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ABSTRACT 

In the area of distribution theory, statisticians have proposed and developed new models for generalizing the 

existing ones to make them more flexible and to aid their application in a variety of fields. In this article, we 

present a new distribution called the Modified Inverted Kumaraswamy Distribution Using Inverse Power 

Function with three positive parameters, which extends the Inverted Kumaraswamy distribution with two 

parameters. Some statistical properties of the MIK distribution, such as explicit expressions for the quantile 

function, probability-weighted moments, moments, generating function, Reliability function, hazard function, 

and order statistics are discussed. A maximum likelihood estimation technique is employed to estimate the 

model parameters and the simulation study is presented. The superiority of the new distribution is illustrated 

with an application to a real data set. The results showed that the new distribution fits better in the real data set 

amongst the range of distributions considered.  

 

Keywords: Kumaraswamy distribution, Inverted Kumaraswamy distribution, Quantile function,  

Reliability function, Maximum likelihood, Order Statistics 

 

INTRODUCTION 

All parametric statistical techniques, such as inference, 

modelling, survival analysis, and reliability, are based on 

statistical distributions. Fitting the data to a statistical model 

is a critical step when analyzing lifetime data. For this reason, 

several lifespan distributions have been established in the 

literature. The majority of lifespan models have a limited set 

of behaviours. Such distributions are unable to provide a 

better fit for all real scenarios. As a result, a variety of 

distribution classes have been created by expanding common 

continuous distributions. The generated family of continuous 

distributions is a new enhancement for developing and 

expanding classic distributions. The newly generated 

distributions have been extensively researched in a variety of 

fields, and they provide greater application flexibility.  

One of the most well-known lifetime distributions is the 

inverted Kumaraswamy distribution (Abd AL-Fattah 

et.al.,2017)  have a wide range of applications in problems 

related to econometrics,  biological sciences,  survey 

sampling,  engineering sciences,  medical research and life 

testing problems.  In addition, it is employed in financial 

literature, environmental studies, survival and reliability 

theory. Many researchers focused on the inverted 

distributions and their applications;for example, Calabria and  

Pulcini,(1990) studied the inverse Weibull distribution, AL-

Dayian (1999) introduced the inverted Burr Type XII 

distribution, Abd EL-Kader et al. (2003) also described the 

inverted Pareto Type I distribution, AL-Dayian (2004) 

discussed inverted Pareto Type II distribution and Aljuaid 

(2013) presented exponentiated inverted Weibull distribution. 

Kumaraswamy (1980)  presented a distribution, which has 

many similarities to the beta distribution. This distribution 

applies to many natural phenomena whose outcomes have 

lower and upper bounds, such as the height of individuals, 

scores obtained on a test,  atmospheric temperatures and 

hydrological data such as daily rainfall and daily stream flow  

(see Kumaraswamy, 1980; Jones, 2009; Sindhu, 2013; and 

Sharaf EL-Deen et al.,2014).Other notable contributions to 

distributions theory include the development of the NOF-G 

family of distributions (Sadiq et al., 2022), the NGOF-G 

family of distributions (Sadiq et al., 2023a), the NGOF-Et-G 

family of distributions (Sadiq et al., 2023b), and the NGOF-

OE-G family of distributions (Sadiq et al., 2023c). Additional 

advancements include the NETD model utilizing a 

generalized logarithmic function (Obafemi et al., 2024) and 

the extension of the T-L distribution (Habu et al., 2024). 

 

 

 

MATERIALS AND METHODS 

The inverted Kumaraswamy distribution 

The inverted Kumaraswamy distribution developed by AL-Fattah et.al. (2017) can be derived from  Kumaraswamy  

(Kum)distribution  using the transformation  
1

𝑥
− 1when  X  has  a  Kum  distribution  with probability density function (pdf) 

and cumulative distribution function (cdf) respectively given by; 

𝑓(𝑡, 𝛼 , 𝛽) = 𝛼𝛽(1 + 𝑡)−(𝛼+1)(1 − (1 + 𝑡)−𝛼)𝛽−1, 0 < 𝑡 < ∞, 𝛼, 𝛽 > 0    (1) 

𝐹(𝑡; 𝛼 , 𝛽) = (1 − (1 + 𝑡)−𝛼)𝛽 , 0 < 𝑡 < ∞, 𝛼, 𝛽 > 0      (2) 

  

 

 

 

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 9 No. 1, January, 2025, pp 234 - 239 

DOI: https://doi.org/10.33003/fjs-2025-0901-3177   

mailto:hauwau0801691@gmail.com
https://doi.org/10.33003/fjs-2025-0901-3177


MODIFIED INVERTED KUMARASW…            Yusuf et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 1, January, 2025, pp 234 – 239 235 

