation of the control and data

planes in networking devices was suggested by academics and

this brought about the concept of SDN (Rego et al (2018)).

However, the first real-world use of SDN by researchers

came to light only in 2008 (McKeown et al (2008)). The

OpenFlow protocol was suggested as a standard for

communication between the controller and the network

devices to allow the controller to manage the network

infrastructure centrally.

Any program code that is available for use/modification by

public or other developers is tagged open source. The

introduction of several open-source SDN controllers like

OpenDaylight, Floodlight, and Ryu (for customizing,

automating and monitoring networks of various size and

scale), give the development of SDN a further pace.

Developers can create original network applications and

manage network services using the framework being offered

by these controllers.

SDN is revolutionizing the way networks are designed,

deployed, and managed. By separating the control plane from

the data plane, SDN allows network administrators to

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 9 No. 3, March, 2025, pp 154 - 163

DOI: https://doi.org/10.33003/fjs-2025-0903-3215

mailto:tiamiyu.oa@unilorin.edu.ng
mailto:ozutiams@yahoo.com
https://doi.org/10.33003/fjs-2025-0903-3215

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 155

implement network policies and configuration changes in a

centralized and automated manner, thereby reducing the risk

of human error and improving network agility. Furthermore,

SDN allows network administrators to manage network

resources and optimise network performance easily by

providing a unified view of the network infrastructure. SDN

controllers help network administrators to identify and

resolve network bottlenecks and proactively monitor network

performance. Nevertheless, SDN has its own drawbacks and

issues that need to be resolved. One of the challenges facing

SDN is the need for specific knowledge and experience to

implement and operate the technology. To use SDN, thorough

knowledge and understanding of network protocols,

programming languages, and software-defined networking

topologies are necessary. Also, the possible security issues

linked to the centralized administration of the network

infrastructure pose another challenge for SDN (Imran et al

(2021)). SDN controllers and switches may target of cyber-

attacks, thereby jeopardizing the network's security and

integrity. When it comes to handling huge networks with

thousands of devices, SDN has scaling issues. As the number

of network devices rises, the controller could compromise the

stability and performance of the network and, thus, become a

bottleneck.

Despite challenges like Interoperability, Security, and

Scalability that are being faced by SDN, SDN continues to

evolve and gain adoption due to its benefits in automation,

flexibility, and efficiency. Its applications continue to expand

in areas like AI-driven networking, autonomous systems, and

next-generation telecommunications (e.g. Data Centers and

Cloud Computing, Enterprise Networks, Internet of Things

(IoT) Networks, Cybersecurity and Network Monitoring).

SDN has evolved from a research concept to a fundamental

networking technology, and with AI, cloud-native

applications, and 5G/6G, SDN continue to redefine the future

of networking.

In simulated network environments, a lot of studies have been

conducted on the performance of different SDN controllers.

One of such studies is a study by (Singh et al (2022)). In their

work, the performance of the OpenDaylight and ONOS (Open

Network Operating System) controller was evaluated using

the Mininet tool. They found out that both controllers had

similar performance in terms of latency and throughput,

however, in terms of reliability, the ONOS is slightly better.

In a simulated network environment also, authors in

(Chouhan et al (2019)) compared the performance of the

Floodlight and Ryu controllers. In their study, it was found

that Ryu had a higher throughput and lower latency than

Floodlight, which had better reliability.

The studies conducted by (Salman et al (2016)) focused on

the functionality of different SDN controllers. The ability of

different controllers to support different networking protocols

and integrate them with other tools was evaluated by the

authors. It was concluded that ONOS (Open Network

Operating System) and OpenDaylight had extensive support

for different protocols and tools, while Ryu and Floodlight

had limited support.

Authors in (Abuarqoub (2020)) studied the ease of use of

different controllers, including their installation,

configuration, and management. They concluded that ONOS

and OpenDaylight had the most straightforward installation

and configuration processes, while Floodlight and Ryu had

more complex processes. (Tello & Abolhasan, 2019) in their

study evaluated the scalability of different controllers, and

their ability to handle increasing numbers of network devices

and traffic. It was found that ONOS and OpenDaylight had

the best scalability, while Floodlight and Ryu had limited

scalability.

