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ABSTRACT 

Statistical process control charts operate with the two basic assumptions that the process data at different time 

points should be independent and identically normally distributed (i.i.n.d.). The assumption of independence 

is mostly violated which leads to wrong inferences made on the processes being monitored. This work aims at 

carrying out Statistical Process Control (SPC) of autocorrelated data exhibiting Geometric Brownian Motion 

(GBM): Arithmetic Return Model (ARM) approach. The proposed model proffers a simplified solution to the 

autocorrelation problem in SPC by transforming an Autoregressive of order 1 (AR (1)) process to ARM, this 

is because the GBM is the potential law which governs most positive time series, and has been confirmed to 

be AR(1) according to literature.  Two sets of autocorrelated data which exhibit GBM properties; a simulated 

data and a furnace temperature data obtained from literature were subjected to SPC and monitoring. Findings 

from the work showed that the ARM performed better than the existing Logarithmic Return Model (LRM) in 

terms removal of autocorrelation faster with less sophistication, from 1.171261 to 2.86818 in the simulated 

data, and from 1.50446 to 1.7848 in the furnace temperature data. Also, the proposed model gave a better 

fitting of both process data, and faster detection ability for out of control signals in the control charts at λ=0.25, 

λ=0.5, λ=0.7 which makes the proposed ARM a better choice when dealing with SPC of autocorrelated data 

exhibiting the GBM.  
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INTRODUCTION 

Control charts for process monitoring have traditionally been 

designed and evaluated under the assumption that 

observations on the process output at different times are 

independent (Chao-Wen & Marion, 2001). The most 

important of the assumptions made concerning control charts 

is that of independence of the observations (Montgomery, 

2013). Control charts are the most popular monitoring tools 

used to monitor changes in a process and distinguished 

between assignable and chance causes of variations (Rupali 

& Vikas, 2022). When the assumption of independence is 

satisfied, conventional control charts may be applied to the 

process for monitoring and evaluation. However, the 

independence assumption is often violated in practice because 

the variables tend to have a reasonable level of correlation 

among them and this can produce a major impact on the 

process estimates thereby leading to faulty inferences about 

the process. The conventional control charts do not work well 

if the quality characteristic exhibits even low levels of 

correlation over time (Montgomery, 2013). Traditional 

control charts may produce misleading results, such as an 

increased frequency of false alarms, when applied to 

positively autocorrelated data.  

Autocorrelation, also known as serial correlation, refers to the 

degree of correlation of the same variables between two 

successive time intervals. It is known for measuring the 

relationship that exists between a variable and lagged values 

of itself. It is conceptually similar to the correlation between 

two different time series, but autocorrelation uses the same 

time series twice. Once in its original form and lagged in one 

or more time periods (Tim, 2023). 

In discrete as well as in continuous production processes, data 

often show some autocorrelation, or serial dependence. 

Several monitoring tools are found in the literature that deals 

with the case of multiple process variables, but a few of them 

deal with the case of autocorrelated data (Hussam et al., 

2021).  

According to existing literature, there are three major ways of 

statistically controlling an autocorrelated process. The first is 

the model-based approach where a time series model is fitted 

to the process data thereby obtaining residuals that are i.i.n.d, 

afterwards, the residuals are used as process control data 

which can be plotted using the traditional control charts (Siaw 

et al., 2015). The second method is the one in which the 

control limits of the traditional control charts are adjusted to 

account for autocorrelation, and the third which is less popular 

is the non-parametric method which does not require any 

model fitting strategies. 

Also, the potential law which governs most autocorrelated 

data is the Geometric Brownian Motion as explained in Siaw 

et al. (2013), and these GBM  is an Autoregressive of order 1 

process. With this point as a motivation, Logarithm return 

model (LRM) was introduced by Siaw et al. (2013), to 

overcome the problem of sophistication which usually comes 

with the use of ARIMA models for removing autocorrelation 

in a time series.   

In Statistical Process Control, the goal is to produce goods and 

services which are as identical as possible, so variation is 

expected to be minimal, as explained by Muhammad et al. 

(2023). According to literature, logarithmic returns are 

approximately equal to the arithmetic ones when the rate of 

return is not much, and so this factor is the motivation for this 

work.  

