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ABSTRACT 

Early detection of diabetes and hypertension is essential in preventing severe complications caused by the 

diseases. This study developed a prediction model using Feed-Forward Deep Neural Network architecture to 

predict the diseases. A custom dataset generated by combining features from PIMA Indian dataset and PPG-

BP dataset is used in training the model. It achieved 93% accuracy in predicting the diseases. Precision and 

recall scores were also noteworthy, with 95.5% and 94% for concurrent prediction respectively. These results 

highlight the model’s balanced performance and reliability in real-world healthcare applications. The study 

addressed limitations in existing single-disease prediction models by focusing on concurrent prediction, which 

captures the interrelated nature of diabetes and hypertension. Transfer learning played a crucial role in 

enhancing the model’s performance, taking advantage of pre-training of models to overcome challenges like 

limited labelled datasets and help in making the concurrent prediction possible by sensitizing the model with 

features relevant for individual disease. This approach reduced computational overhead and improved 

generalization, making the model practical for deployment in resource-constrained healthcare settings. Feature 

selection and engineering, driven by Recursive Feature Elimination (RFE) and domain knowledge, ensured 

the inclusion of the most relevant attributes, further optimizing the model’s predictive accuracy.  
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INTRODUCTION 

Two of the most prevalent chronic diseases in the world are 

diabetes and hypertension. They most times occur together 

and contribute significantly to mortality and morbidity. Their 

prevalence is increasing worldwide due to genetic pedigree, 

changes in lifestyle, and increasing age of the population 

(Kumar & Clark, 2021). Currently, the focus of most 

researches is the prediction of either diabetes or hypertension 

instead of their concurrent prediction. This is disturbing 

giving their relationship and impact on the health of the 

populace. Some studies that predict the two conditions often 

rely on Traditional Machine Learning algorithms and the 

performance felt short in terms of accuracy. Some researchers 

applied Deep learning in predicting the two conditions with 

improved accuracy but still with room for improvement 

(Gopisetti et al., 2023; Jeong et al., 2022).  

Deep learning, a subset of Machine learning that simulate 

decision-making process of human brain provides an 

innovative approach to healthcare prediction (Warr, 2020). 

Deep learning models are very good at analysing complex 

datasets, such as healthcare dataset by learning hierarchical 

representations of data. This makes deep learning models 

ideal for predicting diseases like diabetes and hypertension 

(Barath, 2021; Kumar et al., 2020). 

This study developed a predictive model using deep learning 

to predict diabetes and hypertension concurrently. The work 

not only contributes to addressing critical healthcare 

challenges but also provides a scalable and efficient tool to 

improve patient outcomes and reduce the burden on 

healthcare systems globally. Deploying deep learning-based 

prediction models holds great promise for advancing early 

detection thereby offering a significant step forward in 

managing diabetes and hypertension. 

Diabetes and hypertension are a major health concern and a 

high cause of mortality and morbidity, this makes their early 

detection very important. Recent studies have applied 

machine learning (ML) and deep learning in their prediction 

and management (Yashvanth et al., 2023). ML have shown 

remarkable performance in predicting diseases with random 

forest as one of the top performing algorithms for diabetes 

prediction (Stephen et al., 2023). Random forest and Support 

vector machine (SVM) have shown a better performance in 

terms of accuracy in hypertension prediction (Stephen et al., 

2023). However, data quality and availability still present a 

great challenge, which can affect the performance of the 

model (Yashvanth et al., 2023). Mobile health (mHealth) 

systems equipped with ML algorithms have potential to 

improve management of diabetes and hypertension, but 

further research is needed in that regard (Afsaneh et al., 2022; 

Stephen et al., 2023). Application of DL algorithms in 

diabetes prediction has shown that they have outperformed 

conventional machine learning algorithms. For example, 

Convolutional Neural Network-Long Short-Term Memory 

(CNN-LSTM) model achieved 95.1% accuracy in diabetes 

prediction (Balaji & Sugumar, 2022). 