Despite extensive research on SDN controllers, existing

studies lack a direct comparison of controllers across multiple

simulated environments. This study bridges this gap by

evaluating POX and Faucet in diverse network

conditionsWith reference to the aforementioned, it was

deduced that the existing literature on the implementation and

comparison of different SDN controllers in a simulated

network environment provides valuable insights into the

performance, functionality, ease of use, and scalability of

these controllers. However, there is still a need for further

research in this area, particularly in terms of comparing the

performance of different controllers under different scenarios

and conditions. In a nutshell, despite extensive research on

SDN controllers, existing studies lack a direct comparison of

controllers across multiple simulated environments. This

study bridges this gap by evaluating POX and Faucet in

diverse network conditions.

MATERIALS AND METHODS

Implementation and comparison of SDN controllers in

various simulated network environments is crucial for

understanding how different SDN controllers perform under

various conditions. Simulated environments provide a

controlled and cost-effective way to evaluate SDN controllers

before deploying them in real-world scenarios. This study

encompasses multiple factors such as network topology,

scale, performance metrics, and the specific SDN controller

features that align with the needs of a given environment. The

structured approach to implementing and comparing SDN

controllers would focus on key aspects like deployment,

performance, and scalability in simulated environments.

The rationale for selecting the POX and FAUCET controllers

for this study is a decision rooted in their relevance to SDN,

distinct characteristics and the goals of this study. Selecting

these controllers reflects their strengths, diversity of features,

and their significance to SDN research and implementation.

Consideration for choosing the POX and Faucet controllers is

that POX is easy to use while FAUCET is not only difficult

to learn but also to use. FAUCET is complex compared to

POX which is normally deployed for small networks and for

rapid prototyping of new SDN applications; very unlike

FAUCET which is preferred for large networks or for

deploying complex SDN applications (Bosi et al (2024)).

Simulation Environment

Comparison of SDN controllers, POX and FAUCET, and

their implementations necessitate a rigorous methodology

that encompasses a variety of simulation environments. These

environments serve as the experimental platforms for

analyzing the controllers' performance, scalability, and

behaviour across diverse network scenarios. In this study, five

simulation environments are employed; and they are GNS3,

NS3, OPNET, OMNeT++, and Mininet.

GNS3

GNS3 is a dynamic network simulation tool that allows the

building of complicated network topologies by combining

real and virtual networking devices. GNS3 with its user-

friendly graphical interface is a versatile simulation software

for simulating networks that are made up of switches, routers

and firewalls. This environment excels in simulating real-

world network experiences by allowing the use of actual

networking hardware alongside virtualized network

components (Gil et al (2014)).

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 156

NS3

NS3 is a sophisticated network simulation software for

analyzing network protocols, algorithms, and applications. It

simulates complicated networking behaviours using a

discrete-event simulation paradigm, with a focus on wired,

wireless, and mobile networks. Its flexibility and ability to

mimic large-scale networks make it a useful tool for

understanding complex network dynamics (Tiamiyu, 2012).

OPNET

OPNET, known for its accuracy and ability to precisely model

real-world networks, enables academics and engineers to

investigate network performance, traffic patterns, and

protocol behaviour, thus, providing a comprehensive

framework for communication network modelling and

analysis. (Tiamiyu, 2012). This environment excels at

simulating diverse network technologies, from wired to

wireless, and can especially be useful for evaluating the real-

world impact of SDN controllers.

OMNeT++

OMNeT++ is a simulation framework that is flexible and

extendable for simulating discrete event-based systems such

as communication networks. OMNeT++ has a modular

architecture that allows for the creation of complex network

scenarios and the integration of additional models.

OMNeT++ is widely used to study the performance of

network protocols, applications, and distributed systems,

making it a suitable platform for evaluating SDN controller

behaviour in various contexts (Tiamiyu, 2012).

Mininet

Being an open-source network emulator built for SDN

application quick prototyping and development, Mininet

focuses on replicating a network of hosts, switches, and

controllers on a single physical system. It is especially well-

suited for testing and experimenting with the features and

performance of SDN controllers. Mininet is a popular choice

for SDN research and instruction because of its capacity to

quickly design configurable network topologies. (Gupta et al

(2022)).