Arithmetic return model (ARM) was introduced by Chajire et 

al. (2024) as a transformation of an Autoregressive process of 

order 1 (AR(1)) for removing autocorrelation from a process 

which exhibits  geometric brownian motion (GBM) and 

compared to LRM of Siaw et al. (2022). The major goal in 

this work is to find out the strength of ARM for control and 

monitoring of autocorrelated data which exhibits the 

geometric Brownian motion (GBM). 
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MATERIALS AND METHODS 

Arithmetic Return Model (ARM) 

The model used was achieved by converting the 

Autoregressive process of order 1 (AR (1)) to its Arithmetic 

Return (AR) and the resulting model was used for removal of 

autocorrelation, and control of some processes.  

To consider the Arithmetic Return Model (ARM) for time 

dependent data, transformation of Arithmetic Return at time t 

(𝐴𝑅𝑡) is needed and shown as  

𝐴𝑅𝑡 =
𝑋𝑡−𝑋𝑡−1

𝑋𝑡−1
    (1) 

 Consider an AR(1) process which can be written as; 

𝐴𝑅𝑡 = 𝐶 + 𝛩𝐴𝑅𝑡−1 + 𝑒𝑡    (2)  

where C is the intercept, 𝛩 the slope in AR (1) model and  

𝑒𝑡~𝑁(0, 𝜎
2)  

Then the Arithmetic Return transformation of Equation (2) is 

given as 
𝑋𝑡 −𝑋𝑡−1

𝑋𝑡−1
= 𝐶 + 𝛩 (

𝑋𝑡−1−𝑋𝑡−2

𝑋𝑡−2
) + 𝑒𝑡    (3) 

thus, 
𝑋𝑡 

𝑋𝑡−1
− 1 = 𝐶 +  𝛩 (

𝑋𝑡−1

𝑋𝑡−2
− 1) + 𝑒𝑡

𝑋𝑡 

𝑋𝑡−1
= 𝐶 + 1 +  𝛩 (

𝑋𝑡−1

𝑋𝑡−2
) − 𝛩 + 𝑒𝑡

𝑋𝑡 

𝑋𝑡−1
= [𝐶 + 1 −  𝛩] +  𝛩 (

𝑋𝑡−1

𝑋𝑡−2
) + 𝑒𝑡

𝑋𝑡 

𝑋𝑡−1
= ℬ + 𝛩 (

𝑋𝑡−1

𝑋𝑡−2
) + 𝑒𝑡 }

  
 

  
 

  (4) 

where ℬ = [𝐶 + 1 −  𝛩], and 𝛩 are the regression parameters, 

ℬ is the intercept and 𝛩 is the slope in the model. 

Therefore, Equation (4) is the Arithmetic Return model 

(ARM). The residuals were obtained using Equation (5)  

𝑒�̂� = 𝑋𝑡 − �̂�𝑡    (5) 

The logarithmic return model (LRM) used for comparison is 

the one proposed by Siaw et al. (2022) as shown in Equation 

(6) 

Xt =𝑒
𝐶 . 𝑋𝑡−1. (

𝑋𝑡−1

𝑋𝑡−2
)
𝛩
+ ℇ𝑡   (6) 

The Durbin-Watson (d) Test for Autocorrelation 

The Durbin-Watson  test is a statistical test used to 

detect autocorrelation in the residuals of a linear regression 

model. 

This test was carried out on both sets of data before the main 

analysis, to confirm for the presence of positive 

autocorrelation. The obtained residuals from both the (ARM) 

and (LRM) models were also tested to check if 

autocorrelation is removed from both datasets after the 

transformations. 

The null and alternative hypotheses used for the Durbin-

Watson test are: 

H0:  Positive autocorrelation does not exist among the 

process residuals 

H1:  Positive autocorrelation exists among the process 

residuals 

Test statistic:    

 𝑑 =  
∑ (𝑒𝑡 − 𝑒𝑡−1 )

2𝑇
𝑡=2

∑ 𝑒𝑡
2𝑇

𝑡=1
     (7) 

where T: The total number of observations 

et: The tth residual from the regression model (Zach, 2021). 

 

Decision rule for Durbin-Watson test for the presence of 

positive autocorrelation 

At significance level α (alpha), the DW test statistic was 

compared at lower and upper critical values as presented by 

CFI (2024). 

If 𝑑 >  𝑑𝑈, there is no statistical evidence that positive 

autocorrelation exists in the data 

If 𝑑 <  𝑑𝐿, there is statistical evidence that positive 

autocorrelation exists in the data. 

If  𝑑𝐿 < 𝑑 < 𝑑𝑈 , the test is inconclusive. 