Modified Inverted Kumaraswamy distribution 

Modified Inverted Kumaraswamy (MIK) is an extension of inverted Kumaraswamy using the power function, the cumulative 

distribution function (cdf) and the probability density function (pdf ) of the proposed distribution will be derived by 

transforming 𝑡 = 𝑥
1

𝜆 as follows: 

𝐹( 𝑥; 𝛼 , 𝛽, 𝜆) = (1 − (1 + 𝑥
1

𝜆)−𝛼)𝛽; 0 < 𝑥 < ∞, 𝛼, 𝛽, 𝜆 > 0     (3) 

𝑓(𝑥; 𝛼 , 𝛽, 𝜆) =
𝛼𝛽

𝜆
𝑥

1

𝜆
−1(1 + 𝑥

1

𝜆)−(𝛼+1)(1 − (1 + 𝑥
1

𝜆)−𝛼)𝛽−1; 0 < 𝑥 < ∞, 𝛼, 𝛽, 𝜆 > 0   (4) 

 

 
Figure 1: PDF Plot of the Modified Inverted Kumaraswamy Distribution 

 

Figure 1 represents the probability density functions (PDFs) 

for different parameter values of the Modified Inverted 

Kumaraswamy Distribution. This distribution is a 

generalization of the Kumaraswamy distribution, which is 

known for its flexibility in modelling various types of 

data.Each curve shows how the shape of the PDF changes 

with different parameter values, which is useful for 

understanding the behaviour of the distribution under various 

conditions.The Modified Inverted Kumaraswamy 

Distribution is particularly useful in fields such as reliability 

engineering, survival analysis, and environmental studies due 

to its ability to model data with varying shapes and tail 

behaviours. 

The goal of this paper is to develop a more flexible model by 

extending the two-parameter invertedKumaraswamy 

distribution with α>0 and β>0 while the proposed distribution 

will havethree parameters𝛼, 𝛽, 𝜆 > 0. 

The rest ofthe paper is organized as follows: useful expansion 

and representations of the MIK distribution are presented in 

Section 3.  Section 4, providesthe statistical properties such as 

moments, moments generating function, quantile function, 

reliability function, hazard function and order statistics. The 

parameters of the new model were estimated using the 

maximum likelihood estimation (MLE) approach in Section 

5. The applications of the new model to the real dataset were 

shown in Section 6 to demonstrate its flexibilityagainst the 

competitors. Finally, Section 7 concludes the paper. 

 

Important Representation 

In this section, the simplest and most useful representation of the MIKis provided based on Generalized Binomial and power 

series expansion as follows: 

Using generalized Binomial expansion equation (3) becomes: 

𝐹( 𝑥; 𝛼 , 𝛽, 𝜆) = (1 − (1 + 𝑥
1

𝜆)−𝛼)𝛽 = ∑ (−1)𝑖∞
𝑖=1 (𝑖

𝛽
)(1 + 𝑥1/𝜆)−𝛼𝑖     (5)  

While the probability density function (pdf) is obtainedusing generalized binomial expansionas follows:   

From equation (4)  

(1 − (1 + 𝑥
1

𝜆)−𝛼)𝛽−1 = ∑ (−1)∞
𝑗=0

𝑗
(𝑗

𝛽−1
)(1 + 𝑥

1

𝜆)−𝛼𝑗 , then equation (4) becomes: 

𝑓(𝑥; 𝛼, 𝛽, 𝜆) =
𝛼𝛽

𝜆
𝑥

1

𝜆
−1 ∑ (−1)𝑗∞

𝑗=0 (𝑗
𝛽−1

)(1 + 𝑥
1

𝜆)−𝛼(1+𝑗)−1     (6) 

Apply  (1 + 𝑧)−𝑏 = ∑ (𝑘
−𝑏∞

𝑘=0 )𝑧𝑘𝑓𝑜𝑟|𝑏| < 1 to equation (6) and simplify gives:     

𝑓(𝑥; 𝛼 , 𝛽, 𝜆) =
𝛼𝛽

𝜆
∑ (−1)𝑗+𝑘∞

𝑗,𝑘=0 (𝑗
𝛽−1

)(𝑘
−𝛼(1+𝑗)−1

)𝑥
1

𝜆
(1+𝑘)−1

     (7) 

Equation (7) can be rewritten as:  
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𝑓(𝑥; 𝛼, 𝛽, 𝜆) = ∑ 𝜓𝑗
∞
𝑘=0 𝑥

1

𝜆
(1+𝑘)−1

        (8) 

Where, 

𝜓𝑗 =
𝛼𝛽

𝜆
∑ (−1)𝑗+𝑘∞

𝑗=0 (𝑗
𝛽−1

)(𝑘
−𝛼(1+𝑗)−1

)  

   

Statistical Properties 

In this section, some of the statistical properties of the new distribution are derived as follows. 