These simulation tools collectively offer a diverse range of

features, enabling comprehensive analysis and comparison of

the SDN controllers. They allow a comprehensive evaluation

of the controllers' behaviour, efficiency, and adaptability in

various networking scenarios. Table 1 shows the comparison

of the selected simulation tools for SDN scenarios.

Table 1: Comparison of selected simulation tools for SDN scenarios

Simulation environment Analysis of SDN scenarios

Mininet Good for small and medium-sized networks. Easy to use and can be used to create virtual

networks with OpenFlow switches.

GNS3 Can be used to simulate SDN scenarios, but it is not as lightweight as Mininet

NS3 The preferred choice for researching and developing detailed simulations of real-world

networks. Though it can be used to simulate SDN scenarios, it is not as easy to use compared

to Mininet.

OMNET++ Similar to NS3 in terms of its features and complexity. Good for researchers and developers

who need a powerful and customizable network simulator. Can also be used to simulate SDN

scenarios, but it is not as easy to use as Mininet

OPNET Very powerful simulation tool that can be used to simulate large and complex network

scenarios. However, it is also very expensive. Can also be used to simulate SDN scenarios,

but it is not as easy to use as Mininet.

Implementation Details

POX controller on MININET

Figure 1 shows the Pox Controller installation and setup on the Mininet.

Figure 1: Pox Controller installation and setup on Mininet

The POX controller was setup and running to actively listen

for incoming OpenFlow connections on all available network

interfaces (0.0.0.0) on port 6633 by running on the terminal

the command for starting up the POX controller “sudo

~/pox/pox.py forwarding.l2_pairs \info.packet_dump

samples.pretty_log log.level –DEBUG”. The POX controller

is acting as an L2 learning switch which implies that the

controller is implementing a basic networking functionality in

an SDN environment in a way similar to that of a traditional

Ethernet switch. "listening on 0.0.0.0:6633" is a phrase that

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 157

usually refers to the status message or log entry created by the

POX controller software when it boots up and starts listening

for incoming connections on a specified network address and

port.

Explanation of the command in detail:

pox controller: POX is an open-source networking software

platform that can be used to design and deploy SDN

controllers (this statement simply indicates that the POX

controller software is running.

"listening on" indicates that the POX controller is currently

listening for incoming network connections.

"0.0.0.0": In networking, 0.0.0.0 IP address indicates the

availability of all network interfaces on the host. When the

software is configured to listen on 0.0.0.0, it means that the

controller is listening for incoming connections on all

available network interfaces, which allows it to accept

connections from any remote IP address.

"6633": This is the port number on which the POX controller

is listening for incoming connections. Port 6633 is commonly

used for SDN controllers (Ligia et al (2014)).

Thereafter, the command “sudo mn –topo single,20 –mac –

switch ovsk –controller remote” was used in creating an SDN

network on Mininet. The command created 20 hosts to be

connected to a single switch, OVSK (open virtual switch

kernel) which is used because of its compatibility with the

SDN framework; ‘—mac’ which assigned mac addresses to

each host and ‘—controller remote’ connected the SDN

network to an SDN controller that is listening for a

connection.

Figure 2: SDN network and Pox Controller connected

POX controller on NS3

Running an SDN network in an NS3 simulator is quite

different, the reason being that a C++ script is required.

Figure 03 shows the running of a script named “ofswitch13-

first” which contains code for an SDN network of a remote

controller, a switch and 14 hosts.

Figure 3: Running a C++ script for an SDN network on NS3

The command “./ns3 run scratch/ofswitch13-first” explained:

"./ns3": The "./" at the beginning specifies the current

directory, and "ns3" is the command used to start ns-3.

"run": This is a command that tells ns-3 to execute a specific

simulation scenario or script.

"scratch/ofswitch13-first": This is the path to the script to be

executed. In ns-3, simulation scenarios are often defined in

script files located in the "scratch" directory.

Figure 4 shows the visualization of the SDN script using

NetAnim.

Figure 4: Visualizing SDN script with NetAnim

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 158

Running the script on the NS3 terminal isn’t the end, in an

attempt to visualize the C++ script for the SDN network,

NetAnim which is an offline animation tool was used to

animate the script. Attached to each node are its ip and MAC

addresses.

