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ABSTRACT 

In today's ever-evolving networking landscape, Software Defined Networking (SDN) has emerged as a 

paradigm-shifting technology that promises greater flexibility, agility, and control over network 

infrastructures. However, how easy are the configuration, extensibility, and programmability of these SDN 

controllers, considering the practical implications for network administrators and developers? Despite the 

growing adoption of SDN, there is limited research on the comparative performance of controllers across 

multiple simulation environments. This study aims to explore the practical implementation and comparative 

evaluation of different SDN Controllers within diverse simulated network environments. Prominent controllers 

such as POX and Faucet are meticulously configured and deployed in simulated network environments created 

using GNS3 (Graphical Network Simulator-3), OPNET (Optimized Network Engineering Tools), NS3 

(Network Simulator-3), OMNET++ (Objective Modular Network Testbed in C++) and MININET platforms. 

Furthermore. the study employs a range of performance metrics like controller latency, network throughput, 

packet loss, CPU (Central Processing Unit) and memory utilization to assess the efficacy and efficiency of 

each SDN Controller. The Results indicated that Mininet provided the lowest latency, whereas OPNET 

demonstrated better scalability for large-scale networks. NS3, though useful for SDN network design and 

visualization, exhibited higher CPU and memory utilization that might limit its scalability for large-scale SDN 

controller simulations. While GNS3 offered a balanced performance and resource utilization, making it a 

suitable choice for SDN controller simulation that prioritizes realistic network modelling, OMNET++, on the 

other hand, exhibited moderate performance metrics with efficient resource utilization, making it suitable for 

SDN controller simulations requiring a balance between performance and resource efficiency.  
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INTRODUCTION 

Software-Defined Networking (SDN) is transforming 

network architecture by separating the control plane from the 

data plane, offering centralized management and dynamic 

network resource control (Adekunle & Oluwaseyi, 2023). The 

core component of SDN is the SDN controller, which acts as 

the brain of the network, providing network visibility, 

managing traffic, and implementing policies. 

In global telecommunications networks, SDN, 

technologically, is a game-changer.  Its adoption has emerged 

as a probable paradigm change in the perpetually changing 

landscape of modern network architecture. SDN allows for 

centralized network control that eventually improves the 

flexibility, scalability, and manageability of networks. The 

SDN controller optimizes traffic flow and resource allocation, 

acting as the network’s central management unit. Its selection 

is an important SDN component (Franco-Almazan et al 

(2019)). SDN gives flexibility, in addition to scalability and 

programmability, to the existing networks. Separation of the 

control plane and data plane of SDN allows central 

management of the network resources and automation of the 

network configuration, provisioning, and orchestration by 

network administrators. 

Traditional networking uses dedicated network devices, like 

routers and switches, to manage network traffic. It has 

distributed architecture and it is hardware-based, unlike SDN 

that is software-based. Its topologies are based on the intimate 

connection of network devices and their management 

software. These drawbacks of the traditional networking 

topologies are addressed by the emergence of SDN as a 

feasible method. In typical networks, network components 

(e.g., switches, routers, and firewalls) handle data forwarding 

and execute network policies. The control software that 

configures and regulates these devices is widely distributed. 

Thus, automating network administration tasks and enhancing 

network performance becomes difficult. Having a centralized 

controller in charge of managing the network architecture, 

SDN overcomes these limitations. A standard protocol like 

OpenFlow is been used by the controller to communicate with 

the network devices, thus the network could be designed and 

configured in a more flexible and efficient manner.  

In the early 2000s, the separation of the control and data 

planes in networking devices was suggested by academics and 

this brought about the concept of SDN (Rego et al (2018)). 

However, the first real-world use of   SDN by researchers 

came to light only in 2008 (McKeown et al (2008)). The 

OpenFlow protocol was suggested as a standard for 

communication between the controller and the network 

devices to allow the controller to manage the network 

infrastructure centrally. 

Any program code that is available for use/modification by 

public or other developers is tagged open source. The 

introduction of several open-source SDN controllers like 

OpenDaylight, Floodlight, and Ryu (for customizing, 

automating and monitoring networks of various size and 

scale), give the development of SDN a further pace. 

