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ABSTRACT 

Every year, both in developed and developing nations, the prevalence of skin cancer rises. Due to a lack of 

resources and medical knowledge, diagnosing skin lesions is more difficult in third-world nations. Unusual 

growths or alterations in the skin are known as skin lesions, and they can result from a number of causes, 

including cancer, inflammatory diseases, infections, traumas, and heredity. Malignant (cancerous) and benign 

(non-cancerous) skin lesions are both possible. This disease is contracted when the pigments that produce skin 

color become cancerous. Dermatologists find it difficult to diagnose skin cancer since the pigments of various 

skin conditions might look identical. This led to the goal of this work, which is to use attention mechanisms to 

design a system for dermatological diagnoses of skin lesions. Modern network architectures ResNet and 

EfficientNet, enhanced with specially designed patch-based attention heads, are the approach used to 

accomplish this. The HAM10000 dataset, a thorough compilation of dermatoscopic pictures of typical 

pigmented skin lesions, was used in the investigation. In order to improve the model's capacity to recognize 

minute yet crucial variations among lesion types, attention heads were created to highlight and identify 

important characteristics within patches of the dermatoscopic pictures. According to the experimental results, 

the model that accurately classifies images into different lesion types had the lowest accuracy of 72% on a 

dataset of over 10,000 image instances, while the model that determines whether a lesion is cancerous or non-

cancerous had the highest accuracy of 98%, demonstrating its robustness and reliability for the binary 

classification task. At 0.54, DF had the lowest F-1 score, whereas at 1.0, Normal had the highest precision. As 

a result, it is advised that skin lesion detection and categorization be modeled using attention mechanisms.  
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INTRODUCTION 

The skin is the main barrier that protects the body's critical 

organs. It serves as a barrier to keep various threats away from 

our interior organs. However, skin damage can result from 

diseases brought on by viruses, fungi, or even dust. A small 

skin lesion has the potential to develop into a major health 

issue. A person's skin health is influenced by a variety of 

things during their productive life, including exposure to 

sunlight, smoking, drinking, sports, infections, and the 

workplace. In addition to impairing the integrity of skin 

function, these variables also harm the skin, negatively impact 

human health, and in extreme situations, endanger human life. 

(Montagna, 2012).   

Effective treatment and a lower chance of serious 

repercussions depend on the early and precise diagnosis of 

skin lesions, particularly malignant ones (Wolff et al., 2017). 

Numerous industries have been touched by the development 

of machine learning techniques. Some of the effects that 

machine learning approaches have demonstrated in the health 

sector in recent years include the detection and classification 

of brain tumours, diabetes detection and prediction, and breast 

cancer detection and classification (Debelee et al., 2020). 

This research endeavour aims to investigate these 

dermatological diagnostic techniques, with a specific 

emphasis on the utilization of attention mechanisms within 

artificial intelligence models to pinpoint significant regions in 

skin lesion imagery, thereby improving the accuracy of 

dermatological diagnostics, which is essential for the effective 

management and treatment of skin diseases. (Vaswani et al., 

2017). The application of attention mechanisms to emphasize 

key regions in skin lesions offers several benefits. By 

directing attention to the most relevant portions of the lesion, 

these models can significantly enhance the accuracy of 

detection and classification. This targeted strategy is 

especially advantageous for the identification of early-stage 

malignant lesions, which may be easily missed by 

conventional diagnostic approaches. 

A major advancement in medical diagnostics has been made 

with the integration of deep learning and attention 

mechanisms in dermatology, specifically in the identification 

and analysis of skin lesions. According to systematic reviews 

by Jeong et al. (2022), deep learning, a subset of artificial 

intelligence (AI), has been thoroughly investigated for 

dermatological applications. These works demonstrate 

different deep learning techniques and their increasing use in 

dermatology. AdaViT, an adaptive computation framework 

for vision transformers based on self-attention mechanisms, 

was presented by Meng et al. in 2021. The function of spatial 

and channel-wise attention processes in image emotion 

identification is highlighted by Li et al. (2021), who also show 

how adaptable these mechanisms are across a range of image 

analysis domains. The use of attention mechanisms in 

particular domains, such as surgical action recognition and 

fine-grained picture recognition, is further demonstrated by 

Nwoye et al. (2021). 