FAUCET controller on GNS3

On GNS3 the faucet SDN controller and POX controller were

installed and configured as a Docker Container (Figure 05).

Figure 5: SDN network setup on GNS3

An SDN using a Faucet SDN controller and OpenvSwitch

within the GNS3 environment was set as follows:

Install GNS3: Download and installation of GNS3 from the

official website (https://www.gns3.com/).

Download the required Software: Faucet SDN Controller was

downloaded as a Docker container from the official Faucet

GitHub page (https://github.com/faucetsdn/faucet).

OpenvSwitch Appliance: Opening GNS3, and going to the

"Appliances" tab, the OpenvSwitch appliance was

downloaded from the GNS3 online appliance store.

Setting Up GNS3 Environment by:

Launch GNS3 and create a new project for the SDN network.

Add a few hosts. These will represent devices connected to

the SDN network.

Add the OpenvSwitch appliance.

Test the SDN network by sending traffic between the VMs.

The faucet manages the network according to the

configuration.

FAUCET controller on OPNET

Setting up an SDN network on OPNET was entirely different

because a node had to be configured as a sensor, another node

configured as an SDN controller, third one configured as an

actuator (Figure 6).

Figure 6: SDN network setup on OPNET 14.5

Configuring a network node as an actuator, sensor, and

controller in the context of SDN refers to the role that node

plays inside the SDN architecture. SDN separates the control

plane (which decides how to forward traffic) from the data

plane (which forwards traffic). This division enables more

flexible network management and automation. Explanation of

what each of these roles entails is as follows:

Controller:

A controller oversees the making of a high-level choice about

how network traffic should be forwarded. It instructs SDN

switches on how to handle packets and flows by

communicating with them via a control protocol, OpenFlow.

Controllers serve as the heart of an SDN network. They give

a consolidated perspective of the network and oversee

network-wide rules, traffic engineering, and network service

implementation. Controllers can be set up to make dynamic

routing decisions, manage network security, and other tasks.

Actuator:

Actuators are devices or entities in the data plane that

physically carry out the SDN controller's instructions. It

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 159

could, for example, be a switch that adjusts its forwarding

table in response to controller instructions. Depending on

instructions from the SDN controller, an actuator is a network

device or element that executes actions. For example, the

actuator modifies network configurations, changes routing

paths, and takes other activities to enforce network policies.

Actuators are needed to convert controller choices into real

network activities.

Sensor:

A sensor is a network devices or element that detect and

respond to changes in their environment. It collects and

transmits data to the SDN controller regarding network

conditions, traffic, and performance. Monitoring networks,

sensors send real-time data to the controller, allowing it to

make more cogent decisions.

Sensors allow the controller to respond to changing network

circumstances by offering it network telemetry data. Sensors,

for example, may report bandwidth usage, latency measures,

security events, or other relevant metrics. The controller can

use this data for network optimization, defect detection, and

security enforcement.

SDN controller on OMNET++

Creating an SDN network in OMNET++ is quite complex. It

involves using the INET FRAMEWORK and configuring the

OpenFlow protocol to support an SDN network (Figure 7).

Figure 7: OMNET++ environment setup

A comprehensive description of how an SDN network was set

up in OMNeT++ is as follows:

OMNeT++: OMNeT++ was installed and configured.

INET Framework: the INET Framework, which is an

extension for OMNeT++ designed for network simulations

was installed.

OpenFlow: a protocol used for SDN communication between

the controller and switches.

Setting Up the Environment:

Create a New OMNeT++ Project:

 Start by creating a new OMNeT++ project where the SDN

simulation will be developed.

Import INET Framework:

 Import the INET Framework into your OMNeT++ project by

copying the INET Framework files into the project directory

(this could also be done by adding it as a project dependency

in the IDE (if supported)).

Define Network Topology:

 This includes specifying the nodes (switches, hosts), links,

and connections.

Configure OpenFlow on SDN Switches:

 In INET, SDN switches are typically implemented as

OpenFlow switches. The OpenFlow protocol is configured on

the SDN switches. This includes specifying the OpenFlow

version (e.g., OpenFlow 1.3), controllers' IP address, and port

number.