 

The EWMA Residual Control Chart 

For the EWMA residual control chart, the EWMA statistic as 

defined by (Aytaç, 2020), is 

𝛺𝑡 =  𝜆𝑒𝑡 + (1 − 𝜆)𝛺𝑡−1    (8)  

Where 𝜆 is a constant (smoothening parameter) 0 ≤ 𝜆 ≤ 1 

which determines the depth of memory of the EWMA. 

 𝛺𝑡′𝑠 are the EWMA’s at time t 

et are the errors at time t 

In order to detect small shifts, small values for 𝜆 are preferred 

and vice versa. The initial value 𝛺0 can be taken equal to the 

in-control mean of the residuals, which is zero (0). Just as in 

the case of the traditional EWMA chart, the control limits of 

the EWMA residual chart are initially not constant, they reach 

a constant value after some time (Aytaç, 2020). These steady-

state control limits will be calculated as follows:  

UCL =   𝜇 +  3𝜎e√
𝜆

2−𝜆
   (9) 

CL =  𝜇     (10) 

LCL =  𝜇 −  3𝜎e√
𝜆

2−𝜆
         (11) 

Where, 

 𝜎e = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟𝑠  
𝜇 = 𝑖𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠   

𝜆 = 𝑡ℎ𝑒 𝑠𝑚𝑜𝑡ℎ𝑒𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟   

 

RESULTS AND DISCUSSION 

Durbin-Watson (d) Test for the Presence of Positive 

Autocorrelation 

Durbin-Watson test was carried out on the simulated process 

and furnace temperature data obtained from Salleh et al. 

(2018), to confirm the presence of positive autocorrelation 

before the proposed model transformation was done on each 

of them. This section provides initial Durbin-Watson test 

results of the three datasets using Equation (7) and their 

interpretations. 

From the simulated process data,  

𝑑 =  
12180.95534

10399.86222
 =  1.17126  

From the Durbin-Watson table at 5% significance level, n = 

200, k = 1 (no of predictor variables) the lower and upper 

values are dL = 1.758 and dU = 1.779. DW test result obtained 

from the residuals of the simulated process data is 1.17126. 

Here 𝑑 < 𝑑𝐿 indicating that positive autocorrelation exists in 

the simulated data. Therefore, the null hypothesis which 

precedes Equation (7) was rejected here and conclusion was 

made that positive autocorrelation exists among the residuals 

of the data which needs to be removed before statistical 

monitoring of the process. 

From the furnace temperature data,  

𝑑 =  
36.60311

24.32967
  =  1.504464 

From the Durbin-Watson table at 5% significance level, n = 

80, k = 1 (no of predictor variables) the lower and upper 

values are dL = 1.611 and dU = 1.662. DW test value obtained 

from the residuals of the furnace temperature data is 1.5045. 

Here 𝑑 < 𝑑𝐿 indicating that positive autocorrelation exists in 

the furnace temperature data. Therefore, the null hypothesis 

which precedes Equation (7) was also rejected, and 

conclusion was made that positive autocorrelation exists 

among the residuals of the furnace temperature data which 

needs to be removed before statistical monitoring of the 

process. 

Results of Analysis from the ARM and LRM of Simulated 

Process and Furnace Temperature Datasets 
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The two datasets used were transformed to ARM and LRM 

and the results from the analysis are presented in this section. 

Table 1 and 2 presents results for both processes without any 

transformation carried out on them, alongside the ARM and 

LRM transformation results.  

 

Table 1: Results from analysis of simulated process data  

Model Slope Intercept R2 Correlation d 

Simulated process 0.516556 86.26962 0.215098 0.517134 1.171261 

ARM -0.44707 4.21E-04 0.203957 -0.45162 2.86818 

LRM -0.44607 6.57E-05 0.173363 -0.45079 2.143208 

 

The fitted time series equation from the untransformed 

simulated process data is 

�̂�𝑡 = 86.2696 + 0.5166𝑋𝑡    (12) 

The ARM fitted to the simulated process dataset is, 

(
𝑋𝑡

𝑋𝑡−1
) = 4.21 × 10−4 + (−0.4471(

𝑋𝑡−1

𝑋𝑡−2
))  (13) 

The LRM fitted to the simulated process data is, 

Xt =𝑒
6.57 x 10−5 . 𝑋𝑡−1. (

𝑋𝑡−1

𝑋𝑡−2
)
−0.4461

   (14) 

 

Table 2: Results from analysis of the furnace temperature data 

MODEL Slope Intercept R2 Correlation d 

Furnace Temperature 0.72388 435.98496 0.50021 0.70725 1.50446 

ARM 0.14546 −4.83 × 10−6 0.02173 0.14742 1.7848 

LRM 0.14545 −4.89 × 10−6 0.02173 0.14741 2.00465 

 