 

Moments 

Suppose a random variable X follows MIK- distribution, then the 𝑟𝑡ℎ moment is obtained as: 

𝐸(𝑥𝑟) = ∫ 𝑥𝑟∞

0
𝑓(𝑥, 𝛼, 𝛽, 𝜆)𝑑𝑥        (9) 

Substituting equation (4) in equation (9), gives: 

𝐸(𝑥𝑟) =
𝛼𝛽

𝜆
𝑥

1

𝜆
−1 ∑ (− 𝑖)1

𝑗=0
𝑗

(𝑗
𝛽−1

) ∫ 𝑥𝑟1

0
(1 + 𝑥

1

𝜆)−𝛼(1+𝑗)−1𝑑𝑥  

let𝑦 = 1 + 𝑥
1

𝜆,
𝑑𝑦

𝑑𝑥
=

1

𝜆
𝑥

1

𝜆
−1, 𝑑𝑥 =

𝜆𝑑𝑦

𝑥
1
𝜆

−1
  

= 𝛼𝛽 ∑ (− 𝑖)𝑗∞
𝑗=0 (𝑗

𝛽−1
) ∫ (1 − 𝑦)𝜆𝑟∞

0
(𝑦)−𝛼(1+𝑗)−1𝑑𝑦  

Then, the moments are obtained as follows:  

𝐸(𝑥𝑟) = 𝛼𝛽 ∑ (− 𝑖)𝑗∞
𝑗=0 (𝑗

𝛽−1
)𝐵(𝜆𝑟 − 1, −𝛼(1 + 𝑗))      (10) 

Equation (10) is the moments of the MIK distribution.  

 

Moment generating function (mgf) 

The moment-generating function can be obtained using equation (4) as follows;  

𝑀𝑋( 𝑡) = ∫ 𝑒𝑡𝑥∞

0
𝑓(𝑥; 𝛼 , 𝛽, 𝜆) 𝑑𝑥,       𝑥 > 0       (11) 

But 𝑒𝑡𝑥=

0 !

m m

m

t x

m



=

           (12) 

Substituting equation (12) in equation (11), we get: 

0 0

M (t) (x; , , )dx
!

m
m

X

m

t
x f

m
  



=

=         (13) 

Substituting equation (10) in equation (13), we have: 

1

0 0

M (t) ( i) ( ) ( 1, (1 ))
!

m
j

X j

m j

t
B r j

m

  
 

−

= =

= − − − +    

 

Entropy 

This measures the dynamic uncertainty of the probability distribution. 

 𝐼𝜃 =
1

1−𝜃
𝑙𝑜𝑔 ∫ (𝑓(𝑥, 𝛼, 𝛽, 𝜆))𝜃∞

0
𝑑𝑥,   𝑓𝑜𝑟   𝜃 ≠ 1, 𝜃 > 0      (12) 

𝐼𝜃 =
1

1−𝜃
𝑙𝑜𝑔 ∫ (

𝛼𝛽

𝜆
𝑥

1

𝜆
−1(1 + 𝑥

1

𝜆)−𝛼−1(1 − (1 + 𝑥
1

𝜆)−𝛼)𝛽−1)𝜃∞

0
𝑑𝑥     (13) 

 

Survival function  

The survival function s(x) is a function that gives the probability that a patient, device, or other object of interest will survive 

after a given time.it is also known as the reliability function. Its mathematical expression is given as: 

𝑆( 𝑥) = 1 − 𝐹(𝑥, 𝛼, 𝛽, 𝜆)         (14) 

𝑆(𝑥) = 1 − (1 − (1 + 𝑥
1

𝜆)−𝛼)𝛽        (15) 

 

Hazard function 

It’s also known as failure rate and is obtained using the relation. 

