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ABSTRACT 

This paper explores the application of Federated Learning (FL) in the financial sector, focusing on enhancing 

security and privacy in key areas such as fraud detection, Anti-Money Laundering (AML) compliance, and 

biometric authentication systems. FL enables collaborative model training across multiple financial institutions 

without sharing sensitive transaction data, thereby preserving privacy while improving the accuracy of fraud 

detection models. In AML compliance, FL facilitates the development of robust models by leveraging diverse 

datasets, enhancing the ability to detect suspicious activities. Moreover, FL strengthens biometric 

authentication systems by decentralizing model training, reducing the risks of data breaches, and ensuring 

compliance with privacy regulations. The paper also evaluates the performance of a loan default prediction 

model trained using FL, highlighting challenges with class imbalance and model bias toward the majority class. 

The classification report indicates high recall (98%) but also shows a potential for misclassifying non-default 

cases, leading to a moderate precision (81%) and an F1-score of 89%. The model's AUC of 0.69 suggests 

moderate discriminatory power, with room for improvement in its ability to differentiate between default and 

non-default cases. The model achieves an overall accuracy of 80%. Despite these challenges, it demonstrates 

good generalization capabilities while maintaining the privacy of client data, presenting a promising approach 

to secure financial transaction analysis.  

 

Keywords: Anti-Money Laundering (AML), Data Privacy, Differential Privacy (DP), Federated Learning (FL),  

Homomorphic Encryption (HE), Loan Default Prediction, Secure Multi-Party Computation 

(SMPC) 

 

INTRODUCTION 

With increasing data privacy concerns and stringent financial 

regulations, traditional centralized machine learning 

approaches are becoming less viable. Federated Learning 

(FL) offers a decentralized paradigm, allowing multiple 

institutions to collaboratively train machine learning models 

without sharing raw data (L. Li et al., 2020). This paper 

focuses on FL's role in financial services, specifically 

targeting secure credit risk analysis using the Lending Club 

dataset. Federated learning is a privacy-preserving machine 

learning approach that enables collaborative model training 

without sharing raw data (G. Oise, 2023). The system works 

by having participants train models locally and share only 

model parameters while keeping sensitive data on their own 

devices or servers (G. P. Oise & Konyeha, 2024). The rapid 

increase in data generation from everyday activities has 

created immense opportunities for innovation while raising 

significant privacy and security concerns (Gray et al., 2024). 

These concerns have intensified with the enforcement of 

stringent data protection regulations, such as the EU’s 

General Data Protection Regulation (GDPR) and similar 

frameworks in the United States and China. (Nevrataki et al., 

2023) explores Federated Learning (FL) as a privacy-

preserving approach to distributed machine learning that 

allows multiple parties to train models without sharing raw 

data. It highlights FL's applications in healthcare, finance, 

IoT, and the insurance industry, emphasizing its role in 

enhancing data security and privacy (Khan et al., 2021). Key 

challenges such as non-IID data and performance limitations 

are discussed, along with solutions like federated averaging, 

transfer learning, differential privacy, and secure multi-party 

computation. The paper concludes by noting FL's growing 

potential in real-world applications and its importance for 

future secure and scalable machine learning systems. 