A personalized healthcare monitoring system for diabetes 

patients was introduced in (Alfian et al., 2018), which 

incorporates wearable sensors and Machine Learning 

technology. The system makes use of Bluetooth Low Energy-

based sensors for data collection. The researchers employed 

multi-layer perceptron and LSTM algorithms to classify the 

diabetes type and forecast the glucose level of the user. A bi-

directional LSTM was proposed to predict the future level of 

blood glucose (Qingnan et al., 2019). In that system, the 

authors compared the results from simple LSTM with Bi-

LSTM using 26 datasets from 20 real patients. (H. Zhou et al., 

2020) Proposed a diabetes-risk prediction model based on 

enhanced DNN method, which can predict and identify 

whether someone will have this disease in the future. Gradient 

boosting was used on PIMA dataset to predict diabetes by 

(Ganie et al., 2023) and achieved a very good accuracy. 

(Gopisetti et al., 2023) Used several classification algorithms 

to predict many diseases e.g. diabetes, hypertension, kidney 

disease. This was done with a very good accuracy. 
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MATERIALS AND METHODS 

A feed-forward deep neural network model with four input 

features, two hidden layers, and an output layer was 

developed and trained using PIMA dataset to predict diabetes. 

The FFDNN model is later adjusted using transfer learning 

for hypertension prediction. Custom dataset was created by 

combining data from both PIMA dataset and PPG-BP dataset. 

Technique such as Recursive Feature Elimination (RFE) was 

used in conjunction with domain knowledge to select features 

that are relevant to both diseases. RFE eliminates features that 

contribute less in the prediction of the outcome while Domain 

knowledge is used in validating the chosen features making 

sure that they not only have statistical relevance but also 

clinical importance. This ensured that only the most relevant 

features were used, thus improving model performance. The 

FFDNN architecture is modified to adopt a Multi-task 

learning model architecture; this is done by maintaining the 

backbone layers and dividing the task-specific layer into two 

each representing one condition. 

 

Model Development 

The feed-forward deep neural network (FFDNN), initially 

trained to predict diabetes using the PIMA dataset, was 

modified using transfer learning techniques to predict 

hypertension. The original model processes features such as 

glucose, BMI, diabetes pedigree function, and age, using 

multiple hidden layers with ReLU activation functions to 

capture complex relationships. After training on features 

selected from the PIMA dataset, the model’s early layers, 

which learn general representations of diabetes, were frozen, 

and later layers were replaced, fine-tuned, and trained on 

features selected from PPG-BP dataset. This fine-tuning 

adapts the model to hypertension prediction by focusing on 

features specific to the PPG-BP dataset, such as systolic blood 

pressure (SBP) and diastolic blood pressure (DBP). The 

weights learned during diabetes prediction provide a strong 

foundation for hypertension prediction by taking advantage of 

shared patterns in the data. 

The model was further modified to adopt a multi-task learning 

(MTL) framework for concurrent prediction of diabetes and 

hypertension. This involves shared hidden layers to learn 

common representations across both tasks, followed by task-

specific output layers. The input features selected for this 

model include glucose, BMI, age, and SBP, as these are 

highly relevant to both conditions based on feature 

importance and domain knowledge. The architecture consists 

of three hidden layers with 64, 128, and 64 neurons, and task-

specific layers respectively, to balance model complexity and 

computational efficiency. Dropout regularization (rate = 0.5) 

was applied to mitigate overfitting, and the output layers 

consist of two neurons with sigmoid activation functions to 

produce independent binary outcomes for diabetes and 

hypertension. The labels for the outcomes are 0 (absence) and 

1 (presence) for both diseases, ensuring clarity in predictions. 