Implementing the SDN Controller:

Develop the SDN Controller:

 using the INET Framework's modules and components, a

script was written for the pox and faucet controller.

Connect the Controller to Switches:

 Connection is established between the SDN controller and

the OpenFlow-enabled switches in the topology.

Controller Logic:

The controller was configured to act as a router, load balancer

or firewall.

Running the Simulation

RESULTS AND DISCUSSION

MININET

Before measuring any performance metric, the PINGALL

command was used to ensure that the hosts in the network

communicate with each other. Figure 08 shows the result after

testing connectivity among the hosts on the Mininet.

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 160

Figure 8: Connectivity among hosts on the Mininet

Figure 9 shows the results of packet loss and Latency on the Mininet.

Figure 9: Packet loss and Latency on Mininet

50 packets transmitted: This indicated that the sender sent a

total of 50 ICMP (Internet Control Message Protocol) echo

request packets to the destination host.

50 received: This means that all 50 of the ICMP echo request

packets sent were successfully received by the destination

host. In other words, none of the packets were lost in transit.

0% packet loss: This is a summary statement based on the “50

packets transmitted” and “50 received” values. It means that

there was no packet loss during the test. All transmitted

packets were successfully received; thus, the packet loss rate

is 0%.

Time 50192ms: This indicated the total time taken for the

entire ping test. In this case, it took 50,145 milliseconds (or

approximately 50.2 seconds) to send all 50 packets and

receive responses from the destination host.

Rtt min/avg/max/mdev = 0.069/0.10/0.935/0.126 ms:

rtt: Stands for “round-trip time,” which is the time it takes for

a packet to travel from the sender to the receiver and back. It

is measured in milliseconds (ms).

 Min: The minimum round-trip time observed during the test.

In this case, the minimum round-trip time was 0.069 ms.

 Avg: The average round-trip time calculated from all the

packets sent and received. In this case, the average round-trip

time was 0.100 ms.

 Max: The maximum round-trip time observed during the

test. In this case, the maximum round-trip time was 0.935 ms.

Mdev: Stands for “mean deviation.” It is a measure of the

variation or dispersion of round-trip times. In this case, the

mean deviation was 0.126 ms. Figure 10 shows the CPU and

memory utilization by the Mininet.

Figure 10: CPU and memory utilization by the Mininet

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 161

NS3

Figure 11 shows the results of the packet loss and latency on NS3.

Figure 11: Packet loss and latency on NS3

GNS3

Figure 12 shows the Faucet controller configuration on GNS3, while Figure 13 shows the configuration of routers to generate

Packet loss and Latency results.

Figure 12: Faucet Controller Configuration

Figure 13: Routers’ configuration generating Packet loss and

Latency results

OPNET

Figure 14 shows the attributes configuration for the sensor, actuator and controller on OPNET 14.5.

Figure 14: Sensor, actuator and controller

Figure 15 shows the configuration of DES statistics on OPNET 14.5 to generate results for performance metrics.

Figure 15: DES statistics configuration on OPNET 14.5 to

generate results for performance metrics

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 162

Table 2 shows all the results on performance metrics from all the simulation environments.

Table 2: Performance metrics from all the simulators

Metric MININET NS3 GNS3 OPNET OMNET++

Throughput 6.2Gb/s 0.99Mb/s 350mb/s 4.5mb/s 150mb/s

Packet loss 0% 0% 20% 0.3% 1%

Latency 0.190ms 10.56ms 21ms 1.5ms 6ms

CPU utilization 5.9% 30% 2% 45% 35%

Memory utilization 11.1% 60% 19.2% - 50%

Analysis

Throughput:

Mininet demonstrates the highest throughput, making it the

best choice when a high data transfer rate is of utmost priority.

However, it is a lightweight simulator that is not designed for

simulating large networks with a lot of traffic. GNS3, OPNET

and OMNET++ also offered decent throughput. Though NS3

has the lowest throughput. yet it is a more complex simulator

that is designed for simulating large networks with a lot of

traffic.

Packet loss:

OPNET, Mininet and OMNET++ exhibited low packet loss

rates, and this is very good as the low packet loss is very

crucial for data integrity. Thus, making any of them a

preferred choice when low packet loss is paramount. NS3 and

GNS3 have higher packet loss rates, which would be a

concern for applications sensitive to data loss.

