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ABSTRACT 

Time series data occasionally depend on factors among which are holidays (such as Mother’s days, Children’s 

days, Democracy days, Independent Days, Valentine’s days to mention but few) which number of researchers 

did not put into consideration. This paper aimed at evaluating the forecast performance of some asymmetry 

GARCH models (EGARCH, GJR-GARCH, and APARCH) on holiday-induced volatility in Nigeria stock 

exchange price returns under three different error distributions of innovation: Normal, Skewed student’s t, and 

Generalized Error Distribution (GED). Based on minimum value of Root Mean Square Error (RMSE), 

EGARCH (1,1) model under Skewed student’s t is found to be the best model. In addition, there exists 

consequences of all the holiday’s that falls on Thursday’s (with effect 0.002803; indicating that for any unit of 

holiday on Thursday(s), the volatility of NSE price series returns will significantly increase by 0.002803). 

Volatility clustering and persistence are found in the models. More so, leverage effect is found in EGARCH 

model under the three error distributions of innovation.  
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INTRODUCTION 

Within the field of financial econometrics, basically driven by 

the need for effective risk management and accurate 

forecasting, volatility has long been a vital statistical variable 

to be considered. Volatility as a measure of dispersion, 

described the rate of variation in financial asset returns, which 

enable investors, policymakers and financial institution alike 

to make necessary adjustment before jumping into an 

agreement or business idea. One of the most useful, 

influential, and widely used methodologies for analyzing 

financial markets volatility is the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model, introduced 

by Bollerslev (1986). The concept of Autoregressive 

Conditional Heteroskedasticity (ARCH) model introduced by 

Engle (1982) paved the way for Bollerslev’s GARCH model, 

which extends the ARCH model by incorporating the past 

conditional volatility into the model. This ARCH extension, 

allowed more realistic capture of persistence and volatility 

clustering of financial time series data. Consequently, other 

GARCH models have been developed to study specific 

features of financial time series data. Some of these models 

are Exponential GARCH (EGARCH) introduced by Nelson 

(1991), in order to capture asymmetric effects of shocks to 

volatility, Threshold GARCH (TGARCH) introduced by 

Zakoian (1994), which models threshold effects in volatility, 

among others. 

Numerous empirical studies have shown the robustness and 

versatility of GARCH models across different economic and 

financial markets contexts. For instance, Rossetti et al. (2017) 

applied the EGARCH model to fixed income market volatility 

across many countries. The result revealed the effectiveness 

of EGARCH model in capturing volatility influenced by 

macroeconomic events. Chkili et al. (2021) employed a 

hybrid model combining Artificial Neural Network (ANN) 

and Fractional Integrated Asymmetric Power Autoregressive 

Conditional Heteroskedastic (FIAPARCH) model to study 

Islamic stock market changes in variance (volatility), 

describing the forecast accuracy of the adopted approach 

during the periods of significant financial events; such as 9/11 

attacks and the 2008 financial crisis. Due to the significant 

results shown by GARCH models in literature review, its 

application extends beyond traditional financial markets to 

include commodity and macroeconomic indicator. Paolella et 

al. (2008) studied the consequences of emission allowances 

on power and gas markets. They emphasized on the 

importance of understanding the statistical distributions of 

emission trading returns for hedging strategies. Similarly, 

Liang (2013) applied GARCH model in reliability 

forecasting, describing their ability in forecasting failure data 

for electronic systems.  

Despite numerous research on GARCH models, incorporating 

series returns factor, that is, holidays (such as Sallah day, 

Christmas day, Id el Maulud among others) has not been 

given extensive consideration. As such, this paper aimed in 

exploring GARCH models (EGARCH, GJR-GARCH and 

APARCH) incorporated with holidays for three error 

distributions (Normal, Skewed student’s t, and GED) to 

establish their consequences on Nigeria economy.  

In fitting and forecasting financial time series returns, 

GARCH model and its variant have been proven significant. 

With this regard, number of researchers used GARCH models 

and elucidate the nuances and applications of it in various 

contexts, from stock markets to commodity prices, and from 

macroeconomic impacts to unique industry-specific 

challenges. 