Parameter tuning was performed to optimize the model for 

concurrent prediction. The learning rate was set to 0.001 after 

experimentation, and the Adam optimizer was used for 

efficient gradient updates. The batch size was chosen as 32 to 

balance convergence speed and memory usage, while the 

number of epochs was set to 50, based on early stopping to 

prevent overfitting. The binary cross-entropy loss function 

was used for each task, ensuring the model accurately predicts 

the binary outcomes. These modifications and parameter 

choices ensure the model is robust and capable of using shared 

and task-specific patterns, and well-suited for real-world 

healthcare scenarios where diabetes and hypertension often 

coexist. The modified model is shown in the figure below: 

 
Figure 1: Feed-Forward Deep Neural Network Model 

 

Dataset Collection 

A custom dataset was created in this work by combining 

features from PIMA Indian Diabetes dataset and 

Photoplethysmography Blood Pressure (PPG-BP) dataset. 

Features relevant to the prediction of these conditions were 

provided by the datasets. PIMA dataset provides diabetes-

related features like glucose, age, body mass index (BMI), and 

diabetes pedigree function (DPF) while PPG-BP dataset 

provides hypertension-related features like systolic and 

diastolic blood pressure. Using this custom dataset enables 

training a model on features from both datasets, which will 

enable concurrent prediction of the conditions. 

The first step taken in creating the custom dataset is pre-

processing the individual datasets to remove outliers, taking 

care of the missing or incorrect values, and balancing the 

datasets. Incorrect and missing values are replaced by 

imputing the median of the corresponding columns. Synthetic 

Minority Oversampling Technique (SMOTE) is applied to 

remove the bias in the PIMA datasets that is biased towards 

the negative outcome. After pre-processing, features are 

selected from each dataset that are relevant to the conditions 

each dataset is representing. Glucose, BMI, and blood 

pressure are selected from PIMA dataset base on their 

established relationship with the onset of diabetes (Clark & 

Clark, 2016). Similarly, systolic blood pressure, diastolic 

blood pressure, and PPG signals are selected from PPG-BP 

dataset; these are critical indicators of hypertension (Heart 

Association, 2021). The features are then standardized to 
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ensure they are on comparable scales in order to avoid the 

model being influenced by any dataset’s features. 

Meaningful alignment of features was done in order to 

simulate a realistic health profile. Subject health profile was 

constructed since the datasets comes from different origin and 

therefore have no shared identifies. This construction 

involved making sure there is logical consistency between 

features for example, correlating higher glucose levels and 

BMI with elevated blood pressure readings base on 

established medical literature (Rushakoff, Sullivan, et al., 

2017; Sheen et al., 2020; Song et al., 2023). Label creation for 

concurrent prediction involves using binary labels for 

diabetes (from the PIMA dataset) and hypertension (derived 

from thresholds in SBP and DBP values in the PPG-BP 

dataset, such as SBP ≥ 140 mmHg or DBP ≥ 90 mmHg, as per 

WHO guidelines). 

By integrating features from these datasets, the combined 

dataset facilitates the concurrent prediction of diabetes and 

hypertension. The combined dataset is highly compatible with 

transfer learning, as the model can take advantage of patterns 

learned during diabetes prediction (using PIMA) and adapt 

them to hypertension prediction (using PPG-BP). Transfer 

learning ensures that shared representations, such as 

correlations between BMI, glucose, and blood pressure, are 

reused effectively, reducing the need for extensive retraining 

on hypertension-specific features while improving overall 

model efficiency and performance (Pan & Yang, 2020). 

 

Table 1: Dataset Description 

S/No. Attribute Data type Note 

1. BP_PIMA Numeric Blood Pressure from PIMA Dataset 

2. Glucose Numeric Plasma glucose level two hours after consuming 

glucose. From PIMA 

3. Systolic Blood Pressure Numeric Systolic Blood pressure (mmHg) from PPG-BP 

4. Diastolic Blood Pressure Numeric Diastolic Blood Pressure (mmHg) from PPG-BP 

5. PPG Photoplethysmography  

 

Normalized photoplethysmography signal from 

PPG-BP. 

6. Body Mass Index Numeric An index used to evaluate a person’s relative 

weight (weight (kg)/height (m2)) from PIMA 

7. Diabetes Pedigree Function Numeric A value that measures genetic risk factors based on 

a family history of diabetes from PIMA. 

