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ABSTRACT 

Fixed point theory plays a fundamental role in mathematical analysis, algebra, and topology, with applications 

spanning differential equations, game theory, and computer science. This study extends classical fixed point 

results by exploring hybrid fixed points within semigroups of transformation. Hybrid fixed points generalize 

standard fixed points by incorporating auxiliary functions, allowing for broader applications in iterative 

methods and computational mathematics. We establish key results on hybrid fixed points by considering 

contractive and nonexpansive mappings in semigroups. Using Banach’s contraction principle and related fixed 

point theorems, we prove the existence and uniqueness of hybrid fixed points under suitable conditions. 

Notable results include hybrid contractions, asymptotic regularity, and their implications in complete and 

compact metric spaces. Examples illustrate the theoretical findings, demonstrating hybrid fixed points in 

transformation semigroups.  
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INTRODUCTION 

Fixed point theory plays a crucial role in mathematical 

analysis, algebra, and topology. The study of fixed points on 

semigroups of transformation extends classical fixed point 

results to algebraic structures with transformation properties. 

Fixed points arise naturally in various mathematical 

disciplines and applications, including differential equations, 

game theory, and computer science. 

The origins of fixed point theory trace back to Brouwer’s 

fixed point theorem, It states that for any continuous function 

𝑓 mapping a nonempty compact convex set to itself, there is 

a point 𝑥0  such that 𝑓(𝑥0) = 𝑥0. That is any continuous 

function mapping a compact convex set to itself in a 

Euclidean space has at least one fixed point (Brouwer, 1911). 

This result laid the foundation for subsequent generalizations, 

including Banach’s contraction principle, which guarantees 

the existence and uniqueness of a fixed point for contractive 

mappings in complete metric spaces (Banach, 1922). 

Banach’s theorem has been extensively used in numerical 

analysis and differential equations due to its constructive 

nature. 

Building upon these early results, Nadler extended Banach’s 

principle to multi-valued mappings in metric spaces, thereby 

broadening the applicability of fixed point theory (Nadler, 

1969). Takahashi investigated non-expansive mappings in 

Hilbert spaces, proving essential results on the existence of 

fixed points in broader topological settings (Takahashi,1970). 

Kirk (Kirk, 2008) explored fixed point results in general 

metric spaces, emphasizing the role of asymptotic regularity 

in iterative methods (Kirk, 2008). These developments 

provided a crucial link between fixed point theory and 

functional analysis, facilitating applications in operator theory 

and computational mathematics. 

Semigroups of transformation have been a subject of 

significant study due to their role in algebraic structures and 

dynamical systems. Howie (Howie, 1995) provided a 

comprehensive introduction to semigroup theory, outlining 

their algebraic properties and applications in functional 

analysis (Howie, 1995). The study of fixed points within 

transformation semigroups has found applications in Stability 

Analysis, Differential Inclusions, and Ergodic Theory. 

Recent researches have explored contractive and non-

expansive mappings in transformation semigroups, leading to 

results on the existence of fixed points under various 

conditions. Studies have established that contractive 

mappings in semigroups ensure the convergence of iterative 

sequences, which is crucial for proving the existence of hybrid 

fixed points. 

The notion of hybrid fixed points generalizes classical fixed 

point results by incorporating auxiliary functions, making 

them suitable for broader applications, including iterative 

algorithms and computational methods. Hybrid contractions, 

which involve auxiliary functions modifying the contraction 

condition, have been explored in metric space and Banach 

space. 

Hybrid fixed point results have found applications in 

optimization theory, game theory, and nonlinear functional 

analysis. The extension of these results to semigroups of 

transformations allows for new insights into the behavior of 

iterative sequences and their convergence properties. The 

literature suggests that contractive transformations in 

semigroups admit hybrid fixed points under suitable 

conditions, leading to new theoretical advancements in metric 

space theory and operator analysis. 

 

Preliminaries 

We begin with basic definitions and important preliminary 

results required for our study. 