Federated Learning (FL) has emerged as a promising solution 

to these challenges by introducing a decentralized machine 

learning paradigm in which multiple clients collaboratively 

train models while keeping their data local (Kairouz et al., 

2019). (Zhang et al., 2021) In this framework, a central server 

coordinates the training process across distributed clients, 

such as mobile devices or organizations, without accessing 

their raw data directly (Kairouz et al., 2019). The federated 

learning workflow typically consists of key stages: client 

selection, model broadcasting, local computation on client 

devices, and global aggregation on the central server (Chen et 

al., 2023; McMahan et al., 2016). This methodology is 

particularly beneficial in domains where data sharing is 

restricted due to legal, ethical, or confidentiality concerns, 

such as healthcare and finance (Huang et al., 2024). A 

defining advantage of federated learning is its ability to 

balance artificial intelligence (AI) utility with strong privacy 

safeguards (Herrera et al., 2024). By ensuring that model 

training occurs on local devices and only aggregated updates 

are shared, FL enhances data security while enabling efficient 

collaboration (Herrera et al., 2024; Li et al., 2021). This 

approach not only supports compliance with data protection 

regulations but also mitigates the risk of data breaches during 

transmission (Huang et al., 2024). Federated Learning 

emerged as a groundbreaking solution to the growing 

concerns about data privacy in machine learning applications 

(Gu et al., 2024) (McMahan et al., 2016) At its core, FL 

enables multiple participants to collaboratively train machine 

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 9 No. 5, May, 2025, pp 80 - 86 

DOI: https://doi.org/10.33003/fjs-2025-0905-3207   

mailto:godfrey.oise@wellspringuniversity.edu.ng
https://orcid.org/0009-0006-4393-7874
https://semanticscholar.org/p/14955348
https://doi.org/10.33003/fjs-2025-0905-3207


ADVANCEMENTS IN FEDERATED LEAR…            Unuigbokhai et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 5, May, 2025, pp 80 – 86 81 

learning models while keeping their data private and localized 

(Z. Li et al., 2024) (Yu et al., 2024). The fundamental process 

of federated learning consists of three main components: local 

model training, model aggregation, and global model updates. 

Instead of sharing raw data, participants only exchange model 

parameters such as weights and gradients (Yu et al., 2024). 

This approach significantly reduces bandwidth requirements 

and minimizes the risk of data breaches while still enabling 

effective collaborative learning(Xu et al., 2019). However, it's 

important to note that while FL provides an initial layer of 

privacy protection, there are still potential privacy concerns 

(Abdulrahman et al., 2021). The exchange of model 

parameters and the resulting trained model may still 

inadvertently disclose information about the training data 

(Mugunthan et al., 2020). To address these residual privacy 

risks, FL systems commonly incorporate additional privacy-

preserving mechanisms, particularly differential privacy and 

secure multiparty computation (SMC) (Xu et al., 2019). A 

notable characteristic of federated learning is its ability to 

handle heterogeneous and massive networks of devices or 

data centers, such as mobile phones or hospitals(Li et al., 

2019). This distributed nature, combined with the need to 

maintain data privacy, introduces unique challenges that 

require different approaches compared to traditional 

centralized machine learning methods (Tan et al., 2021). 

Federated learning architecture can be categorized into three 

main types: Horizontal (HFL), Vertical (VFL), and Federated 

Transfer learning (FTL). These architectures are designed to 

handle different data distribution scenarios and participant 

feature sharing. Federated Learning (FL) operates through a 

distributed architecture where a central server coordinates the 

training process across multiple client devices or 

organizations without directly accessing their raw data 

(Legler et al., 2024; Luan et al., 2023). The training follows a 

cyclical pattern: the server first broadcasts the current model 

to selected clients, who then perform local computations on 

their private data before returning their updates (Shen et al., 

2020). FL ensures privacy protection through multiple layers 

of security. Data decentralization keeps sensitive information 

on local devices, while encrypted communication protocols 

safeguard model updates during transmission between clients 

and the server (Luan et al., 2023). A key component of this 

framework is the aggregation process, where local model 

updates are combined in an encrypted state, ensuring that 

individual clients cannot access each other’s models (Shen et 

al., 2020). Additional privacy enhancements include 

differential privacy techniques, which can be applied globally 

or locally. Global differential privacy protects against 

adversarial aggreFederated Federated Averagingntial privacy 

safeguards client updates before transmission though it 

requires a careful balance between noise addition and model 

utility (Shen et al., 2020). A key advantage of this architecture 

is its scalability and resilience to individual participant 

failures (Legler et al., 2024). Moreover, FL enhances energy 

efficiency by eliminating the need to retrain models from 

scratch at each location, making it a practical solution for real-

world applications (Legler et al., 2024; Liu et al., 2019). 