8. Age Numeric Age in years from PIMA. 

9. Hypertension Boolean Result (true or false) 

10. Diabetes Boolean Result (true or false) 

 

Dataset Pre-Processing 

Even though the individual datasets were pre-processed 

before the generation of the custom dataset, some pre-

processing was still done. The initial pre-processing of the 

dataset involves handling missing values, standardizing 

feature scales, and aligning feature formats from the PIMA 

and PPG-BP datasets. Missing values are addressed using 

imputation techniques such as mean or median substitution 

for numerical data, ensuring no information gaps that might 

hinder the model’s learning process. Additionally, features 

like glucose levels, systolic blood pressure (SBP), and 

diastolic blood pressure (DBP) are normalized using 

StandardScaler to ensure all variables are on a similar scale, 

preventing disproportionate influence during training. 

Finally, the combined dataset is shuffled to eliminate any 

biases due to data order and split into training, validation, and 

test sets. This ensures that the model can generalize well to 

unseen data, laying a robust foundation for training the 

concurrent prediction model. 

 

Feature Selection 

Feature selection method used in this work combined 

automated technique with domain knowledge. This is used in 

order to enhance the feature selection process by taking 

advantage of the strength of the two (Dash et al., 2022; 

Farahani et al., 2021). Recursive Feature Elimination (RFE) 

method of feature selection is the automated technique used 

in selecting features. RFE method works by generating 

feature importance and removing the least significant features 

based on their contribution to the model’s predictive 

performance. Feature importance score is generated using 

Random Forest for the dataset and from it, least important 

features are eliminated. It is shown in Table 2 below. 

 

Table 2: Feature Importance Score 

Feature Score 

Glucose (PIMA) 0.089858 

BMI (PIMA) 0.086946 

SBP (PPG-BP) 0.084037 

Age (PIMA and PPG-BP) 0.079373 

DiabetesPedigreeFunction (PIMA) 0.075987 

PPG_Amplitude (PPG-BP) 0.073833 

DBP (PPG-BP) 0.072418 

BloodPressure (PIMA) 0.068694 

 

Glucose, BMI, Systolic Blood Pressure (SBP), and Age are 

chosen as the most relevant features based on their feature 

importance score; this is corroborated by domain knowledge. 

These features demonstrated a strong correlation with the 

target variables (diabetes and hypertension), for instance, 

glucose levels consistently ranked as the most important 

feature for diabetes prediction, aligning with the 

pathophysiological mechanism of the disease, where 

hyperglycemia is a primary indicator (DeGuire et al., 2019; 

B. Zhou et al., 2021). Similarly, BMI emerged as a critical 
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feature due to its strong association with insulin resistance and 

cardiovascular risk factors, making it a significant predictor 

for both conditions (Rushakoff, Rushakoff, et al., 2017). Also, 

domain knowledge has shown that systolic blood pressure 

(SBP) is a key feature for hypertension prediction as it directly 

defines the condition (hypertension). Elevated SBP is 

clinically used as a diagnostic criterion for hypertension 

(Barhun & Sission, 2023; Kumar & Clark, 2021; Kumari et 

al., 2021) and its inclusion ensures the model captures the 

cardiovascular risks associated with both diabetes and 

hypertension (Heart Association, 2021). Additionally, age is 

another pivotal feature, as the likelihood of developing 

diabetes and hypertension increases with age due to 

progressive vascular changes and metabolic dysfunction 

(Williams & Farrar, 2018). By selecting these features, it is 

ensured that the model uses features that are both statistically 

relevant and clinically significant, ensuring it focuses on the 

most impactful features while reducing noise from less 

relevant ones.  

 

 

 

 

Evaluation Metrics 

This section presents the metrics used in evaluating the 

performance of the model. The prediction process comprises 

of four different results known as True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). 

The performance of the model is evaluated using metrics like 

accuracy, precision, and recall.  

Accuracy is computed using the ratio between the number of 

correct predictions (true positive and true negative) over all 

the predictions made by the model. It is calculated by the 

equation below. 