Developers can create original network applications and 

manage network services using the framework being offered 

by these controllers. 

SDN is revolutionizing the way networks are designed, 

deployed, and managed. By separating the control plane from 

the data plane, SDN allows network administrators to 
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implement network policies and configuration changes in a 

centralized and automated manner, thereby reducing the risk 

of human error and improving network agility. Furthermore, 

SDN allows network administrators to manage network 

resources and optimise network performance easily by 

providing a unified view of the network infrastructure. SDN 

controllers help network administrators to identify and 

resolve network bottlenecks and proactively monitor network 

performance. Nevertheless, SDN has its own drawbacks and 

issues that need to be resolved. One of the challenges facing 

SDN is the need for specific knowledge and experience to 

implement and operate the technology. To use SDN, thorough 

knowledge and understanding of network protocols, 

programming languages, and software-defined networking 

topologies are necessary. Also, the possible security issues 

linked to the centralized administration of the network 

infrastructure pose another challenge for SDN (Imran et al 

(2021)). SDN controllers and switches may target of cyber-

attacks, thereby jeopardizing the network's security and 

integrity. When it comes to handling huge networks with 

thousands of devices, SDN has scaling issues. As the number 

of network devices rises, the controller could compromise the 

stability and performance of the network and, thus, become a 

bottleneck. 

Despite challenges like Interoperability, Security, and 

Scalability that are being faced by SDN, SDN continues to 

evolve and gain adoption due to its benefits in automation, 

flexibility, and efficiency. Its applications continue to expand 

in areas like AI-driven networking, autonomous systems, and 

next-generation telecommunications (e.g. Data Centers and 

Cloud Computing, Enterprise Networks, Internet of Things 

(IoT) Networks, Cybersecurity and Network Monitoring). 

SDN has evolved from a research concept to a fundamental 

networking technology, and with AI, cloud-native 

applications, and 5G/6G, SDN continue to redefine the future 

of networking. 

In simulated network environments, a lot of studies have been 

conducted on the performance of different SDN controllers. 

One of such studies is a study by (Singh et al (2022)). In their 

work, the performance of the OpenDaylight and ONOS (Open 

Network Operating System) controller was evaluated using 

the Mininet tool. They found out that both controllers had 

similar performance in terms of latency and throughput, 

however, in terms of reliability, the ONOS is slightly better. 

In a simulated network environment also, authors in 

(Chouhan et al (2019)) compared the performance of the 

Floodlight and Ryu controllers. In their study, it was found 

that Ryu had a higher throughput and lower latency than 

Floodlight, which had better reliability.  

The studies conducted by (Salman et al (2016)) focused on 

the functionality of different SDN controllers. The ability of 

different controllers to support different networking protocols 

and integrate them with other tools was evaluated by the 

authors. It was concluded that ONOS (Open Network 

Operating System) and OpenDaylight had extensive support 

for different protocols and tools, while Ryu and Floodlight 

had limited support.  

Authors in (Abuarqoub (2020)) studied the ease of use of 

different controllers, including their installation, 

configuration, and management. They concluded that ONOS 

and OpenDaylight had the most straightforward installation 

and configuration processes, while Floodlight and Ryu had 

more complex processes. (Tello & Abolhasan, 2019) in their 

study evaluated the scalability of different controllers, and 

their ability to handle increasing numbers of network devices 

and traffic. It was found that ONOS and OpenDaylight had 

the best scalability, while Floodlight and Ryu had limited 

scalability.  

Despite extensive research on SDN controllers, existing 

studies lack a direct comparison of controllers across multiple 

simulated environments. This study bridges this gap by 

evaluating POX and Faucet in diverse network 

conditionsWith reference to the aforementioned, it was 

deduced that the existing literature on the implementation and 

comparison of different SDN controllers in a simulated 

network environment provides valuable insights into the 

performance, functionality, ease of use, and scalability of 

these controllers. However, there is still a need for further 

research in this area, particularly in terms of comparing the 

performance of different controllers under different scenarios 

and conditions. In a nutshell, despite extensive research on 

SDN controllers, existing studies lack a direct comparison of 

controllers across multiple simulated environments. This 

study bridges this gap by evaluating POX and Faucet in 

diverse network conditions. 