Federated Learning (FL) employs multiple privacy and 

security mechanisms to protect data confidentiality and model 

integrity. Homomorphic Encryption (HE) enables 

computations on encrypted data, ensuring secure model 

aggregation. Secure Multi-Party Computation (SMPC) allows 

multiple parties to compute jointly without revealing private 

inputs (Aledhari et al., 2020). Differential Privacy (DP) 

protects against privacy leakage using clipping techniques 

and Gaussian mechanisms while balancing model utility 

(Nguyen et al., 2021). Secure Aggregation Protocols prevent 

privacy breaches during model updates and mitigate data 

poisoning attacks. Communication Security ensures 

encrypted model transmissions, optimizing security and 

efficiency for scalable FL deployment. In today’s digital 

economy, financial institutions generate and manage vast 

volumes of sensitive user data, including transactional 

histories, credit scores, and biometric records. While this data 

holds great potential for predictive modeling and decision-

making, its centralized storage and processing expose it to 

privacy risks, security breaches, and regulatory violations. 

Traditional machine learning approaches (G. Oise & 

Konyeha, 2024), which rely on centralized data aggregation, 

are increasingly unsuitable for applications in sensitive 

domains like finance, where confidentiality and compliance 

with regulations such as GDPR and CCPA are paramount. 

To address these challenges, Federated Learning (FL) has 

emerged as a promising decentralized machine learning 

paradigm. FL enables multiple institutions to collaboratively 

train models without transferring raw data, thereby preserving 

data privacy. Prior research has successfully applied FL in 

healthcare, IoT, and cybersecurity domains, and more 

recently, in finance. Studies have demonstrated FL’s 

usefulness in fraud detection, Anti-Money Laundering 

(AML) compliance, and biometric authentication by 

leveraging private datasets across distributed environments. 

However, many existing works overlook critical limitations 

such as class imbalance, model bias, and privacy-utility trade-

offs, which can significantly affect the reliability and 

generalizability of FL models in real-world financial 

applications (G. P. Oise et al., 2025). This study aims to 

address these gaps by developing a privacy-preserving 

federated learning framework that integrates a Random Forest 

classifier for loan default prediction using the Lending Club 

dataset. Unlike previous works, our approach incorporates 

privacy-enhancing technologies, such as Differential Privacy, 

Secure Multi-Party Computation (SMPC), and Homomorphic 

Encryption—to secure model updates during the FL process. 

Additionally, we simulate a realistic federated setting and 

evaluate the model using comprehensive metrics, focusing on 

overcoming class imbalance and improving model 

robustness. This work contributes a scalable, secure, and 

interpretable framework for financial risk modeling in 

privacy-sensitive environments. 

 

Review of Related Works 

Federated Learning (FL) has emerged as a decentralized 

approach to model training that enhances privacy by allowing 

multiple clients to collaboratively train models without 

exposing their raw data (Fragulis et al., 2021). This literature 

review synthesizes key contributions in FL concerning its 

architectures, security mechanisms, privacy preservation 

techniques, data heterogeneity handling, model aggregation 

strategies, and performance evaluation metrics. Federated 

learning architectures are classified into centralized, 

decentralized, and hierarchical models. McMahan et al. 

(2016) introduced the FederatedAveraging (FedAvg) 

algorithm, which significantly reduces communication 

overhead while maintaining model performance. Yang et al. 

(2019) proposed a parameter server architecture, eliminating 

the need for a third-party coordinator, thereby enhancing 

privacy. Their work also introduced homomorphic encryption 

to secure model training and facilitate encrypted transmission 

of intermediate results, improving communication efficiency. 