The fitted time series equation from the untransformed 

furnace temperature data is 

�̂�𝑡 = 435.9850 + 0.7239𝑋𝑡    (15)  

The ARM fitted to the furnace temperature data is, 

(
𝑋𝑡

𝑋𝑡−1
) = −4.8315 x 10−6 + 0.145460909 (

𝑋𝑡−1

𝑋𝑡−2
) (16) 

The LRM fitted to the furnace temperature data is, 

Xt =𝑒
−4.8926 x 10−6 . 𝑋𝑡−1. (

𝑋𝑡−1

𝑋𝑡−2
)
0.14545076

  (17) 

 

Time Series Plots of the Simulated Process Data 

The time series plots of the simulated process data, ARM and 

LRM transformed data, all against time (in hours) are 

presented in Figure 1.  

 

 
Figure 1: Time series plot of the simulated process data, ARM and LRM transformations.  

 

The random fluctuations and sudden drifts of this data over 

time shows that the simulated process is GBM. The 

markovian nature of the plot is also indicative that the process 

is GBM. Figure 1 shows how the ARM and LRM performed 

similarly in giving approximately the same fitting to 

simulated process data. This indicates here, that the ARM 

competes well with the existing LRM is terms of fitting of the 

simulated process dataset. 
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Time Series Plots of the Furnace Temperature Data 

 
Figure 2: Time series plots of the furnace temperature, ARM and LRM transformations. 

 

The change in the values of the furnace temperature from one 

time period to the next is a random variable, and the tendency 

of the data to move randomly over time but with systematic 

upward and downward trend is indicative of GBM. The 

process also proves to be GBM for its time continuous and 

Markovian nature. The performance of both the ARM and 

LRM in fitting of the furnace temperature dataset is well 

distinguished here. The ARM forecast to the furnace 

temperature gives a better fit to the furnace temperature 

dataset, with the trend line from the ARM closely beside the 

untransformed furnace temperature data points.  

Exponentially Weighted Moving Average (EWMA) 

Control Charts 

EWMA control charts were constructed to monitor the 

simulated data and furnace temperature data obtained from 

Salleh et al. (2018) around a specified target, using the 

Arithmetic Return Model (ARM) after each dataset was 

studied and confirmed to exhibit the GBM nature. Varying 

values of the smoothening parameter λ (0.25, 0.5 and 0.7) 

were used for the control and observed.  

 

EWMA Control Charts for the Simulated Process Data 

Residuals 

EWMA residual control charts were constructed using the 

ARM and the LRM to monitor the simulated process data 

residuals around a specific target value (𝜇) and to visualize 

how residuals from both models relate with the EWMA at 

varying values of the smoothening parameter (𝜆).  

 

 
Figure 3: EWMA control chart for ARM of simulated process data, 𝜆 = 0.25 

 

At  𝜆 = 0.25, UCL= 6.1609, CL= 0.0368, LCL= -6.2345, 

Figure 3, shows that some of the simulated process residuals 

fall outside of the control limits, and this can be as a result of 

the strictness of the smoothening parameter at 𝜆 = 0.25, then 

higher 𝜆 value needs to be selected to keep the process in state 

of statistical control. Control limit values for the ARM are 

similar to those of the existing LRM and so, similar 

performance was recorded for this dataset. 
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Figure 4: EWMA control chart for LRM of simulated process data, 𝜆 = 0.25At  𝜆 = 0.25, UCL= 6.2160, CL= 0.00022, 

LCL= -6.2205, the LRM performs similarly to the EWMA of the ARM with controls limits quite similar. 

 

 
Figure 5: EWMA control chart for ARM of simulated process data, 𝜆 = 0.5 

 

At  𝜆 = 0.5, UCL= 10.6979, CL= 0.0368, LCL= -10.7716, all 

of the simulated process data residuals fall within the control 

limits with an increase in the value of the smoothening 

parameter. The increase in control limits is indicative of an 

increase in the 𝜆 value. This increases the probability that 

more of the process residuals fall within the acceptance region 

of the control chart. The control chart for this dataset works 

well with values of 𝜆 ranging from 0.5 to 1. 