 

MATERIALS AND METHODS 

Implementation and comparison of SDN controllers in 

various simulated network environments is crucial for 

understanding how different SDN controllers perform under 

various conditions. Simulated environments provide a 

controlled and cost-effective way to evaluate SDN controllers 

before deploying them in real-world scenarios. This study 

encompasses multiple factors such as network topology, 

scale, performance metrics, and the specific SDN controller 

features that align with the needs of a given environment. The 

structured approach to implementing and comparing SDN 

controllers would focus on key aspects like deployment, 

performance, and scalability in simulated environments. 

The rationale for selecting the POX and FAUCET controllers 

for this study is a decision rooted in their relevance to SDN, 

distinct characteristics and the goals of this study. Selecting 

these controllers reflects their strengths, diversity of features, 

and their significance to SDN research and implementation. 

Consideration for choosing the POX and Faucet controllers is 

that POX is easy to use while FAUCET is not only difficult 

to learn but also to use. FAUCET is complex compared to 

POX which is normally deployed for small networks and for 

rapid prototyping of new SDN applications; very unlike 

FAUCET which is preferred for large networks or for 

deploying complex SDN applications (Bosi et al (2024)). 

 

Simulation Environment 

Comparison of SDN controllers, POX and FAUCET, and 

their implementations necessitate a rigorous methodology 

that encompasses a variety of simulation environments. These 

environments serve as the experimental platforms for 

analyzing the controllers' performance, scalability, and 

behaviour across diverse network scenarios. In this study, five 

simulation environments are employed; and they are GNS3, 

NS3, OPNET, OMNeT++, and Mininet. 

 

GNS3 

GNS3 is a dynamic network simulation tool that allows the 

building of complicated network topologies by combining 

real and virtual networking devices. GNS3 with its user-

friendly graphical interface is a versatile simulation software 

for simulating networks that are made up of switches, routers 

and firewalls. This environment excels in simulating real-

world network experiences by allowing the use of actual 

networking hardware alongside virtualized network 

components (Gil et al (2014)). 
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NS3 

NS3 is a sophisticated network simulation software for 

analyzing network protocols, algorithms, and applications. It 

simulates complicated networking behaviours using a 

discrete-event simulation paradigm, with a focus on wired, 

wireless, and mobile networks. Its flexibility and ability to 

mimic large-scale networks make it a useful tool for 

understanding complex network dynamics (Tiamiyu, 2012). 

 

OPNET 

OPNET, known for its accuracy and ability to precisely model 

real-world networks, enables academics and engineers to 

investigate network performance, traffic patterns, and 

protocol behaviour, thus, providing a comprehensive 

framework for communication network modelling and 

analysis.  (Tiamiyu, 2012). This environment excels at 

simulating diverse network technologies, from wired to 

wireless, and can especially be useful for evaluating the real-

world impact of SDN controllers. 

 

OMNeT++ 

OMNeT++ is a simulation framework that is flexible and 

extendable for simulating discrete event-based systems such 

as communication networks. OMNeT++ has a modular 

architecture that allows for the creation of complex network 

scenarios and the integration of additional models. 

OMNeT++ is widely used to study the performance of 

network protocols, applications, and distributed systems, 

making it a suitable platform for evaluating SDN controller 

behaviour in various contexts (Tiamiyu, 2012). 

 

Mininet 

Being an open-source network emulator built for SDN 

application quick prototyping and development, Mininet 

focuses on replicating a network of hosts, switches, and 

controllers on a single physical system. It is especially well-

suited for testing and experimenting with the features and 

performance of SDN controllers. Mininet is a popular choice 

for SDN research and instruction because of its capacity to 

quickly design configurable network topologies. (Gupta et al 

(2022)). 

These simulation tools collectively offer a diverse range of 

features, enabling comprehensive analysis and comparison of 

the SDN controllers. They allow a comprehensive evaluation 

of the controllers' behaviour, efficiency, and adaptability in 

various networking scenarios. Table 1 shows the comparison 

of the selected simulation tools for SDN scenarios. 