Among the early extensions of the GARCH model, Nelson 

(1991) established the EGARCH model, which captures the 

asymmetric effects of shocks on volatility and do not impose 

any restriction on the parameters in the model. The EGARCH 

model, Glosten Jakannathan, and Runkle GARCH (GJR-

GARCH) introduced by Glosten Jakannathan, and Runkle 

(1993) and the Non-linear GARCH (NGARCH) model by 

Bera and Higgins (1993) have been instrumental in fitting and 

forecasting financial volatility. These models address the need 

to capture volatility asymmetry, one of the common features 

in financial markets where negative shocks and positive 

shocks have different impact on volatility. 

Some further extensions include the Asymmetric Power 

ARCH (APARCH) model introduced by Ding et al. (1993) 

and the Threshold GARCH (TGARCH) model by Zakoian 

(1994), where asymmetries and threshold effects will be 

captured. Bollerslev and Ghysels (1996) came up with Priodic 
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GARCH (PGARCH) model, which explains the seasonal 

volatility patterns in high frequency asset returns. These 

models provide better tools for risk management and 

forecasting as they have improved our insight on volatility 

dynamic. Empirical studies, at different time periods 

explained the strength of these models. For instance, Celik 

(2020) forecasted the series returns of BIST 100 index 

between 01st Jan.2020 to 11th Feb.2021. Dummy variables 

(such as days-of-the-week, dates of holidays and COVID-19 

pandemic) were considered in the analysis. Their findings 

revealed the existence of leverage effect and that EGARCH 

(3,3) model best fit the series. In addition, holidays, COVID-

19 pandemic and Friday’s effect caused negative shocks on 

the volatility of the series returns. Wang et al. (2021) explored 

many GARCH models in order to study the returns and its 

dispersion of Bitcoin. The range of data they used was from 

1st October, 2013 to 31st July, 2020, where a total of 2496 

observations were found. Particularly, GARCH (1,1) revealed 

volatility clustering characteristic of the series returns. The 

absence of leverage effect was confirmed by EGARCH and 

TGARCH models. Sharma et al. (2021) forecasted the 

volatility for major emerging markets, such as Brazil, Mexico, 

Indonesia, China and India using GARCH (1,1) and non-

linear models. They realized GARCH (1,1) outperformed 

non-linear models. Gupta (2023) fit and forecast the stock 

market volatility in emerging nations using symmetric and 

asymmetric GARCH models, and realized EAGRCH model 

to be the best.  Naidoo et al. (2023) used GARCH (1,1) model 

to investigate how exchange rate volatility affects South 

Africa's stock and real estate markets, outlining the 

interconnectedness of financial markets. Dash (2023) used a 

year data ranging from Apr. 1, 2018 to Mar. 31, 2019 for 

twenty major stocks in Indian banking sector and applied AR-

GARCH model incorporated with days-of-the-week as 

dummy variables. The results showed that Tuesday’s (with 

lower returns) and Thursday’s effect has higher volatility 

compared to Monday.  

Since little or no research has been done on the factor such as 

holiday-induced volatility, this paper is aimed at evaluating 

the forecast performance of some asymmetry GARCH 

models (EGARCH, GJR-GARCH, and APARCH) on 

holiday-induced volatility in Nigeria stock exchange price 

returns under three different error distributions of innovation: 

Normal, Skewed student’s t, and Generalized Error 

Distribution (GED). 

 

MATERIALS AND METHODS 

The study has used the daily stock price returns series of NSE 

for the period, 16th December 2009 to 6th February 2019 

resulting to 2383 of observations in total. The data was 

obtained from Central Bank of Nigeria (CBN) website on the 

month of May, 2024. 

 

Log Returns Calculations  

Suppose 𝜂𝑡 and 𝜂𝑡−1
 represent the present and past day’s 

stock prices respectively. The log returns series, denoted by 

𝑟𝑡 is: 

𝑟𝑡 = 𝑙𝑜𝑔 (
𝜂𝑡

𝜂𝑡−1
)    (1) 

The log returns series, 𝑟𝑡 will be used as the observing 

volatility of the Nigeria stock price returns over the period 

2009 to 2019. 