 

Definition 1 (Howie, 1995) (Semigroup of Transformations) 

A non-empty set 𝑆 equipped with an associative binary 

operation ∗, is called a semigroup, if for all 𝑥, 𝑦 and 𝑧 in 𝑆, 

(𝑥 ∗  𝑦)  ∗  𝑧 =  𝑥 ∗  (𝑦 ∗  𝑧). The binary operation ∗ is 

mostly denoted multiplicatively or in juxtaposition i.e 

(𝑥𝑦)𝑧 =  𝑥(𝑦𝑧). If the semigroup 𝑆 has the property that, for 

all 𝑥, 𝑦 in 𝑆, 𝑥𝑦 =  𝑦𝑥, we say that 𝑆, is a commutative 

semigroup. The semigroup 𝑆 is called a monoid if it has an 

identity element, that is, there is 1 ∈  𝑆 such that for all 

𝑥 in 𝑆, 𝑥1 =  1𝑥 =  𝑥. An element 0 in 𝑆 is called zero 

element of 𝑆 if 𝑥0 =  0𝑥 =  0 for all 𝑥 in 𝑆 and 𝑆 is called a 

semigroup with zero. If the semigroup S has no identity or 

zero element, then it is easy to adjoin an extra identity or zero 
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to 𝑺, in order to form a monoid or semigroup with zero 

respectively. 

A semigroup 𝑆 of transformations on a set 𝑋 is a set of 

functions 𝑆 ⊆  𝑋𝑋 closed under composition. That is, for any 

two transformations 𝑇1, 𝑇2  ∈  𝑆, their composition 𝑇1° 𝑇1 is 

also in 𝑆. Semigroups of transformations are fundamental in 

understanding algebraic structures and dynamic systems. 

 

Definition 2 (Hybrid Fixed Point) 

A point 𝑥 ∈ 𝑋 is a hybrid fixed point of a function 𝑇 ∶  𝑋 →
 𝑋 if there exists a function 𝑔 ∶  𝑋 →  𝑋 such that 

𝑔(𝑇 (𝑥))  =  𝑥. The function 𝑔 provides additional 

flexibility compared to classical fixed point definitions, 

allowing for applications in iterative schemes and 

generalized contractions. 

 

Definition 3 (Contractive Mapping) 

A function 𝑇: 𝑋 → 𝑋 is said to be contractive if there exists 

a constant 𝑐 ∈  [0, 1) such that for all 𝑥, 𝑦 ∈  𝑋, 
𝑑(𝑇 (𝑥), 𝑇 (𝑦))  ≤  𝑐 𝑑(𝑥, 𝑦). 
This condition ensures the convergence of iterative 

sequences and plays a key role in proving fixed point 

existence. 

 

Lemma 4 

Let (𝑋, 𝑑) be a complete metric space, and let 𝑇 ∶  𝑋 →  𝑋 

be a transformation satisfying a contractive condition. 

Then, T has a unique fixed point. 

Proof: 

Let 𝑥0  ∈  𝑋 be an arbitrary initial point, and define a 

sequence {𝑥𝑛} by 

 𝑥𝑛+1  =  𝑇 (𝑥𝑛).  

By the contractive condition, 

𝑑(𝑥𝑛+1, 𝑥𝑛)  =  𝑑(𝑇 (𝑥𝑛), 𝑇 (𝑥𝑛−1))  ≤  𝑐 𝑑(𝑥𝑛, 𝑥𝑛−1). 
Since 𝑐 ∈  [0, 1), the sequence {𝑥𝑛} is Cauchy and converges 

to a limit 𝑥∗. Taking the limit on both sides, we conclude that 

𝑇 (𝑥∗)  =  𝑥∗, proving the existence and uniqueness of the 

fixed point. 

 

Definition 5 (Asymptotic Regularity) 

A transformation 𝑇 ∶  𝑋 →  𝑋 is said to be asymptotically 

regular if for every sequence 

{𝑥𝑛} 𝑖𝑛 𝑋, 

lim
𝑛→∞

𝑑(𝑇 (𝑥𝑛), 𝑥𝑛)  =  0.   

This property is significant in iterative methods used to 

approximate fixed points. 

 

Proposition 6 

If 𝑇 is a contractive transformation on a complete metric 

space, then it is asymptotically regular. 

Proof: 

Since T is contractive, the sequence 𝑑(𝑇 (𝑥𝑛), 𝑥𝑛) forms a 

decreasing sequence tending to zero, ensuring asymptotic 

regularity. 