 

Table 1: Comparison of selected simulation tools for SDN scenarios  

Simulation environment Analysis of SDN scenarios 

Mininet Good for small and medium-sized networks. Easy to use and can be used to create virtual 

networks with OpenFlow switches. 

GNS3 Can be used to simulate SDN scenarios, but it is not as lightweight as Mininet 

NS3 The preferred choice for researching and developing detailed simulations of real-world 

networks. Though it can be used to simulate SDN scenarios, it is not as easy to use compared 

to Mininet. 

OMNET++ Similar to NS3 in terms of its features and complexity. Good for researchers and developers 

who need a powerful and customizable network simulator. Can also be used to simulate SDN 

scenarios, but it is not as easy to use as Mininet 

OPNET Very powerful simulation tool that can be used to simulate large and complex network 

scenarios. However, it is also very expensive. Can also be used to simulate SDN scenarios, 

but it is not as easy to use as Mininet. 

 

Implementation Details 

POX controller on MININET 

Figure 1 shows the Pox Controller installation and setup on the Mininet. 

 

 
Figure 1: Pox Controller installation and setup on Mininet 

 

The POX controller was setup and running to actively listen 

for incoming OpenFlow connections on all available network 

interfaces (0.0.0.0) on port 6633 by running on the terminal 

the command for starting up the POX controller “sudo 

~/pox/pox.py forwarding.l2_pairs \info.packet_dump 

samples.pretty_log log.level –DEBUG”. The POX controller 

is acting as an L2 learning switch which implies that the 

controller is implementing a basic networking functionality in 

an SDN environment in a way similar to that of a traditional 

Ethernet switch. "listening on 0.0.0.0:6633" is a phrase that 
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usually refers to the status message or log entry created by the 

POX controller software when it boots up and starts listening 

for incoming connections on a specified network address and 

port. 

Explanation of the command in detail: 

pox controller: POX is an open-source networking software 

platform that can be used to design and deploy SDN 

controllers (this statement simply indicates that the POX 

controller software is running. 

"listening on" indicates that the POX controller is currently 

listening for incoming network connections. 

"0.0.0.0": In networking, 0.0.0.0 IP address indicates the 

availability of all network interfaces on the host. When the 

software is configured to listen on 0.0.0.0, it means that the 

controller is listening for incoming connections on all 

available network interfaces, which allows it to accept 

connections from any remote IP address. 

"6633": This is the port number on which the POX controller 

is listening for incoming connections. Port 6633 is commonly 

used for SDN controllers (Ligia et al (2014)). 

Thereafter, the command “sudo mn –topo single,20 –mac –

switch ovsk –controller remote” was used in creating an SDN 

network on Mininet. The command created 20 hosts to be 

connected to a single switch, OVSK (open virtual switch 

kernel) which is used because of its compatibility with the 

SDN framework; ‘—mac’ which assigned mac addresses to 

each host and ‘—controller remote’ connected the SDN 

network to an SDN controller that is listening for a 

connection.  

 

 
Figure 2: SDN network and Pox Controller connected 

 

POX controller on NS3 

Running an SDN network in an NS3 simulator is quite 

different, the reason being that a C++ script is required. 

Figure 03 shows the running of a script named “ofswitch13-

first” which contains code for an SDN network of a remote 

controller, a switch and 14 hosts. 

 

 
Figure 3: Running a C++ script for an SDN network on NS3 

 

The command “./ns3 run scratch/ofswitch13-first” explained: 

"./ns3": The "./" at the beginning specifies the current 

directory, and "ns3" is the command used to start ns-3. 

"run": This is a command that tells ns-3 to execute a specific 

simulation scenario or script. 

"scratch/ofswitch13-first": This is the path to the script to be 

executed. In ns-3, simulation scenarios are often defined in 

script files located in the "scratch" directory. 

Figure 4 shows the visualization of the SDN script using 

NetAnim. 

 

 
Figure 4: Visualizing SDN script with NetAnim 
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Running the script on the NS3 terminal isn’t the end, in an 

attempt to visualize the C++ script for the SDN network, 

NetAnim which is an offline animation tool was used to 

animate the script. Attached to each node are its ip and MAC 

addresses. 