The current research struggles with low multi-class accuracy 

(72%) and inconsistent performance across lesion types. My 

work will enhance feature discrimination and classification 

consistency using advanced attention mechanisms. 

An attention-driven lightweight model for detecting 

pigmented skin lesions was introduced by Hu and Yang in 

2023. This model maintains great performance while 

lowering computing complexity by utilizing ghosted features 

and the DFC attention mechanism. The precise identification 

of lesion characteristics is the goal of the SANet, a superpixel 

attention network put forth by He, Lei, and Wang (2019). This 

task is still difficult because of uneven class distribution and 

a lack of data. 

An attention-enabled ensemble-based deep learning method 

for multiclass categorization of skin lesion images, DermAI 
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1.0, was presented by Sanga et al. (2023). This method greatly 

improves diagnostic accuracy by fusing attention processes 

with previously established transfer learning models. A new 

multi-modal contextual fusion model called MSHA was 

created by Eze et al. (2023) to detect Varicella Zoster Virus 

skin lesions early. The model outperforms state-of-the-art 

models in accuracy and loss by combining attention-based 

contextual information, mixed-scale dense convolution, self-

attention processes, and hierarchical feature fusion.  

A dermatological classification technique using a 

combination of SVMs and Back Propagation Neural 

Networks (BPNNs) was proposed in a paper by Mohammed 

et al. (2020). They started their methodology by using 

regularized Random Forests to alter the elements, and then 

they applied image enhancement algorithms. With an 

astounding classification accuracy of 99.7% and sensitivity of 

99.4%, the research's results were outstanding. It is important 

to remember, though, that the dataset they looked at only 

included 400 photos, highlighting the necessity of additional 

validation using a larger dataset to firmly prove the validity of 

this approach. In order to simultaneously diagnose and 

localize the skin lesions in dermoscopy pictures, Yang et al. 

(2019) used a multi-task CNN with CAMs. The region of 

interest in the image, which typically corresponds to the entire 

lesion, is highlighted by the obtained CAMs. Zhang et al. 

(2018) enhanced feature mappings between successive layers 

by adding attention modules to residual networks. These 

authors also employ CAMs to demonstrate how the suggested 

network ignores the majority of the surrounding skin in favour 

of concentrating on the skin lesion. Even though CAMs can 

provide some interpretability, they often only show the full 

lesion and cannot identify smaller areas of interest that might 

be connected to various dermoscopic features.  

Grignaffini et al. (2022) undertook a systematic review of 

existing literature concerning the application of machine 

learning methodologies for the detection and classification of 

skin cancer across a variety of datasets, including MedNode, 

ISIC2017, HAM10000, ISIC2016, PH2, DermIS, 

DermQuest, ISIC archive, IDS, ISIC 2019, ISIC2020, 

ISIC2018, a 7-point checklist, and DermNZ. By analyzing 68 

research articles, the authors delivered a comprehensive 

overview of the machine learning techniques employed in 

skin cancer categorization, along with their respective 

performance metrics. The structure of the review is notably 

organized, with distinct sections dedicated to methods, 

findings, and the introduction. The reliability of the review is 

enhanced by the authors' detailed explanation of the inclusion 

and exclusion criteria applied in selecting the studies. 

Additionally, a Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) flow diagram was 

utilized to illustrate the study selection process. The Results 

Section offers an in-depth analysis of the various machine 

learning techniques applied to skin cancer categorization, 

accompanied by performance metrics. 

In a comprehensive analysis, Hauser et al. (2022) explored the 

application of explainable artificial intelligence (XAI) in the 

detection of skin cancer. XAI encompasses artificial 

intelligence frameworks that articulate their decision-making 

processes, thereby assisting medical professionals in 

comprehending and interpreting the predictions generated by 

these models. In their research, Jeong et al. (2023) sought to 

investigate the prevailing methodologies, results, and 

limitations associated with the application of deep learning in 

the field of dermatology. Their analysis encompassed studies 

published from 2015 to 2021, leading to the identification of 

65 relevant papers that satisfied their inclusion criteria. The 

authors elaborated on the diverse deep learning 

methodologies employed, the dermatological conditions 

examined, and the performance metrics utilized to evaluate 

the models. This comprehensive examination of the 

implementation of deep learning techniques in dermatology 

represents a notable advancement in the discipline. The 

review article also provided references to additional datasets 

that could be beneficial for researchers. However, it is 

possible that significant studies were missed due to the focus 

being limited to publications from 2015 to 2021. While the 

authors recognized the constraints of deep learning in 

dermatology, offering more targeted suggestions for future 

research to mitigate these limitations would have been 

advantageous. 