 

Corollary 7 

Any contractive transformation in a semigroup 𝑆 of 

transformations on a compact metric space admits at least one 

hybrid fixed point. 

Proof: 

By compactness, the sequence 𝑇𝑛(𝑥)}  has a convergent 

subsequence. Using the Banach fixed point theorem, we 

establish the hybrid fixed point existence. 

 

 

 

RESULTS AND DISCUSSION 

We present and prove key results on hybrid fixed points within 

semigroups of transformations. 

Theorem 8 

Let 𝑆 be a semigroup of transformations on 𝑋 such that each 

𝑇 ∈  𝑆 satisfies a contractive condition. Then 𝑆 has a hybrid 

fixed point. 

Proof: 

 Let 𝑇 ∈  𝑆 be a transformation satisfying the contractive 

condition: 

𝑑(𝑇 (𝑥), 𝑇 (𝑦))  ≤  𝑐 𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈  𝑋, 
where 𝑐 ∈  [0, 1). 
Fix an arbitrary starting point 𝑥0 ∈  𝑋. Define the sequence 

{𝑥𝑛}  iteratively by 

𝑥𝑛+1  =  𝑇 (𝑥𝑛), 𝑓𝑜𝑟 𝑛 ≥  0. 
 By the contractive condition, we have 

𝑑(𝑥𝑛+1, 𝑥𝑛)  =  𝑑(𝑇 (𝑥𝑛), 𝑇 (𝑥𝑛−1))  ≤  𝑐 𝑑(𝑥𝑛, 𝑥𝑛−1). 
Iterating this inequality, we obtain 

𝑑(𝑥𝑛+1, 𝑥𝑛)  ≤  𝑐𝑛  𝑑(𝑥1, 𝑥0). 
For any 𝑚 >  𝑛, the triangle inequality gives 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ ∑ 𝑑(𝑥𝑘+1, 𝑥𝑘)𝑚−1
𝑘=𝑛 ≤ ∑ 𝑐𝑘𝑑(𝑥1, 𝑥0)𝑚−1

𝑘=𝑛   

Since 𝑐 ∈  [0, 1), the geometric series ∑ 𝑐𝑘∞
𝑘=0  converges, 

and thus {𝑥𝑛} is a Cauchy sequence. Since 𝑋 is a complete 

metric space, the sequence {𝑥𝑛} converges to a limit 𝑥∗ ∈ 𝑋. 

By continuity of 𝑇 (implied by the contractive condition), 

we have 

𝑇(𝑥∗) = 𝑇 ( lim
𝑛→∞

𝑥𝑛) 

= lim
𝑛→∞

𝑇(𝑥𝑛) 

= lim
𝑛→∞

𝑥𝑛+1 

= 𝑥∗ 

Thus, 𝑥∗ is a fixed point of  𝑇. By Definition 2.2, 𝑥∗ is a 

hybrid fixed point of 𝑇 with respect to the identity function 

𝑔(𝑥)  =  𝑥. This completes the proof. 

 

Proposition 9 

If 𝑇 is a non-expansive transformation on a compact metric 

space 𝑋, then 𝑇 admits a hybrid fixed point. 

Proof: 

A transformation 𝑇 is non-expansive if 

𝑑(𝑇 (𝑥), 𝑇 (𝑦))  ≤  𝑑(𝑥, 𝑦), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋. 
Since 𝑋 is compact, every sequence in 𝑋 has a convergent 

subsequence. Consider the sequence {𝑇𝑛(𝑥0)} for 

some 𝑥0 ∈ 𝑋. By compactness, there exists a subsequence 

{𝑇𝑛𝑘(𝑥0)} converging to a limit 𝑥∗ ∈ 𝑋. Using the non-

expansive property, we have 

𝑑(𝑇(𝑥∗), 𝑥∗) = lim
𝑘→∞

𝑑(𝑇𝑛𝑘+1(𝑥0), 𝑇𝑛𝑘(𝑥0)) 

  ≤ lim
𝑛→∞

𝑑(𝑇(𝑥0), 𝑥0) = 0 

Thus, 𝑇 (𝑥∗)  = 𝑥∗, and 𝑥∗ is a fixed point of 𝑇. By 

Definition 2.2, 𝑥∗ is a hybrid fixed point of 𝑇 with respect 

to the identity function 𝑔(𝑥)  =  𝑥. This completes the 

proof. 