Accuracy =  
TP+TN

TP+FT+FN+TN
   (1) 

Whereas Precision measures the degree to which the model's 

positive predictions from all of the positive predictions of the 

classification results are accurate and it is computed by the 

following equation: 

Precision =  
TP

TP+FP
    (2) 

In addition, the model's recall is a measure of how well it can 

separate all true positive cases from all the existing positive 

instances. This is computed by 

Recall =  
TP

TP+FN
    (3) 

RESULTS AND DISCUSSION 

The result of the prediction is presented in table 3 below: 

 
Figure 2: Accuracy for Concurrent Prediction calculated using eq. 1 

 

 
Figure 3: Precision and Recall for Concurrent Prediction calculated using equations 2 and 3 

 

 

 

 

 



CONCURRENT PREDICTION OF DIAB…            Bada et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 3, March, 2025, pp 101 – 106 105 

Table 3: Result of the Prediction 

Model Disease Accuracy Precision Recall 

Feed-Forward Deep 

Neural Network with 

Transfer Learning 

Diabetes and 

Hypertension 

93% 95.5% 94% 

 

The Feed-Forward deep neural network model created in this 

research demonstrated exceptional performance in predicting 

both diabetes and hypertension concurrently, the model 

achieved an overall accuracy of 93%. This is a substantial 

achievement and it demonstrates the model's ability to handle 

the complexity of multiple disease predictions. The higher 

precision achieved in this work compared to recall likely 

reflects a combination of dataset characteristics i.e. 

imbalance, model design choices, and some evaluation 

strategies. Research in multi-disease prediction often reports 

lower accuracies due to the increased complexity as shown in 

Figure 4 below.  

 

Table 4: Performance of the benchmarked approaches 

Model Disease Accuracy Precision Recall 

Support Vector Machine Diabetes and Hypertension 75% 78% 76.2% 

Logistic Regression Diabetes, Hypertension, and Chronic Kidney Disease 92% 94.1% 93% 

Random Forest Diabetes and Hypertension 92.3% 95.7% 94.5% 

 

 
Figure 4: Comparison with benchmarked approaches 

 

The research provides a dual-disease prediction model that 

enables medical practitioners to efficiently and accurately 

identify both diabetes and hypertension in patients, 

facilitating early intervention. This capability can enhance 

patient management in clinical settings, reduce healthcare 

costs, and improve overall health outcomes by allowing for 

timely treatment decisions. 

Using transfer learning for medical diagnosis enables models 

to leverage pre-trained knowledge from related tasks, 

improving accuracy and reducing training time with limited 

datasets. This approach is particularly effective for multi-

disease prediction as it allows the model to identify shared 

features and relationships between diseases, enhancing its 

ability to make concurrent predictions. 

The research is limited by its reliance on specific datasets 

(PIMA Indian and PPG-BP), which may not fully represent 

diverse patient populations, potentially affecting 

generalizability. Additionally, the model's performance could 

be impacted by class imbalance and the inherent noise in 

medical data, which may lead to biased predictions for certain 

conditions. 

Future work could focus on improving the model by testing it 

with larger and more diverse datasets to enhance 

generalizability and robustness. Additionally, incorporating 

real-time data from IoT devices could facilitate continuous 

monitoring and more accurate predictions, while expanding 

the model to include other disease categories would enhance 

its utility in comprehensive health monitoring systems. 

 

CONCLUSION 

This research has succeeded in achieving its objective of 

creating a model capable of predicting diabetes and 

hypertension concurrently. The model achieved an accuracy 

of 93%, 95.5% and 94% precision and recall respectively, 

which is satisfactory and appropriate result in predicting 

diabetes and hypertension concurrently. The contribution of 

this research is that, it has shown that with appropriate feature 

analysis and selection, transfer learning can be used in 

complex medical prediction using deep learning. The research 

has also shown that domain knowledge plays a very crucial 

role in selecting appropriate feature that can be used in 

predicting any disease. 
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