Chen et al. (2023) provided a network topology-based 

classification of FL systems, analyzing attack scenarios and 

defense methods. Their study introduced quantization and 

sparsification techniques to minimize communication 
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overhead in FL. Huang et al. (2024) focused on federated 

intrusion detection systems (FIDS), demonstrating FL’s 

effectiveness in handling sensitive network security data. Che 

et al. (2021) explored FL’s applications in medical data 

integration, leveraging FL to preserve privacy in multi-view 

learning. Stripelis et al. (2022) applied FL in biomedical 

research consortia, employing sample data anonymity, 

encrypted transmission, and fully homomorphic encryption 

(FHE) to secure neuroimaging data. The integration of secure 

multi-party computation (SMC) and differential privacy (DP), 

as proposed by Yang et al. (2019), has further improved FL’s 

resilience against privacy threats. Privacy preservation is a 

core challenge in FL due to data decentralization and 

adversarial risks. McMahan et al. (2016) ensured data privacy 

by keeping training data on mobile devices and mitigating 

non-independent and identically distributed (non-i.i.d) data 

issues via the FedAvg algorithm. Yang et al. (2019) proposed 

multi-layered privacy-preserving mechanisms incorporating 

Homomorphic Encryption (HE), Secure Multi-Party 

Computation (SMC), and Differential Privacy (DP) to protect 

sensitive data. Chen et al. (2023) reviewed FL’s 

vulnerabilities but did not specifically address data 

heterogeneity challenges. Stripelis et al. (2021) developed an 

FL framework for predicting brain age from MRI scans, 

leveraging FHE with CKKS encryption to maintain data 

confidentiality. Korkmaz et al. (2025) advanced FL 

applications in healthcare by utilizing selective encryption, 

homomorphic encryption, differential privacy, and bit-wise 

scrambling for secure medical imaging analysis. Recent 

research by Cheng et al. (2023) applied a differential privacy 

approach with adaptive noise addition to safeguard model 

parameters from inference attacks. Rahulamathavan et al. 

(2023) further secured FL by implementing a fully 

homomorphic encryption (FHE) scheme alongside a non-

poisoning rate-based weighted aggregation technique to 

mitigate data poisoning attacks. Model aggregation plays a 

pivotal role in FL optimization. McMahan et al. (2016) 

introduced FedAvg, reducing communication rounds while 

maintaining model accuracy. Yang et al. (2019) integrated 

secure aggregation and encryption techniques to enhance 

model update security. Chen et al. (2023) proposed a 

generalized design framework for FedOpt algorithms to 

optimize FL convergence. Huang et al. (2024) explored a 

decentralized FL model with client nodes and an aggregation 

server, evaluating system performance using accuracy, 

evaluation loss, and F1-score while ensuring data 

decentralization. Stripelis et al. (2022) implemented a 3D 

Convolutional Neural Network (CNN) for Alzheimer’s 

disease prediction, encrypting model parameters to maintain 

data privacy. Santiago S. Silva et al. (2018) designed a 

federated learning framework for distributed brain data 

analysis, employing the Alternating Direction Method of 

Multipliers (ADMM) algorithm to ensure security and 

efficiency. Korkmaz et al. (2025) benchmarked FL models, 

comparing ResNet-50, DenseNet121, EfficientNetB0, and 

MobileNetV2. Their evaluation metrics included execution 

time, communication efficiency, and privacy preservation, 

demonstrating a 90% performance improvement compared to 

full homomorphic encryption-based models while 

maintaining security. Encryption is vital in protecting FL 

models against adversarial threats. Hussien et al. (2023) and 

Rahulamathavan et al. (2023) leveraged homomorphic 

encryption to safeguard data transmission, with the latter 

utilizing CKKS FHE to enhance security. Cheng et al. (2023) 

combined secure multi-party computation (SMC) and 

differential privacy to resist inference attacks. Sen et al. 

(2024) implemented K-anonymity, L-diversity, and 

pseudonymization for privacy enhancement. Varshney et al. 