 

Corollary 10 

If 𝑇 is a self-mapping on a complete metric space satisfying 

a hybrid contraction, then it has a unique hybrid fixed point. 

Proof: 

A hybrid contraction condition is defined as 

𝑑(𝑔(𝑇 (𝑥)), 𝑔(𝑇 (𝑦)))  ≤  𝑐 𝑑(𝑥, 𝑦), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋, 

where 𝑐 ∈  [0, 1) and 𝑔 ∶  𝑋 →  𝑋 is a continuous function.  

Fix an arbitrary starting point 𝑥0  ∈  𝑋. Define the sequence 

{𝑥𝑛} iteratively by 

𝑥𝑛+1 = 𝑔(𝑇(𝑥𝑛)), 𝑓𝑜𝑟 𝑛 ≥  0. 
 By the hybrid contraction condition, we have 
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𝑑(𝑥𝑛+1, 𝑥𝑛) =  𝑑 (𝑔(𝑇 (𝑥𝑛)), 𝑔(𝑇 (𝑥𝑛−1)))  ≤

 𝑐 𝑑(𝑥𝑛, 𝑥𝑛−1).  

Iterating this inequality, we obtain: 

𝑑(𝑥𝑛+1, 𝑥𝑛)  ≤  𝑐𝑛  𝑑(𝑥𝑛, 𝑥0).  

For any 𝑚 >  𝑛, the triangle inequality gives 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ ∑ 𝑑(𝑥𝑘+1, 𝑥𝑘)𝑚−1
𝑘=𝑛   

≤ ∑ 𝑐𝑘𝑑(𝑥1, 𝑥0)𝑚−1
𝑘=𝑛   

Since 𝑐 ∈ [0, 1), the geometric series converges, and thus 

{𝑥𝑛} is a Cauchy sequence. Since 𝑋 is a complete metric 

space, the sequence {𝑥𝑛} converges to a limit 𝑥∗ ∈  𝑋. By 

continuity of g and T , we have 

𝑔(𝑇(𝑥∗)) = 𝑔 (𝑇 ( lim
𝑛→∞

𝑥𝑛))  

= lim
𝑛→∞

𝑔(𝑇(𝑥𝑛))  

= lim
𝑛→∞

𝑥𝑛+1  

= 𝑥∗  

Thus, 𝑥∗ is a hybrid fixed point of 𝑇 with respect to 𝑔. 

Suppose 𝑦∗ is another hybrid fixed point. Then 

𝑑(𝑥∗, 𝑦∗)  =  𝑑(𝑔(𝑇 (𝑥∗)), 𝑔(𝑇 (𝑦∗)))  ≤  𝑐 𝑑(𝑥∗, 𝑦∗). 

Since 𝑐 ∈  [0, 1), this implies 𝑑(𝑥∗, 𝑦∗)  =  0, and thus 

𝑥∗ = 𝑦∗. This proves uniqueness. 

 

Theorem 11 

Let 𝑋 be a Banach space and 𝑇 ∶  𝑋 →  𝑋 a 

transformation. If 𝑇 satisfies a weak contractive 

condition, then 𝑇 has a hybrid fixed point. 

Proof: 

A weak contractive condition is defined as; 

 𝑇 (𝑥)  −  𝑇 (𝑦)  ≤   𝑥 −  𝑦  −  𝜓(  𝑥 −  𝑦 

 ), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋,  

where 𝜓 ∶  [0, ∞)  →  [0, ∞) is a continuous and non-

decreasing function with 𝜓(0)  =  0 
𝑎𝑛𝑑 𝜓(𝑡)  >  0 𝑓𝑜𝑟 𝑡 >  0.  