 

 
Figure 6: EWMA control chart for LRM of simulated process data, 𝜆 = 0.5 

 

At  𝜆 = 0.5, UCL= 10.7681, CL= 0.0022, LCL= -10.7726, the LRM performed similarly to the ARM, having similar values 

of the control limits and most of the data points falling within the upper and lower control limits. 
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Figure 7: EWMA control chart for ARM of simulated process data, 𝜆 = 0.7 

At  𝜆 = 0.7, UCL= 16.3607, CL= 0.0368, LCL= -16.4344, all data points fall within the statistical control limits indicating 

that the process is in the state of statistical control, haven taken care of the autocorrelation problem. 

 

 
Figure 8: EWMA control chart for LRM of simulated process data, 𝜆 = 0.7 

At  𝜆 = 0.7, UCL= 16.4497, CL= 0.0022, LCL= -16.4542, performance of the control chart from the existing LRM  is also 

similar to that of the ARM.  

 

EWMA Control Charts for Furnace Temperature Data 

Residuals 

EWMA residual control charts were constructed using the 

ARM and the LRM to monitor the furnace temperature data 

residuals around a specific target value (𝜇) and to visualize 

how both models respond to the control charts for the 

residuals at varying values of the smoothening parameter (𝜆). 

 

 
Figure 9: EWMA control chart for ARM of furnace temperature, 𝜆 = 0.25 
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At 𝝀 = 0.25,  UCL= 0.0713, CL= 0.0310, LCL= -0.0092, 

four of the data points clearly fall outside of the upper control 

limit and the cause for such drift is credited largely to random 

sources and not as a result of autocorrelation in the process. 

Also, in comparison to Figure 16, the control chart of the 

ARM performed better than that for the LRM in faster 

detection of out-of-control signals, with four points clearly 

detected outside and only three points detected outside the 

upper control limits of the ARM and LRM control charts 

respectively. 

 

 
Figure 10: EWMA control chart for LRM of furnace temperature, 𝜆 = 0.25Here, 𝜆 = 0.25, UCL = 0.0716, CL= 0.0321, LCL 

= -0.0075, and only three of the data points clearly fall outside the upper control limit. This clearly shows that the ARM for 

this set of data detects out of control signal faster than the LRM. 

 

 
Figure 11: EWMA control chart for ARM of furnace temperature, 𝜆 = 0.5 

 

At 𝝀 = 0.5,  UCL = 0.1007, CL= 0.0310, LCL= -0.0386, two 

of the data points fall outside of the upper control limit also. 

Number of points outside the upper control limit have 

decreased with an increase in the value of the smoothening 

parameter (𝜆). Also, the ARM performed better than the LRM 

here in faster detection of the second point falling outside the 

upper control limit in comparison with Figure 18. 
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Figure 12: EWMA control chart for LRM of furnace temperature, 𝜆 = 0.5 

At 𝜆 = 0.5, UCL= 0.1006, CL = 0.0321, LCL = -0.0364 also, number of points falling outside the upper control limit also 

have decreased to two with an increase in the 𝜆 value and the ARM still detected the out of control point faster than the 

LRM. 

 

 
Figure 13: EWMA control chart for ARM of furnace temperature, 𝜆 = 0.7 

At  𝜆 = 0.7, UCL= 0.1375, CL= 0.0310, LCL= -0.0754, all points fall within the control limits indicating that all the 

process residuals are within limits of statistical control. The control charts for this dataset works well with 𝜆 values 

ranging from 0.6 to 1 for the ARM. 

 

 
Figure 14: EWMA control chart for LRM of furnace temperature, 𝜆 = 0.7 

At 𝜆 = 0.7, UCL = 0.1368, CL = 0.0321, LCL = -0.0726, all points fall within control limits indicating that this process 

is in a state of control. 
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CONCLUSION 

Arithmetic Return Model (ARM) was proposed in this work 

for Statistical Process Control (SPC) of autocorrelated 

processes exhibiting Geometric Brownian Motion (GBM). 

The ARM successfully removed autocorrelation from all the 

datasets analyzed, demonstrating greater ease of 

understanding and simplicity in implementation compared to 

the existing Logarithmic Return Model (LRM). Additionally, 

the ARM exhibited a faster detection capability for out-of-

control signals in SPC of autocorrelated data, making it a 

more appealing choice than the LRM. The ARM effectively 

fits SPC datasets for monitoring and control, significantly 

reducing process variation. Future research could extend the 

application of the ARM to real life-life processes for 

monitoring and controlling autocorrelated data exhibiting 

GBM characteristics, further elucidating the benefits of the 

ARM. Another potential extension is exploring the 

applicability of the model to multivariate process control of 

autocorrelated data exhibiting GBM behavior. in this work 

which exhibit the GBM nature, with much ease in 

understanding and simplicity in implementation than the 

existing LRM. 
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