An examination of various methods for categorizing skin 

diseases through machine learning techniques was conducted 

by Mohammed and Al-Tuwaijari (2021). The study explored 

several methodologies, including support vector machines, 

decision trees, random forests, artificial neural networks, and 

deep learning. Additionally, it addressed the techniques and 

performance metrics utilized within these systems. The paper 

provided a comprehensive explanation of the machine 

learning algorithms employed for skin disease classification. 

However, it fell short of delivering an exhaustive analysis of 

the methodologies reviewed. It is possible that the survey did 

not encompass all existing classification methods for skin 

diseases. Moreover, a more in-depth analysis and critique of 

the methodologies discussed would have enhanced the overall 

contribution of the paper. 

Balaji et al. (2020) introduced a technique for the detection 

and segmentation of skin diseases utilizing the dynamic graph 

cut algorithm, coupled with classification via a Naive Bayes 

classifier. Initially, the authors employed the dynamic graph 

cut algorithm to segment the skin lesion from its background, 

followed by the classification of the lesion into various 

categories based on texture and colour features using the 

Naive Bayes classifier.  

In certain remote regions, the limited availability of 

dermatologists necessitates that non-specialists undertake the 

diagnosis and treatment of dermatological conditions, despite 

their insufficient training and expertise in this specialized 

area. Although dermatology textbooks are accessible as 

reference sources, these practitioners encounter considerable 

obstacles in achieving precise diagnoses. The uneven 

distribution of dermatologists and healthcare resources 

exacerbates the challenges associated with accurate diagnosis 

in these locales (Hoang et al., 2022). Additionally, cultural 

stigmas related to skin cancer and lesions can lead to social 

ostracism and discrimination, further complicating the 

situation. The repercussions of skin cancer and lesions extend 

beyond the individual, impacting families, communities, and 

the broader economy (Journal of Clinical and Aesthetic 

Dermatology, 2018). 

The existing literature highlights notable progress and 

potential uses of deep learning and attention mechanisms 

within dermatology. The incorporation of these technologies 

into dermatological diagnostics, although still in its nascent 

stages, demonstrates encouraging outcomes and underscores 

the necessity for continued research and innovation. These 

developments signify a vital advancement toward more 

precise, efficient, and interpretable diagnostic methodologies 

in dermatology. Consequently, this research endeavors to 

explore a novel approach to dermatological diagnostics 

through the implementation of an attention mechanism 

system. 
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MATERIALS AND METHODS 

Modern network designs like ResNet and EfficientNet, 

reinforced with specially designed patch-based attention 

heads, was used in this study on "Dermatological Diagnosis 

of Skin Lesions via Attention Mechanisms." The HAM10000 

dataset, a comprehensive collection of dermatoscopic pictures 

of common pigmented skin lesions, was   used in this 

investigation. The suggested solution will focus on the parts 

of the skin where the current technologies are less accurate, 

enabling more efficient detection in those areas. Through the 

application of attention techniques, the suggested system will 

let the detection model to concentrate on important areas of 

the image, resulting in more precise legions detection.  

In order to manage big datasets and process images in real-

time, the suggested model was made to be efficient and easily 

incorporated into current clinical procedures. In order to 

create a user-friendly skin lesion identification tool, the 

suggested system was designed to accommodate the 

preferences of both patients and professionals. 

This system uses attention to focus on relevant regions of the 

image, it extracts features using attention mechanisms while 

focusing on both classification and diagnosis. The system is 

structured into several interconnected components designed 

to handle various aspects of the segmentation process from 

data handling to model deployment. To facilitate seamless 

access to high-quality imaging data, the system will utilize the 

Kaggle API for downloading the HAM10000 datasets directly 

into the Google Colab environment. This integration ensures 

that the data used for training and validation is up-to-date and 

readily accessible without manual downloading and 

uploading, enhancing workflow efficiency. Given the large 

size of the imaging data, efficient data handling strategies was 

implemented. The system will manage data storage 

transiently in the Colab environment, utilizing cloud storage 

solutions if necessary for scalability and data persistence. 