Latency:

High latency affects real-time applications adversely, thus,

making GNS3 and NS3 that had higher latency values

unpreferred choice for real-time applications. On the other

hand, Mininet demonstrated the lowest latency, and this is

beneficial for low-latency network designs.

CPU and Memory Utilization:

Very unlike the Mininet and GNS3 have moderate resource

utilization which makes them suitable for projects with

moderate hardware constraints, NS3 and OPNET had the

highest CPU and memory utilization which could be a

concern if resource efficiency is of concern to the user.

However, Mininet strikes a balance between resource

utilization and performance.

Comparison of the SDN controllers

Table 3 shows the comparisons of the SDN controllers being

investigated in this study.

Table 3: SDN Controllers Compared

Factor POX FAUCET

Community support Large and active community Large and active community

Complexity Light weight Complex

Ease of use Easy to use More difficult to learn and use

Deployment Good for small networks and for rapid

prototyping of new SDN applications

Good for large networks or for deploying

complex SDN applications

Features Basic features A wide variety of features

Flexibility Flexible Flexible

Programming language Python Java

Comparison of the selected Simulation Environment

Table 4: The Selected Simulation Environments Compared

Simulation environment Analysis of SDN scenarios

Mininet Good for small and medium-sized networks. Easy to use and can be used to create virtual

networks with OpenFlow switches.

GNS3 Could be used to simulate SDN scenarios, but it is not as lightweight as Mininet

NS3 Good for researchers and developers who need to create detailed simulations of real-world

networks. Could be used to simulate SDN scenarios, though it is not as easy to use,

compared to Mininet.

OMNET++ Similar to NS3 in terms of its features and complexity. A great choice for researchers and

developers who need a powerful and customizable network simulator.

OPNET Very powerful and could be used to simulate large and complex networks. However, it is

not as easy to use as Mininet, as observed when it was being used to simulate SDN scenarios

in this study.

CONCLUSION

Throughout the study, valuable insights into the strengths and

weaknesses of various simulators when applied to SDN

controller implementations were gained. The results of the

evaluation showed that the performance of the SDN

controllers varies depending on the network simulator and the

complexity/size of the network topology. Though Mininet

could be a preferred choice because of its ease of use and that

it is very good for simulating small and medium-sized

networks, when there is a need to simulate large and complex

networks, OPNET might be the best choice, not minding the

fact that it is expensive compared to others. In a nutshell, the

complexity of the network and or the resources available to

the developer (both the hardware and the Software) play a

vital role in the choice of the simulator for the implementation

of an SDN controller. Nevertheless, Mininet provided

competitive performance metrics, making it a cost-effective

solution for simulating SDN controllers with moderate

hardware requirements. NS3, though useful for SDN network

design and visualization, exhibited higher CPU and memory

utilization that might limit its scalability for large-scale SDN

controller simulations. While GNS3 offered a balanced

IMPLEMENTATION AND COMPARISON OF… Tiamiyu et al., FJS

8UDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 154 – 163 163

 ©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

performance and resource utilization, making it a suitable

choice for SDN controller simulation that prioritizes realistic

network modelling, OMNET++, on the other hand, exhibited

moderate performance metrics with efficient resource

utilization, making it suitable for SDN controller simulations

requiring a balance between performance and resource

efficiency.

REFERENCES:

Abuarqoub, A. (2020). A Review of the Control Plane

Scalability Approaches in Software Defined Networking.

Future Internet, 12(3), 49.

https://doi.org/10.3390/fi12030049

Adekunle O. O., & OluwaseyiO. (2023). A SECURITY

ARCHITECTURE FOR SOFTWARE DEFINED

NETWORK (SDN). FUDMA JOURNAL OF SCIENCES,

2(2), 28 - 36. Retrieved from

https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1347

Bosi, L. L., Mendes, A. C., & Salles, R. M. (2024). A Review

on the Overall Performance of SDN Controllers. In 2024 11th

International Conference on Software Defined Systems

(SDS). IEEE. 156-163.

https://ieeexplore.ieee.org/abstract/document/10883890

Chouhan, R. K., Atulkar, M., & Nagwani, N. K. (2019).