FAUCET controller on GNS3 

On GNS3 the faucet SDN controller and POX controller were 

installed and configured as a Docker Container (Figure 05). 

 

 
Figure 5: SDN network setup on GNS3 

 

An SDN using a Faucet SDN controller and OpenvSwitch 

within the GNS3 environment was set as follows: 

Install GNS3: Download and installation of GNS3 from the 

official website (https://www.gns3.com/). 

Download the required Software:  Faucet SDN Controller was 

downloaded as a Docker container from the official Faucet 

GitHub page (https://github.com/faucetsdn/faucet). 

OpenvSwitch Appliance: Opening GNS3, and going to the 

"Appliances" tab, the OpenvSwitch appliance was 

downloaded from the GNS3 online appliance store. 

Setting Up GNS3 Environment by: 

Launch GNS3 and create a new project for the SDN network. 

Add a few hosts. These will represent devices connected to 

the SDN network. 

Add the OpenvSwitch appliance. 

Test the SDN network by sending traffic between the VMs. 

The faucet manages the network according to the 

configuration. 

 

FAUCET controller on OPNET 

Setting up an SDN network on OPNET was entirely different 

because a node had to be configured as a sensor, another node 

configured as an SDN controller, third one configured as an 

actuator (Figure 6). 

 

 
Figure 6: SDN network setup on OPNET 14.5 

 

Configuring a network node as an actuator, sensor, and 

controller in the context of SDN refers to the role that node 

plays inside the SDN architecture. SDN separates the control 

plane (which decides how to forward traffic) from the data 

plane (which forwards traffic). This division enables more 

flexible network management and automation. Explanation of 

what each of these roles entails is as follows: 

Controller: 

A controller oversees the making of a high-level choice about 

how network traffic should be forwarded. It instructs SDN 

switches on how to handle packets and flows by 

communicating with them via a control protocol, OpenFlow. 

Controllers serve as the heart of an SDN network. They give 

a consolidated perspective of the network and oversee 

network-wide rules, traffic engineering, and network service 

implementation. Controllers can be set up to make dynamic 

routing decisions, manage network security, and other tasks. 

Actuator: 

Actuators are devices or entities in the data plane that 

physically carry out the SDN controller's instructions. It 
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could, for example, be a switch that adjusts its forwarding 

table in response to controller instructions. Depending on 

instructions from the SDN controller, an actuator is a network 

device or element that executes actions. For example, the 

actuator modifies network configurations, changes routing 

paths, and takes other activities to enforce network policies. 

Actuators are needed to convert controller choices into real 

network activities. 

Sensor: 

A sensor is a network devices or element that detect and 

respond to changes in their environment. It collects and 

transmits data to the SDN controller regarding network 

conditions, traffic, and performance. Monitoring networks, 

sensors send real-time data to the controller, allowing it to 

make more cogent decisions. 

Sensors allow the controller to respond to changing network 

circumstances by offering it network telemetry data. Sensors, 

for example, may report bandwidth usage, latency measures, 

security events, or other relevant metrics. The controller can 

use this data for network optimization, defect detection, and 

security enforcement. 

SDN controller on OMNET++ 

Creating an SDN network in OMNET++ is quite complex. It 

involves using the INET FRAMEWORK and configuring the 

OpenFlow protocol to support an SDN network (Figure 7). 

 

 
Figure 7: OMNET++ environment setup 

 

A comprehensive description of how an SDN network was set 

up in OMNeT++ is as follows: 

OMNeT++:  OMNeT++ was installed and configured. 

INET Framework: the INET Framework, which is an 

extension for OMNeT++ designed for network simulations 

was installed. 

OpenFlow:  a protocol used for SDN communication between 

the controller and switches. 

Setting Up the Environment: 

Create a New OMNeT++ Project: 

    Start by creating a new OMNeT++ project where the SDN 

simulation will be developed. 

Import INET Framework: 

 Import the INET Framework into your OMNeT++ project by 

copying the INET Framework files into the project directory 

(this could also be done by adding it as a project dependency 

in the IDE (if supported)). 

Define Network Topology: 

    This includes specifying the nodes (switches, hosts), links, 

and connections. 