ℎ(𝑥) =
𝑓(𝑥,𝛼,𝛽,𝜆)

1−𝐹(𝑥,𝛼,𝛽,𝜆)
=

𝑓(𝑥,𝛼,𝛽,𝜆)

𝑠(𝑥)
        

ℎ(𝑥) =
𝛼𝛽

𝜆
𝑥1/𝜆−1(1+𝑥1/𝜆)−𝛼−1(1−(1+𝑥1/𝜆)−𝛼)𝛽−1

1−(1−(1+𝑥
1
𝜆)−𝛼)𝛽

       (16) 
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Figure 2: PDF Plot of the Modified Inverted Kumaraswamy Distribution 

 

Figure 2 shows the hazard functions, denoted as ℎ(𝑥), for different parameter values of 𝛼, 𝛽, 𝑎𝑛𝑑 𝜆. Each curve illustrates how 

the hazard function changes with different parameter values, which is useful in survival analysis and reliability engineering to 

understand the failure rates of systems or the risk of events over time. 

 

Quantile Function 

The Quantile function of the MIKdistribution can be obtained using the CDF. Let F be a CDF of the MIKdistribution, we 

define the quantile function Q(u) by: 

𝑄(𝑢) = 𝐹−1( 𝑢)  

𝑄(𝑢) = 𝑥 = ((1 − 𝑢
1

𝛽)−
1

𝛼 − 1)𝜆        (17) 

 

Order Statistics 

Order statistics help in understanding the position or rank of data points within a sample.𝑓1:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑟,𝑛 − 𝑟 +1)
∑ (−1)𝑣𝑛−𝑟

𝑗 (𝑗
𝑛−𝑟)[𝐹( 𝑥)]𝑛+𝑟−1      (18)𝑓𝑛:𝑟(𝑥) =

𝛼𝛽 ∑ (− 𝑖)∞
𝑗=0

𝑗
(𝑗

𝛽−1
)𝐵(𝜆𝑟−1,−𝛼(1+𝑗))

𝐵(𝑟,𝑛 − 𝑟 +1)
∑ (−1)𝑣𝑛−𝑟

𝑗 (𝑗
𝑛−𝑟) [∑ (− 𝑖)𝑖∞

𝑖=1 (𝑖
𝛽

)(1 + 𝑥
1

𝜆)−𝛼𝑖]
𝑛+𝑟−1

(19) 

 

Parameter Estimation 

In this section, the Maximum Likelihood Estimate (MLE) will be used to determine the parameter of the proposed distribution. 

 

Maximum Likelihood Estimation  

The maximum likelihood method is the predominant technique for estimating parameters in a model. Suppose that X is a 

random variable with a probability density function 𝑓(𝑥; 𝜃)where 𝜃 is a single unknown parameter. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be the 

observed values in a random sample of size n. In such a case, the function is expressed as   

𝐿(𝜃) = 𝜋
𝑥

𝑖=1
𝑓(𝑥; 𝜃)  

𝐿 = 𝑛 𝑙𝑜𝑔(𝛼) + 𝑛 𝑙𝑜𝑔(𝛽) − 𝑛 𝑙𝑜𝑔(𝜆) + (
1

𝜆
− 1) ∑ 𝑙𝑜𝑔 𝑥𝑖

𝑛
𝑖=1 − (𝛼 + 1) ∑ 𝑙𝑜𝑔 (1 + 𝑥

𝑖

1

𝜆)𝑛
𝑖=1 + (𝛽 − 1) ∑ 𝑙𝑜𝑔 [1 − (1 + 𝑥

𝑖

1

𝜆)

𝛼

]𝑛
𝑖=1

           (20) 

Differentiating  𝐿 with respect to 𝛼, 𝛽, and 𝜆 

∂𝐿

∂𝛼
=

𝑛

𝛼
− ∑ 𝑙𝑜𝑔 (1 + 𝑥𝑖

1

𝜆)𝑛
𝑖=1 − (𝛽 − 1) ∑

(1+𝑥
𝑖

1
𝜆)

𝛼

𝑙𝑜𝑔(1+𝑥
𝑖

1
𝜆)

[1−(1+𝑥
𝑖

1
𝜆)

𝛼

]

𝑛
𝑖=1 =  0     (21) 

∂𝐿

∂𝛽
=

𝑛

𝛽
+ ∑ 𝑙𝑜𝑔 [1 − (1 + 𝑥𝑖

1

𝜆)

𝛼

]𝑛
𝑖=1 = 0       (22) 

∂𝐿

∂𝜆
= −

𝑛

𝜆
−

1

𝜆2
∑ 𝑙𝑜𝑔 𝑥𝑖 − (𝛼 + 1) ∑

𝑥
𝑖

1
𝜆 𝑙𝑜𝑔 𝑥𝑖

𝜆2(1+𝑥
𝑖

1
𝜆)

𝑛
𝑖=1

𝑛
𝑖=1 − (𝛽 + 1) ∑

𝛼(1+𝑥
𝑖

1
𝜆)

𝛼−1

𝑥
𝑖

1
𝜆 𝑙𝑜𝑔 𝑥𝑖

𝜆2[1−(1+𝑥
𝑖

1
𝜆)

𝛼

]

𝑛
𝑖=1 = 0      (23) 
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Equations (21), (22) and   (23) are non-linear, and cannot be 

solved analytically, necessitating the use of analytical tools to 

solve them numerically. 