(2023) introduced a Fair Differentially Private Federated 

Learning Framework to strengthen FL’s resistance to privacy 

attacks. Advancements in architectures, security mechanisms, 

and privacy-preserving techniques have driven the evolution 

of Federated Learning (FL). FedAvg, introduced by 

McMahan et al. (2016), provided a foundation for FL 

optimization, while later studies by Yang et al. (2019), Chen 

et al. (2023), and Stripelis et al. (2022) improved privacy 

through homomorphic encryption, differential privacy, and 

secure aggregation. These developments have enhanced data 

security, communication efficiency, and model performance 

(Zelios et al., 2022). However, challenges remain, including 

high communication costs, privacy vulnerabilities, data 

heterogeneity, adversarial threats, and scalability issues. 

Future research should focus on efficient compression 

techniques, post-quantum cryptographic methods, adaptive 

model personalization, robust security mechanisms, and 

scalable FL architectures. Addressing these challenges will 

enable broader adoption of FL in privacy-sensitive fields such 

as healthcare, cybersecurity, and finance, ensuring secure and 

efficient decentralized learning. Recent advancements in 

Federated Learning (FL) have focused on enhancing privacy 

through blockchain integration, improved encryption 

methods, and novel frameworks for secure data sharing. Key 

developments include the integration of blockchain for secure 

and decentralized data access (Chhetri et al., 2023; Lu et al., 

2020) and the introduction of the FheFL scheme, which 

employs multi-key additive homomorphic encryption to 

secure model aggregation and defend against data poisoning 

attacks (Rahulamathavan et al., 2023). Additionally, the 

APPFL framework has strengthened differential privacy 

implementation in FL (Li et al., 2023), while decentralized 

storage solutions like the InterPlanetary File System (IPFS) 

provide secure, distributed storage alternatives (Jaberzadeh et 

al., 2023). Furthermore, FL is being increasingly applied to 

Large Language Models (LLMs), leveraging secure 

aggregation, differential privacy, and parameter-efficient 

fine-tuning for privacy-preserving collaborative model 

training (Yan et al., 2024). Future research should focus on 

optimizing neural network architectures for FL scenarios, 

addressing data heterogeneity, and improving security 

mechanisms to enhance FL’s applicability across diverse 

domains (Zacharis et al., 2022). Previous research has applied 

FL to healthcare, cybersecurity, and mobile computing, but its 

use in financial services remains underexplored. Studies by 

(Chen et al., 2023) emphasized optimization techniques and 

hybrid privacy-preserving strategies. This study builds upon 

these insights, focusing on model performance and data 

protection within the financial domain. This paper addresses 

key research gaps in the application of Federated Learning 

(FL) for financial analytics, particularly in credit risk 

assessment and loan default prediction. Existing studies often 

overlook critical issues such as class imbalance, inadequate 

privacy safeguards beyond FL’s inherent protections, and the 

lack of realistic federated simulations. Additionally, many do 

not provide comprehensive performance evaluations that 

reflect real-world challenges. This study fills these gaps by 

integrating advanced privacy-preserving techniques. 

Differential Privacy, Secure Multi-party Computation, and 

Homomorphic Encryption—into a Random Forest-based FL 

framework. It also simulates a realistic multi-client FL 

environment using the Lending Club dataset and evaluates the 

model with detailed metrics to highlight performance issues, 

especially on the minority class. This approach enhances both 

the security and effectiveness of collaborative financial 
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modeling while ensuring compliance with privacy 

regulations. 

 

MATERIALS AND METHODS 

The study explores the integration of Federated Learning (FL) 