Data was processed in batches to optimize memory usage and 

computational resource allocation. 

 

Description of the dataset 

The dataset used in this project comprises various images of 

skin lesions, which include both benign and malignant types. 

The primary sources of the dataset are: 

HAM10000: A dataset consisting of 10,015 dermatoscopic 

images of pigmented lesions. 

ISIC 2019: An expanded dataset including multiple types of 

skin lesions with annotations. 

Additional Datasets: Normal skin images sourced from 

multiple additional datasets to provide a comprehensive 

training set. The lesion types present in the dataset include: 

Actinic Keratoses and Intraepithelial Carcinoma (AKIEC) 

(total number), Basal Cell Carcinoma (BCC) (total number), 

Benign Keratosis-like Lesions (BKL), Dermatofibroma (DF), 

Melanoma (MEL), Melanocytic Nevi (NV), Vascular Lesions 

(VASC) and Normal (non-lesion) skin images.Each image is 

labeled with its corresponding lesion type, and the dataset also 

includes annotations for each image. 

 

Data Processing and Organization 

The data processing phase involved a series of steps to prepare 

the dataset for training and validation. This section discusses 

each step and the outcomes achieved.  The research used 

standard image preprocessing techniques on the HAM10000 

dataset, including resizing images to a uniform input size 

suitable for ResNet and EfficientNet architectures. Data 

augmentation methods, such as rotation, flipping, scaling, and 

color normalization, were applied to increase data diversity 

and reduce overfitting. Additionally, patch-based 

preprocessing was implemented to divide dermatoscopic 

images into smaller regions, enabling the attention heads to 

focus on localized features. This patch-based approach aimed 

to enhance the model's ability to capture subtle variations 

among different lesion types. 

 

Load and Move Dataset Files 

The initial step was to define the source and target directories 

for the dataset files. The source directory contained all the 

images, while the target directory was designated to organize 

these images based on their classes. This step involved 

moving all images from the source directory to a specified 

target directory for better organization.By systematically 

organizing the images, each file was correctly placed in its 

respective class directory, facilitating the subsequent steps of 

data processing and model training. 

 

Load Dataset and Create Class Labels 

Important details like picture filenames and the class labels 

that go with them were included in the dataset metadata, 

which was loaded from a CSV file. In order to train the 

classification model, class labels for the photos were made 

using this information. Ensuring that every image was 

appropriately identified and classed required the creation of 

precise class labels based on the metadata. This labeling 

procedure was essential to the training process's efficacy. 

 

Create Directories for Each Class and Move Images 

To properly organize the dataset, directories were made for 

each type of lesion in addition to "Normal." Images were 

separated and categorized into their appropriate 

classifications thanks to this framework. Following the 

creation of class labels in the preceding phase, images were 

then relocated to the appropriate folders. This stage made sure 

that every class had its own directory and that the dataset was 

properly organized. The training process was eventually more 

effective as a result of the organization's facilitation of data 

processing and management. Building a strong classification 

model requires efficient data administration and processing, 

which was established by arranging the dataset into clearly 

defined directories. Figure 1 show Creating Directories for 

Each Class 

 



DERMATOLOGICAL DIAGNOSIS OF SKIN…            Balogun et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 2, February, 2025, pp 158 – 169 161 

Figure 1: Creating Directories for Each Class 

 

Restricting and Splitting Data 

To ensure a balanced training process, the dataset was 

restricted to a maximum number of images per class, with a 

portion of these images reserved for validation. The restricted 

dataset resulted in the following counts for the training and 

validation sets: 

Training Set Class Counts: 

- NV: 270 files 

- MEL: 270 files 

- BKL: 270 files 

- DF: 104 files 

- AKIEC: 270 files 

- BCC: 270 files 

- VASC: 128 files 

- Normal: 270 files 

Validation Set Class Counts: 

- NV: 30 files 

- MEL: 30 files 

- BKL: 30 files 

- DF: 11 files 

- AKIEC: 30 files 

- BCC: 30 files 

- VASC: 14 files 

- Normal: 30 files 

The data split ensured that there was a balanced representation 

of each class in both the training and validation sets, which is 

crucial for training a model that generalizes well. 