Fix an arbitrary starting point 𝑥0  ∈  𝑋. Define the sequence 

{𝑥𝑛} iteratively by𝑥𝑛+1  =  𝑇 (𝑥𝑛), 𝑓𝑜𝑟 𝑛 ≥  0. By the weak 

contractive condition, we have 
‖𝑥𝑛+1 − 𝑥𝑛‖ = ‖𝑇 (𝑥𝑛) − 𝑇 (𝑥𝑛−1)‖  

≤ ‖𝑥𝑛 − 𝑥𝑛−1‖  −  𝜓(‖𝑥𝑛 − 𝑥𝑛−1‖).  
This implies that ‖𝑥𝑛+1 − 𝑥𝑛‖ is a decreasing sequence. 

Since  ‖𝑥𝑛+1 − 𝑥𝑛‖ is bounded below by 0, it converges 

to a  limit 𝐿 ≥  0. Taking the limit as 𝑛 →  ∞ in the weak 

contraction inequality, we obtain: 

𝐿 ≤  𝐿 −  𝜓(𝐿).  

This implies 𝜓(𝐿)  =  0, and thus 𝐿 =  0. Therefore, {𝑥𝑛} is 

a Cauchy sequence. Since X is a Banach space (and hence 

complete), the sequence {𝑥𝑛} converges to a limit 𝑥∗ ∈  𝑋. By 

continuity of  𝑇 , we have 

𝑇(𝑥∗) = 𝑇 ( lim
𝑛→∞

𝑥𝑛)  

= lim
𝑛→∞

𝑇(𝑥𝑛)  

= lim
𝑛→∞

𝑥𝑛+1  

= 𝑥∗  

Thus, 𝑥∗ is a fixed point of T . By Definition 2.2, 𝑥∗ is a 

hybrid fixed point of 𝑇 with respect to the identity function 

𝑔(𝑥)  =  𝑥. This completes the proof. 

 

Example 1 

Consider the set 𝑋 = ℝ (real numbers) and the 

transformation semigroup S = {𝑇𝑎(𝑥)  = 
𝑎𝑥 | 𝑎 ∈  (0, 1]}, where multiplication defines the semigroup 

operation. 

Let 𝑇 (𝑥)  =  
1

2
𝑥 be a transformation in 𝑆. A hybrid fixed 

point satisfies 

𝑔(𝑇 (𝑥))  =  𝑥  

For 𝑔(𝑥) = 2𝑥, we get 

𝑔(𝑇 (𝑥)) =  2 ×
1

2
𝑥 = 𝑥  

Thus, every 𝑥 ∈ ℝ is a hybrid fixed point with respect to 

𝑔(𝑥)  =  2𝑥. 

 

Example 2 

Let 𝑋 =  [0, 1] with the standard metric 𝑑(𝑥, 𝑦)  =  |𝑥 −
 𝑦|. Define the transformation 

𝑇(𝑥) =
𝑥

2
+

1

4
  

This is contractive because: 

|𝑇(𝑥) − 𝑇(𝑦)| = |
𝑥

2
+

1

4
−

𝑦

2
−

1

4
|  

=
|𝑥−𝑦|

2
  

which satisfies 𝑑(𝑇 (𝑥), 𝑇 (𝑦)) ≤  
1

2
 𝑑(𝑥, 𝑦). 

for 𝑔(𝑥) = 𝑥 +
1

4
 , we solve 

𝑔(𝑇 (𝑥))  =  𝑥  

Substituting 𝑇 (𝑥), 
𝑥

2
+

1

4
+

1

4
= 𝑥  

𝑥

2
+

1

2
= 𝑥  

𝑥 + 1 = 2𝑥  

1 = 2𝑥 − 𝑥  

𝑥 = 1  

Thus, 𝑥∗ =  1 is a hybrid fixed point of 𝑇 with respect to 

𝑔(𝑥) = 𝑥 +
1

4
 

 

CONCLUSION 

This study extends fixed point theory by investigating hybrid 

fixed points in semigroups of transformation. The key 

findings focus on the existence and uniqueness of hybrid fixed 

points under various conditions, with proofs supported by 

theorems, lemmas, propositions, and corollaries. This work 

extends classical fixed point results by incorporating hybrid 

fixed points in transformation semigroups, offering new 

insights into metric space analysis and iterative algorithms. 

Future research could explore extensions to stochastic 

semigroups and applications in optimization problems. 
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