into financial analytics, aiming to ensure data privacy while 

enabling collaborative machine learning across multiple 

financial institutions. FL allows each participant to train 

models locally on private data and share only the model 

updates—such as weights or gradients—with a central 

aggregator. This method ensures that sensitive data remains 

decentralized while still contributing to a robust, shared 

model. The technique is particularly beneficial for sectors like 

finance, where privacy and regulatory constraints limit data 

sharing. A Random Forest classifier is employed to predict 

loan defaults. This ensemble-based algorithm constructs 

multiple decision trees and aggregates their predictions, 

offering robustness and accuracy. It effectively handles high-

dimensional data and offers interpretability through feature 

importance scores, helping to identify critical factors such as 

income and loan amount in default prediction. Despite these 

strengths, the model faces challenges with class imbalance, 

particularly in detecting minority classes like defaulters. To 

safeguard privacy within the FL framework, the study 

integrates several advanced security techniques. Differential 

Privacy adds noise to model updates to prevent inference 

attacks. Secure Multi-Party Computation allows secure 

aggregation without exposing individual inputs, while 

Homomorphic Encryption supports computations on 

encrypted data, securing model parameters even during 

transmission. These mechanisms collectively ensure that data 

confidentiality is maintained throughout the training process. 

Model performance is evaluated using a suite of metrics. High 

recall (98%) indicates the model’s strong sensitivity to 

detecting true loan defaults, but a lower precision (81%) 

suggests it struggles with false positives. The F1-score (89%) 

reflects a good balance between these metrics, while an AUC-

ROC of 0.69 indicates moderate discriminative ability. The 

confusion matrix further highlights the issue of class 

imbalance, showing that the model often misclassifies 

minority-class examples. Comprehensive data preprocessing 

is conducted, including class filtering, one-hot encoding of 

categorical variables, and normalization of numerical 

features. The data is also partitioned across simulated FL 

clients to mimic a realistic federated environment. Key 

challenges addressed include class imbalance, bias in model 

aggregation due to uneven data distributions, and the trade-

off between maintaining privacy and preserving model utility. 

The study effectively demonstrates how Federated Learning, 

combined with Random Forest and privacy-preserving 

techniques, can facilitate secure, distributed financial 

modeling. While the approach preserves data privacy and 

improves detection of loan defaults, issues such as class 

imbalance and moderate model accuracy remain areas for 

future improvement. Enhancements like advanced anomaly 

detection and hybrid encryption methods are recommended 

for building more resilient and privacy-aware systems. 

The methodology adopted in this paper involves the 

application of Federated Learning (FL) for secure data sharing 

and collaborative model training across financial institutions, 

using the Lending Club dataset.  

Dataset: The study utilizes the Lending Club dataset, which is 

publicly available on Kaggle (Nathan George, 2020). This 

dataset contains over 2 million loan records with various 

features like loan amount, interest rate, income, employment, 

and loan status.  

Preprocessing: The data was preprocessed by filtering to 

include only "Fully Paid" and "Charged Off" loans, encoding 

categorical variables via one-hot encoding, removing missing 

and irrelevant data, and normalizing and partitioning the data 

into simulated federated clients.  

Experimental Setup: A Random Forest Classifier was trained 

independently per client and then aggregated to simulate FL. 

A standard train-test split (80:20) was applied with 

stratification to handle class imbalance.  

 

 
Figure 1: Federated learning Methodology for Secure Financial Prediction 
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RESULTS AND DISCUSSION 

Federated learning plays a critical role in enhancing security 

and privacy in financial transactions. It enables collaborative 

fraud detection across multiple financial institutions without 

sharing raw transaction data, addressing privacy concerns 

(Rells & Joseph, 2025). Additionally, federated learning 

improves anti-money laundering (AML) compliance by 

allowing institutions to train AML models on diverse datasets 

without exposing sensitive transaction information. It also 

strengthens biometric authentication systems by enabling 

decentralized training of biometric models, preventing data 

breaches while maintaining privacy regulations (Mothukuri et 

al., 2021). Overall, federated learning enhances fraud 

detection, AML monitoring, and biometric security in the 

financial sector (Godfrey Perfectson Oise, 2023). The 

research discusses the application of Federated Learning (FL) 

in the financial sector, emphasizing its role in enhancing 

security and privacy in financial transactions. It highlights 

several key applications (Lazaridis et al., 2019), including 

collaborative fraud detection across multiple institutions 

without sharing raw transaction data and improving privacy 

preservation (Tsakiris et al., 2022). FL also aids in Anti-

Money Laundering (AML) compliance by enabling 

institutions to train models on diverse datasets while keeping 

sensitive information secure. Additionally, FL strengthens 

biometric authentication systems by allowing decentralized 

training of models, preventing data breaches, and ensuring 

compliance with privacy regulations. We further examine the 

performance of a loan default prediction model trained with 

FL, noting challenges related to class imbalance and model 

bias toward the majority class (Nevrataki et al., 2023). Despite 

these issues, the model demonstrates good generalization and 

the ability to preserve client data privacy, although it shows 

potential for misclassifying non-default cases. 