 

Calculating Class Weights 

Class weights were calculated to address the imbalance in the 

dataset. These weights were used during model training to 

ensure that the model did not become biased towards the more 

frequent classes. The calculated class weights were as 

follows: 

Class weights: 

NV: 0.8574074074074074 

MEL: 0.8574074074074074 

BKL: 0.8574074074074074 

DF: 2.2259615384615383 

AKIEC: 0.8574074074074074 

BCC: 0.8574074074074074 

VASC: 0.8574074074074074 

Normal: 1.80859375 

These weights helped to balance the influence of each class 

during the training process, improving the model's ability to 

accurately classify less frequent classes. Figure 2:  

Calculating the class weight of the dataset 

 

 
Figure 2:  Calculating the class weight of the dataset 

 

Model Architecture 

The model architecture used for both skin lesion classification 

and cancer diagnosis was based on the EfficientNetB1 model, 

enhanced with an attention mechanism and regularized dense 

layers. The architecture is summarized as follows: 
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Figure 3: Use Case Diagram of Proposed System 

 

1. Base Model: EfficientNetB1: A pre-trained EfficientNetB1 

model was used as the base for feature extraction. This model 

is known for its efficiency and performance on various image 

classification tasks. Figure 3: Use Case Diagram of Proposed 

System 

2. Attention Mechanism: Attention Layer: A single-channel 

attention map was applied using a Conv2D layer with a 

sigmoid activation function. This attention mechanism helps 

the model focus on the most relevant parts of the image. 

3. Global Average Pooling: GlobalAveragePooling2D: This 

layer reduced the spatial dimensions of the feature maps to a 

single vector, summarizing the information from the entire 

image. 

4. Regularized Dense Layers:  

Dense Layers: Two dense layers with L2 regularization were 

added, each followed by Batch Normalization and Dropout 

layers to prevent overfitting. 

Output Layer: A final dense layer with a softmax activation 

function was used to produce the class probabilities. 

The detailed architecture is illustrated in the table below, 

describing each layer and its corresponding hyperparameters. 
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Table 1: Architecture of Each Layer and its Parameters 

 Layer Type Layer Details 

 Input Shape: (256, 256, 3) 

 EfficientNetB1 Base Model Pre-trained on ImageNet, include_top=False 

 Attention Mechanism Conv2D(1, (1, 1), activation='sigmoid', padding='same') 

 Multiplication Multiply() with attention map 

 Global Average Pooling GlobalAveragePooling2D() 

 

      7. Dense Layer 1 Dense(256, activation='relu', kernel_regularizer=l2(0.01)) 

8. Batch Normalization 1 BatchNormalization() 

9. Dropout 1 Dropout(0.5) 

 

     10. Dense Layer 2 Dense(128, activation='relu', kernel_regularizer=l2(0.01)) 

     11. Batch Normalization 2 BatchNormalization() 

     12. Dropout 2 Dropout(0.5) 

     13. Output Layer (Multi-class) Dense(num_classes, activation='softmax', kernel_regularizer=l2(0.01)) 

     14. Output Layer (Binary) Dense(2, activation='softmax', kernel_regularizer=l2(0.01)) 

 

Model development  

The model's operation can be mathematically represented through a series of transformations applied to the input data. Let \( 

x \) represent the input image tensor. Figure 4 show Mathematical Representation  of  the model 

 The operations are as follows:  

EfficientNetB1 Feature Extraction: 

𝐹𝐸𝑓𝑓𝑁𝑒𝑡(𝑥) = 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡𝐵1(𝑥) 

 

Attention Mechanism: 

𝐴(𝑥) = 𝜎 (𝐶𝑜𝑛𝑣2𝐷1 × 1(𝐹𝐸𝑓𝑓𝑁𝑒𝑡(𝑥))) 

𝐹𝐴𝑡𝑡(𝑥) = 𝐹𝐸𝑓𝑓𝑁𝑒𝑡(𝑥) ⊙ 𝐴(𝑥) 

 

Global Average Pooling: 

𝐺(𝑥) = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷(𝐹𝐴𝑡𝑡(𝑥)) 

 

Dense Layers with Regularization: 

𝐷1(𝑥) = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝐷𝑒𝑛𝑠𝑒256 (𝑅𝑒𝐿𝑈(𝐺(𝑥))))) 

𝐷2(𝑥) = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝐷𝑒𝑛𝑠𝑒128 (𝑅𝑒𝐿𝑈(𝐷1(𝑥))))) 