Performance Comparison of Ryu and Floodlight Controllers

in Different SDN Topologies. 2019 1st International

Conference on Advanced Technologies in Intelligent Control,

Environment, Computing & Communication Engineering

(ICATIECE).

https://doi.org/10.1109/icatiece45860.2019.9063806

Franco-Almazan, A., Fernandez-Soriano, N., & Vidal-

Beltrán, S. (2019). A comparison of Traditional Network and

Software-defined Network schemes using OpenFlow

protocol. WSEAS Transactions on Computers, 18, 210-216.

Gil, P., Garcia, G. J., Delgado, A., Medina, R. M., Calderon,

A., & Marti, P. (2014, October). Computer Networks

Virtualization with GNS3. In Proc IEEE Frontiers in

Education Conference (pp. 2141-2144).

Gupta, N., Maashi, M. S., Tanwar, S., Badotra, S., Aljebreen,

M., & Bharany, S. (2022). A Comparative Study of Software

Defined Networking Controllers Using Mininet. Electronics,

11(17), 2715. https://doi.org/10.3390/electronics11172715

Imran, Ghaffar, Z., Alshahrani, A., Fayaz, M., Alghamdi, A.

M., & Gwak, J. (2021). A topical review on machine learning,

software defined networking, internet of things applications:

Research limitations and challenges. Electronics, 10(8), 880.

Ligia Rodrigues Prete, Shinoda, A. A., Schweitzer, C. M., &

de Oliveira, R. L. S. (2014). Simulation in an SDN network

scenario using the POX Controller. 2014 IEEE Colombian

Conference on Communications and Computing (COLCOM).

https://doi.org/10.1109/colcomcon.2014.6860403

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.,

Peterson, L., Rexford, J., Shenker, S., & Turner, J. (2008).

OpenFlow: Enabling innovation in campus networks. ACM

SIGCOMM Computer Communications Review, Apr. 2008.

Rego, A., Garcia, L., Sendra, S., & Lloret, J. (2018). Software

Defined Network-based control system for an efficient traffic

management for emergency situations in smart cities. Future

Generation Computer Systems, 88, 243-253.

Salman, O., Elhajj, I. H., Kayssi, A., & Chehab, A. (2016).

SDN controllers: A comparative study. 2016 18th

Mediterranean Electrotechnical Conference (MELECON).

https://doi.org/10.1109/melcon.2016.7495430

Singh, A., Kaur, N., & Kaur, H. (2022). Extensive

performance analysis of OpenDayLight (ODL) and Open

Network Operating System (ONOS) SDN controllers.

Microprocessors and Microsystems, 95, 104715.

https://doi.org/10.1016/j.micpro.2022.104715

Tello, A. M. D., & Abolhasan, M. (2019). SDN Controllers

Scalability and Performance Study. 2019 13th International

Conference on Signal Processing and Communication

Systems (ICSPCS).

https://doi.org/10.1109/icspcs47537.2019.9008462

Tiamiyu, A. O. (2012). Comparative Analysis of Imitation

Modeling Software Supporting Trusted Routing

(Сравнительный Анализ Средств Имитационного

Моделирования ТКС, Поддерживающих Доверенную

Марщрутизацию). In Topical issues on problems of

information security: collection of scientific articles

(Актуальные Проблемы Информационной Безопасности,

Сборник Научных Трудов) Stelmashonok E. V. (ed.) 49−53.

http://infosec.spb.ru/wp-

content/uploads/2014/05/SbornikNTr_20121.pdf

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi12030049
https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1347
https://ieeexplore.ieee.org/abstract/document/10883890
https://doi.org/10.1109/icatiece45860.2019.9063806
https://doi.org/10.3390/electronics11172715
https://doi.org/10.1109/colcomcon.2014.6860403
https://doi.org/10.1109/melcon.2016.7495430
https://doi.org/10.1016/j.micpro.2022.104715
https://doi.org/10.1109/icspcs47537.2019.9008462
http://infosec.spb.ru/wp-content/uploads/2014/05/SbornikNTr_20121.pdf
http://infosec.spb.ru/wp-content/uploads/2014/05/SbornikNTr_20121.pdf