 

 
Figure 2: Confusion Matrix of the Model 

 

The confusion matrix reveals significant challenges in the 

loan default prediction model, particularly due to severe class 

imbalance. With 210,873 true negatives (correctly predicted 

"Fully Paid" loans) but only 4,425 true positives (correctly 

identified defaults), the model demonstrates a strong bias 

toward the majority class, resulting in a critical 91.8% false 

negative rate for defaults. This means the model misses nearly 

92% of actual high-risk loans, posing substantial financial 

risks for lenders. While the overall accuracy of 80.8% appears 

decent, it is misleadingly inflated by the dominance of non-

default cases. The precision of 49.7% for defaults indicates 

that even when the model flags a loan as risky, there's only a 

50% chance it's correct.  

 

 
Figure 3: The Receiver Operating Characteristic of the Model 
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The ROC curve with an AUC of 0.69 indicates moderate 

discriminatory power for the loan default prediction model, 

performing better than random guessing (AUC = 0.5) but 

falling short of the desired strong predictive ability (AUC > 

0.8). The curve reveals difficulty in balancing the true positive 

rate (sensitivity) and false positive rate (1-specificity), 

particularly at lower false positive rates, where the true 

positive rate remains low (~0.4), leading to poor recall (8.2%) 

for defaults. The high AUC and low log loss indicate the 

model's ability to generalize well while preserving client data 

privacy (Papatsimouli et al., 2022). These metrics show FL's 

effectiveness in maintaining predictive power even with 

decentralized data 

 

Table 1: Evaluation of Metrics 

Metrics Score 

Precision 81 

Recall 98 

F1-Score 89 

Accuracy 80 

 

The classification report for the loan default prediction model 

shows the following performance metrics: Precision of 81%, 

Recall of 98%, F1-Score of 89%, and Accuracy of 80%. This 

indicates that the model is highly sensitive to detecting 

defaults (high recall) (Papatsimouli et al., 2022). The F1-score 

suggests a good balance between precision and recall, though 

the model could still be prone to misclassifying some non-

default cases as defaults. The accuracy of 80% reflects solid 

overall performance. 

 

CONCLUSION 

This study demonstrates the transformative potential of 

Federated Learning (FL) in advancing secure and privacy-

preserving data sharing within the financial sector. By 

enabling collaborative model development without the 

exchange of raw data, FL addresses critical privacy concerns 

while improving the effectiveness of fraud detection, Anti-

Money Laundering (AML) compliance, and biometric 

authentication systems. The implementation of FL in a loan 

default prediction use case, using the Lending Club dataset, 

highlights both the opportunities and limitations of this 

approach. The model achieved an accuracy of 80%, a high 

recall of 98%, and an F1-score of 89%, indicating strong 

performance in identifying default cases. However, the 

moderate AUC score of 0.69 and precision of 81% suggest 

room for improvement, particularly in reducing false positives 

and better capturing minority-class instances. These findings 

underscore the importance of ongoing work in optimizing 

model architectures, addressing data imbalance, and refining 

privacy-preserving techniques within FL frameworks. As 

financial institutions increasingly adopt decentralized and 

secure data practices, Federated Learning stands out as a 

viable and forward-looking solution that aligns with both 

operational efficiency and regulatory compliance. Future 

work should explore the integration of advanced techniques 

such as anomaly detection, hybrid encryption models, and 

personalized FL to further enhance model robustness and 

practical deployment in real-world financial ecosystems. 
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