 

Output Layer: 

𝑦𝑚𝑢𝑙𝑡𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐷𝑒𝑛𝑠𝑒𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠(𝐷2(𝑥))) 

𝑦𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐷𝑒𝑛𝑠𝑒2(𝐷2(𝑥))) 

 

Where: 

𝜎 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛..  
⊙  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑤𝑖𝑠𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 
𝐶𝑜𝑛𝑣2𝐷1 × 1 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎 1 × 11 × 1 𝑓𝑖𝑙𝑡𝑒𝑟. 
𝐷𝑒𝑛𝑠𝑒𝑘 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑑𝑒𝑛𝑠𝑒 𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑡ℎ 𝑘𝑘 𝑢𝑛𝑖𝑡𝑠. 
𝑅𝑒𝐿𝑈 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 
𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑎𝑡𝑐ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟. 
𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑝)𝑖𝑠 𝑡ℎ𝑒 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑝. 
𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 
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Figure 4: Mathematical Representation of the model 

 

Preprocessing and model development 

Preprocessing for Cancer Diagnosis Model: The 

preprocessing for training a model specifically for cancer 

diagnosis involved grouping the various skin lesion classes 

into two broader categories: cancerous and non-cancerous. 

This section discusses the steps taken to prepare the data for 

this binary classification task. 

 

Grouping Classes into Cancerous and Non-Cancerous 

The lesion types were grouped into two categories: 

- Cancerous: Includes AKIEC, BCC, BKL, DF, MEL, NV. 

- Non-Cancerous: Includes Normal and VASC. 

This grouping was based on the nature of the lesions, with the 

cancerous group containing all malignant or potentially 

malignant types, and the non-cancerous group containing 

benign or normal skin images. 

Loading Images and Labels: The new binary categories were 

used to label the photographs after they were loaded from the 

dataset. Reading the photos, making any necessary 

augmentations, and translating the labels to a binary format 

were all steps in this procedure. 

Each image was correctly classified into either the malignant 

or non-cancerous group in order to prepare the dataset. The 

training of a model designed especially for cancer diagnosis 

was made easier by this binary labeling. 
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Figure 5: Loading Images and Augmentation 

 

Loading Images and Labels: Given the class imbalance in the 

dataset, class weights were calculated to ensure that the model 

did not become biased towards the more frequent class. The 

calculated class weights were: 

Class weights: 

Cancerous: 0: 2.3266331658291457 

Non-Cancerous:  1: 0.6368638239339752 

These weights indicated a significant imbalance, with non-

cancerous images being less frequent than cancerous ones. By 

applying these weights during training, the model was guided 

to pay more attention to the minority class, improving its 

ability to correctly classify non-cancerous images. 

Training the Cancer Diagnosis Model: The preprocessed 

dataset and the determined class weights were used to train 

the cancer diagnosis model. The model's performance on the 

training and validation sets was tracked during several 

training epochs. 

Training Progress and Results: During the training process, 

the model showed significant improvements in both accuracy 

and loss for the binary classification task. Key observations 

from the training process included: 

 

Hyperparameters and their representation 

The following table (2) summarizes the hyperparameters used 

in the model and their respective values: 

 

Table 2: Hyperparameters and their Representation 

Hyperparameter Symbol Value 

Input Shape 𝑥 (256, 256, 3) 

Base Model Weights  ImageNet 

Attention Map Channels  1 

Attention Activation 𝜎 Sigmoid 

Dense Layer 1 Units 𝑘1 256 

Dense Layer 2 Units 𝑘2 128 

Dropout Rate 𝑝 0.5 

Regularization Factor 𝜆 0.01 

Learning Rate 𝜂 0.001 

Number of Classes num_classes Varies (8 for multi-class, 2 for binary) 

 

The model architecture and the mathematical representation 

of the transformations applied to the input data highlight the 

structured approach to feature extraction, attention 

mechanism integration, and regularization, ensuring the 

robustness and effectiveness of the model for skin lesion 

classification and cancer diagnosis.  