Configure OpenFlow on SDN Switches: 

   In INET, SDN switches are typically implemented as 

OpenFlow switches. The OpenFlow protocol is configured on 

the SDN switches. This includes specifying the OpenFlow 

version (e.g., OpenFlow 1.3), controllers' IP address, and port 

number. 

Implementing the SDN Controller: 

Develop the SDN Controller: 

 using the INET Framework's modules and components, a 

script was written for the pox and faucet controller. 

Connect the Controller to Switches: 

 Connection is established between the SDN controller and 

the OpenFlow-enabled switches in the topology. 

Controller Logic: 

The controller was configured to act as a router, load balancer 

or firewall. 

Running the Simulation 

 

RESULTS AND DISCUSSION  

MININET 

Before measuring any performance metric, the PINGALL 

command was used to ensure that the hosts in the network 

communicate with each other. Figure 08 shows the result after 

testing connectivity among the hosts on the Mininet. 
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Figure 8: Connectivity among hosts on the Mininet 

 

Figure 9 shows the results of packet loss and Latency on the Mininet. 

 

 
Figure 9: Packet loss and Latency on Mininet 

 

50 packets transmitted: This indicated that the sender sent a 

total of 50 ICMP (Internet Control Message Protocol) echo 

request packets to the destination host. 

50 received: This means that all 50 of the ICMP echo request 

packets sent were successfully received by the destination 

host. In other words, none of the packets were lost in transit. 

0% packet loss: This is a summary statement based on the “50 

packets transmitted” and “50 received” values. It means that 

there was no packet loss during the test. All transmitted 

packets were successfully received; thus, the packet loss rate 

is 0%. 

Time 50192ms: This indicated the total time taken for the 

entire ping test. In this case, it took 50,145 milliseconds (or 

approximately 50.2 seconds) to send all 50 packets and 

receive responses from the destination host. 

Rtt min/avg/max/mdev = 0.069/0.10/0.935/0.126 ms: 

rtt: Stands for “round-trip time,” which is the time it takes for 

a packet to travel from the sender to the receiver and back. It 

is measured in milliseconds (ms). 

  Min: The minimum round-trip time observed during the test. 

In this case, the minimum round-trip time was 0.069 ms. 

   Avg: The average round-trip time calculated from all the 

packets sent and received. In this case, the average round-trip 

time was 0.100 ms. 

   Max: The maximum round-trip time observed during the 

test. In this case, the maximum round-trip time was 0.935 ms. 

Mdev: Stands for “mean deviation.” It is a measure of the 

variation or dispersion of round-trip times. In this case, the 

mean deviation was 0.126 ms. Figure 10 shows the CPU and 

memory utilization by the Mininet. 

  

 
Figure 10: CPU and memory utilization by the Mininet 
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NS3 

Figure 11 shows the results of the packet loss and latency on NS3. 

 

 
Figure 11: Packet loss and latency on NS3 

 

GNS3 

Figure 12 shows the Faucet controller configuration on GNS3, while Figure 13 shows the configuration of routers to generate 

Packet loss and Latency results. 

 

 
Figure 12: Faucet Controller Configuration 

 
Figure 13: Routers’ configuration generating Packet loss and 

Latency results 

 

OPNET 

Figure 14 shows the attributes configuration for the sensor, actuator and controller on OPNET 14.5. 

 

 
Figure 14: Sensor, actuator and controller 

 

Figure 15 shows the configuration of DES statistics on OPNET 14.5 to generate results for performance metrics. 

 

 
Figure 15: DES statistics configuration on OPNET 14.5 to 

generate results for performance metrics 
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Table 2 shows all the results on performance metrics from all the simulation environments. 

 

Table 2: Performance metrics from all the simulators 

Metric  MININET NS3 GNS3 OPNET OMNET++ 

Throughput 6.2Gb/s 0.99Mb/s 350mb/s 4.5mb/s 150mb/s 

Packet loss 0% 0% 20% 0.3% 1% 

Latency 0.190ms 10.56ms 21ms 1.5ms 6ms 

CPU utilization 5.9% 30% 2% 45% 35% 

Memory utilization 11.1% 60% 19.2% - 50% 

 

Analysis 

Throughput:  

Mininet demonstrates the highest throughput, making it the 

best choice when a high data transfer rate is of utmost priority. 