 

RESULTS AND DISCUSSION 

First Dataset 

The first dataset shown below represents 63 observations of 

the strengths of 1.5cm glass fibres, originally obtained by 

workers at the UK National Physical Laboratory. The data 

sets are as follows (Wani and Shafi, 2021): 

0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 

1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 

1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 

1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 

1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 

1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24. 

 

Table 1: The Estimates, Log-likelihoods and Goodness of Fits Statistics of the models based on strengths of 1.5cm glass 

fibres 

Model 𝝀 𝜶 𝜷 LL AIC 

MIK 0.3783 1.8828 7.506 -35.5531 77.1062 

TIHLIK 3.8737 0.7367 11.178 -45.4661 96.9322 

MOKEIK 1.8737 3.3317 4.512 - 126.1284 258.2568 

IK - 5.6713 110.749 -38.9397 81.8794 

 

Table 1 displays the outcomes of the Maximum Likelihood 

Estimation for the MIK distribution and three comparator 

distributions. The MIK demonstrated the lowest AIC value of 

77.1062, indicating its superior fit to the failure times of the 

models based on strengths of 1.5cm glass fibres compared to 

the other distributions considered. 

 

Second Dataset  

The second dataset consists of  Survival times (in months)  of 

a sample of 101 patients with  Advanced Acute myelogenous 

leukaemia. The datasets are as follows (Yakubu and Doguwa,  

2017):  

0.03, 8.882, 41.118, 6.151, 17.303, 0.493, 9.145, 45.033, 

6.217, 17.664, 0.855, 11.48, 46.053, 6.447, 18.092, 1.184, 

11.513, 46.941, 8.651, 18.092, 1.283, 12.105, 48.289, 8.717, 

18.750, 1.48, 12.796 ,57.401, 9.441, 20.625, 1.776, 12.993, 

58.322, 10.329, 23.158, 2.138, 13.849, 60.625, 11.48, 27.73, 

2.5, 16.612, 0.658, 12.007, 31.184, 2.763, 17.138, 0.822, 

12.007, 32.434, 2.993, 20.066, 1.414, 12.237, 35.921, 3.224, 

20.329, 2.5, 12.401, 42.237, 3.421, 22.368, 3.322, 13.059, 

44.638, 4.178, 26.776, 3.816, 14.474, 46.48, 4.441, 28.717, 

4.737, 15, 47.467, 5.691, 28.717, 4.836, 15.461, 48.322, 

5.855, 32.928, 4.934, 15.757, 56.086, 6.941, 33.783, 5.033, 

16.48,   6.941, 34.211, 5.757, 16.711, 7.993, 34.77, 5.855, 

17.204, 8.882, 39.539, 5.987, 17.237. 

 

Table 2: The Estimates, log-likelihoods, and goodness of fit of the models based on the survival time of patients with 

leukaemia 

Model 𝝀 𝜶 𝜷 LL AIC 

MIK 1.8961 1.8682 10.0338 -413.0059 826.0118 

TIHLIK 44.5965 0.1018 2.4515 -499.201 1004.402 

MOKEIK 2.0782 6.6123 1.6743 -415.7044 831.4088 

IK - 0.8056 3.9796 -470.8729 947.7458 

 

Table 2 reveals the outcomes of the maximum likelihood 

estimation for the MIK distribution and three comparator 

distributions. The MIK distribution exhibited the lowest AIC 

value at 826.0118, signifying its superior fit to the survival 

times of leukaemia patients. This implies  that the  MIK 

distribution is the most appropriate model among the 

considered distributions  

for capturing the characteristics of the dataset. 

 

CONCLUSION 

This paper developed a new distribution and derived its 

mathematical properties, including moments, moment-

generating functions, order statistics and reliability measures. 

Parameter estimation utilized both Maximum Likelihood 

Estimation (MLE).  Evaluating the proposed model against 

comparable distributions using the  Akaike  Information  

Criterion  (AIC)  consistentlydemonstrated its superior fit. 

This indicates the model's proficiency in capturing diverse 

characteristics of the dataset. Furthermore, this demonstration 

emphasized the positive impact of introducing additional 

parameters, enhancing overall distribution fit, and versatility 

in modelling various datasets of different shapes.  
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