 

Training Process 

The training process involved several important steps to 

ensure the model learned effectively from the data while 

avoiding overfitting. Key components of the training process 

included learning rate scheduling, the use of callbacks, and 

monitoring the model's performance on a validation set. 
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Learning Rate Scheduling 

Learning rate scheduling was implemented to adjust the 

learning rate dynamically during training. The learning rate 

was initially set to 0.001, and it was reduced by a factor of 5 

when the validation loss plateaued. This was achieved using 

the `ReduceLROnPlateau 

The effect of learning rate scheduling was observed through 

the gradual stabilization and eventual improvement in the 

model's performance. Initially, a higher learning rate allowed 

the model to make significant updates to the weights, 

facilitating rapid learning. As training progressed, reducing 

the learning rate helped fine-tune the model by making 

smaller adjustments, which was crucial for minimizing 

validation loss and improving generalization. 

 

Callbacks Used 

Several callbacks were utilized to enhance the training 

process: 

1. EarlyStopping: 

   - Monitor: `val_loss` 

   - Patience: 20 epochs 

   - Restore Best Weights: True 

   - The EarlyStopping callback was used to halt training when 

the validation loss stopped improving. This helped prevent 

overfitting by ensuring that the model did not continue to train 

beyond the point where it was no longer improving. 

2. ModelCheckpoint: 

   - Monitor: `val_loss` 

   - Save Best Only: True 

   - Filepath: `best_model.keras` or `best_model.h5` 

   - The ModelCheckpoint callback saved the model weights 

at each epoch where the validation loss improved. This 

ensured that the best performing model, in terms of validation 

loss, was retained for further evaluation and deployment. 

3. ReduceLROnPlateau: 

   - Monitor: `val_loss` 

   - Factor: 0.2 

   - Patience: 5 epochs 

   - Min LR: 0.00001 

    

Metrics used 

These metrics helps in evaluating a model’s performance 

identifying the model’s strengths and weaknesses and also 

guiding the model’s improvement. 

 

True Positive (TP) 

True positive occurs when a positive prediction (for instance, 

lesion present) matches an actual positive outcome (lesion 

indeed present). 

False Positive (FP) 

A false positive occurs when a positive prediction (for 

instance, lesion present) does not match positive outcome 

(lesion absent). False positive is also known as type I error or 

false alarm. 

 

False Negative (FN) 

A false negative occurs when a negative prediction (for 

instance, lesion absent) does not match negative outcome 

(lesion present). False negative is also known as type II error 

or false prediction. 

 

Accuracy 

accuracy measures the proportion of correct predictions out of 

the total predictions made. 

Formula: Accuracy=(TP+TN)/(TP+TN+FP+FN) 

Precision: precision measures the proportion of true positives 

among all positive predictions made.  

Formula: precision = TP/(TP+FP) 

Recall: recall measures the proportion of true positive among 

all actual positive instances 

Formula: Recall= TP/(TP+FN) 

F1-Score: F1-score is the harmonic mean of precision and 

recall, providing a balanced measure for both. 

Formula: F1-score= 2*(Precision*Recall)/(Precison+Recall) 

 

RESULTS AND DISCUSSION 

The classification report in table 3 and table4 provided a 

detailed breakdown of the model's performance on the 

validation set. The report included precision, recall, and F1-

score for each class: 

- ReduceLROnPlateau: This callback played a crucial role in 

refining the model. Initially, a higher learning rate allowed the 

model to converge quickly. As the learning rate was reduced 

upon plateauing of the validation loss, the model could make 

more precise adjustments, leading to better fine-tuning and 

improved accuracy on the validation set.  

 

Training Results 

The training results showcased the effectiveness of the 

training strategy. For instance, the multi-class classification 

model showed an initial rapid improvement in accuracy, 

followed by stabilization as the learning rate was reduced. The 

validation loss and accuracy wre closely monitored, and the 

model checkpoint saved the best performing model. 

The binary classification model for cancer detection similarly 

benefitted from this strategy, achieving high precision, recall, 

and F1-scores on the validation set. The final classification 

reports for both multi-class and binary classification models 

highlighted the model's performance in detail. 