However, it is a lightweight simulator that is not designed for 

simulating large networks with a lot of traffic. GNS3, OPNET 

and OMNET++ also offered decent throughput. Though NS3 

has the lowest throughput. yet it is a more complex simulator 

that is designed for simulating large networks with a lot of 

traffic. 

Packet loss: 

OPNET, Mininet and OMNET++ exhibited low packet loss 

rates, and this is very good as the low packet loss is very 

crucial for data integrity. Thus, making any of them a 

preferred choice when low packet loss is paramount. NS3 and 

GNS3 have higher packet loss rates, which would be a 

concern for applications sensitive to data loss. 

Latency: 

High latency affects real-time applications adversely, thus, 

making GNS3 and NS3 that had higher latency values 

unpreferred choice for real-time applications. On the other 

hand, Mininet demonstrated the lowest latency, and this is 

beneficial for low-latency network designs. 

CPU and Memory Utilization: 

Very unlike the Mininet and GNS3 have moderate resource 

utilization which makes them suitable for projects with 

moderate hardware constraints, NS3 and OPNET had the 

highest CPU and memory utilization which could be a 

concern if resource efficiency is of concern to the user. 

However, Mininet strikes a balance between resource 

utilization and performance. 

Comparison of the SDN controllers 

Table 3 shows the comparisons of the SDN controllers being 

investigated in this study. 

 

Table 3: SDN Controllers Compared 

Factor POX FAUCET 

Community support Large and active community Large and active community 

Complexity Light weight Complex 

Ease of use Easy to use More difficult to learn and use 

Deployment Good for small networks and for rapid 

prototyping of new SDN applications 

Good for large networks or for deploying 

complex SDN applications 

Features  Basic features A wide variety of features 

Flexibility  Flexible Flexible 

Programming language Python Java 

 

Comparison of the selected Simulation Environment 

Table 4: The Selected Simulation Environments Compared 

Simulation environment Analysis of SDN scenarios 

Mininet Good for small and medium-sized networks. Easy to use and can be used to create virtual 

networks with OpenFlow switches. 

GNS3 Could be used to simulate SDN scenarios, but it is not as lightweight as Mininet 

NS3 Good for researchers and developers who need to create detailed simulations of real-world 

networks. Could be used to simulate SDN scenarios, though it is not as easy to use, 

compared to Mininet. 

OMNET++ Similar to NS3 in terms of its features and complexity. A great choice for researchers and 

developers who need a powerful and customizable network simulator. 

OPNET Very powerful and could be used to simulate large and complex networks. However, it is 

not as easy to use as Mininet, as observed when it was being used to simulate SDN scenarios 

in this study. 

 

CONCLUSION 

Throughout the study, valuable insights into the strengths and 

weaknesses of various simulators when applied to SDN 

controller implementations were gained. The results of the 

evaluation showed that the performance of the SDN 

controllers varies depending on the network simulator and the 

complexity/size of the network topology. Though Mininet 

could be a preferred choice because of its ease of use and that 

it is very good for simulating small and medium-sized 

networks, when there is a need to simulate large and complex 

networks, OPNET might be the best choice, not minding the 

fact that it is expensive compared to others. In a nutshell, the 

complexity of the network and or the resources available to 

the developer (both the hardware and the Software) play a 

vital role in the choice of the simulator for the implementation 

of an SDN controller. Nevertheless, Mininet provided 

competitive performance metrics, making it a cost-effective 

solution for simulating SDN controllers with moderate 

hardware requirements. NS3, though useful for SDN network 

design and visualization, exhibited higher CPU and memory 

utilization that might limit its scalability for large-scale SDN 

controller simulations. While GNS3 offered a balanced 
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performance and resource utilization, making it a suitable 

choice for SDN controller simulation that prioritizes realistic 

network modelling, OMNET++, on the other hand, exhibited 

moderate performance metrics with efficient resource 

utilization, making it suitable for SDN controller simulations 

requiring a balance between performance and resource 

efficiency. 
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