 

Table 3: Key Observations and Observation 

Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

1 8.1181 30.72% 7.6832 14.63% 

5 3.3551 64.74% 94.0215 6.83% 

10 1.2784 79.70% 4.3213 13.17% 

16 0.5782 92.55% 3.9850 20.00% 

28 0.2156 99.35% 0.9506 75.12% 

50 0.0738 100.00% 0.1907 98.05% 
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Table 4: Classification of Report 

Lesion Type Precision Recall F1-Score 

AKIEC 0.76 0.63 0.69 

BCC 0.83 0.67 0.74 

BKL 0.64 0.70 0.67 

DF 0.47 0.64 0.54 

MEL 0.67 0.53 0.59 

NV 0.58 0.70 0.64 

Normal 1.00 1.00 1.00 

VASC 0.78 1.00 0.88 

Overall Accuracy: 72% 

 
Figure 6: Confusion Matrix 

 

These results indicated that the model performed well on 

distinguishing between lesions, achieving high precision, 

recall, and F1-scores. However, there was variability in 

performance across the different lesion types, with some 

classes achieving lower scores. This variability highlighted 

areas for potential improvement, such as additional data 

augmentation, model tuning, or exploring alternative 

architectures. 

 

Table 5: Training Progress and Result 

Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

1 5.9211 72.79% 9.3217 21.46% 

8 0.6336 98.33% 3.2017 20.98% 

13 0.3504 99.57% 0.7971 89.27% 

28 0.1510 99.84% 0.1653 99.51% 

50 0.0738 100.00% 0.1907 98.05% 

 

 
Figure 7: Training and Validation 
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The training process demonstrated the model's ability to 

generalize well to the validation data, achieving high accuracy 

and low loss values over multiple epochs. 

Classification Report for Cancer Diagnosis: The classification 

report for the cancer diagnosis model provided detailed 

metrics for the cancerous and non-cancerous categories. The 

report included precision, recall, and F1-score for each 

category: 

Classification Report: - Cancerous: Precision: 0.99, Recall: 

0.98, F1-Score: 0.99. - Non-Cancerous: Precision: 0.93, 

Recall: 0.98, F1-Score: 0.96 

The model showed high accuracy (98%) for binary 

classification of cancerous vs. non-cancerous lesions but 

struggled with multi-class classification, achieving only 72% 

accuracy. The F1 score varied, with challenges in identifying 

certain lesion types like Dermatofibroma (0.54). Compared to 

other studies, which achieved accuracies above 93% by 

integrating multimodal data or using advanced attention 

mechanisms, the current model's multi-class performance is 

lower. This suggests that incorporating additional patient 

information and exploring more sophisticated architectures 

could enhance classification accuracy and consistency across 

all lesion types. 

 

Table 6: Classification Report 

Class Includes Precision Recall F1-Score 

Cancerous AKIEC, BCC, BKL, DF, MEL, NV 1.00 0.98 0.99 

Non-Cancerous Normal, VASC 0.92 1.00 0.96 

Overall Accuracy: 98% 

 
Figure 8: Confusion Matrix: Cancerous vs Non-Cancerous 

 

The model was quite successful in differentiating between 

malignant and non-cancerous lesions, as seen by the excellent 

precision and recall values for both categories. With an 

overall accuracy of 98%, the model proved to be dependable 

and durable for the binary classification task. 

 

CONCLUSION 

An important development in medical imaging technology is 

the use of attention processes in the identification of skin 

lesions. By employing these principles, the model has proven 

to perform better in properly detecting and classifying skin 

lesions. Attention processes enhance sensitivity and 

specificity, two critical metrics in medical diagnostics, by 

concentrating on pertinent features and areas within the 

images. In addition to helping with early detection, this 

capacity lowers false positives and boosts diagnostic 

confidence in general. 

Utilizing the HAM10000 dataset, which includes 10,015 

dermatoscopic images of pigmented lesions, the 

implementation used in this study produced precise class 

labels to guarantee that the images were correctly identified 

and categorized, as well as directories to further organize the 

dataset. Class weight is used to address unbalanced datasets, 

while splitting is used to guarantee a balanced training 

process. 

On a dataset of more than 10,000 image instances, the 

experimental results demonstrate that the model that classifies 

the images into different lesion types had the lowest accuracy 

of 72%, while the model that determines whether the lesion is 

cancerous or non-cancerous had the highest accuracy of 98%, 

demonstrating its robustness and reliability for the binary 

classification task. With a precision of 1.0, Normal had the 

highest F-1 score, while DF had the lowest at 0.54. Thus, this 

study's methodology for classifying skin lesions as either 

malignant or non-cancerous was effective. The development 

of a lesion detection system based on machine learning is 

advised. 
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