 

 

EGARCH (p,q) Model 

In 1991, EGARCH (p,q) model was introduced by Nelson in 

order to model the volatility and capture the leverage effect of 

a time series data. It is expressed as follows: 

𝑙𝑜𝑔(𝜎𝑡
2) = 𝜔 + ∑ [𝛼𝑖 (

|𝜀𝑡−𝑖|

𝜎𝑡−𝑖
− √

2

𝜋
) + 𝛾𝑖 (

𝜀𝑡−𝑖

𝜎𝑡−𝑖
)]

𝑝
𝑖=1 +

∑ 𝛽𝑗
𝑞
𝑗=1 𝑙𝑜𝑔(𝜎𝑡−𝑗

2) + ∑ 𝜗𝑘𝐷𝑘𝑡
5
𝑘=1   (2) 

where𝛾𝑖, is the leverage effect. The leverage exists if 𝛾𝑖 > 0. 

If 𝜀𝑡−𝑖 > 0, good news exists, if 𝜀𝑡−𝑖 < 0, bad news exists. If 

bad news has high impact on volatility,𝛾𝑖 > 0. 𝛼𝑖 measures 

the magnitude of the shock (
𝜀𝑡−𝑖

𝜎𝑡−𝑖
) = 𝑧𝑡−𝑖, 𝛽𝑗  measures the 

persistence in conditional volatility of the shocks. Dkt is an 

indicator function such that D1t = 1 if t day is a Monday and 0 

otherwise; D2t = 1 if t day is a Tuesday; D3t = 1 if t day is a 

Wednesday D4t = 1 if t day is a Thursday and 𝐷5𝑡 = 1if t day 

is Friday.  

Note:𝜀𝑡 = 𝜎𝑡𝑧𝑡  and z𝑡~𝑁(0,1), 𝜀𝑡~𝑁(0, 𝜎𝑡
2) (3) 

 

GJR-GARCH (p,q) Model 

The GJR-GARCH(p,q) model is expressed as:  

𝜎2
𝑡 = 𝜔 + ∑ (𝛼𝑖 + 𝛾𝑖𝐼𝑡−𝑖)𝑝

𝑖=1 𝜀2
𝑡−𝑖 + ∑ 𝛽𝑗𝜎2

𝑡−𝑗
𝑞
𝑗=1 +

∑ 𝜓𝑘
5
𝑘=1 𝐷𝑘𝑡    (4) 

To guarantee the positivity of the conditional variance, the 

parameters must satisfy 0,  ,  and 0,  i j    

𝐼𝑡−𝑖 is an indicator function taken value 0 or 1. If there is no 

asymmetric effect, γ is not statistically significant. 𝐷𝑘𝑡is as 

explained above. 

 

APARCH (p,q) 

The APARCH(p,q) model is expressed as:  

𝜎𝑣
𝑡 = 𝛼𝑜 + ∑ 𝛼𝑖

𝑝
𝑖=1 (|𝜀𝑡−𝑖| − 𝛾𝑖𝜀𝑡−𝑖)𝑣 + ∑ 𝛽𝑗

𝑞
𝑗=1 𝜎𝑣

𝑡−𝑗 +

∑ 𝜏𝑘𝐷𝑘𝑡
5
𝑘=1     (5) 

where 𝛼𝑜  > 0, 𝑣 ≥ 0, 𝛽𝑗 ≥ 0, 𝛼𝑖 ≥ 0 and −1 < 𝛾𝑖 < 1. The 

asymmetry in the model is captured through the parameter 𝛾𝑖  

and the power term υ captures both the conditional standard 

deviation (𝑣 = 1) and conditional variance (𝑣 = 2) as special 

cases. 𝐷𝑘𝑡is as explained above. 

 

Diagnostic Test 

The diagnostic test conducted to evaluate the adequacy and 

predictability of NSE price series returns is Root Mean Square 

Error (RMSE) defined in Equation (6) as follows: 

𝑅𝑀𝑆𝐸 = √1

𝑘
∑ (𝜎2

𝑡 − 𝜎2
�̂�)

2𝑇+𝑘
𝑡=𝑇+1 .  (6) 

where 𝜎2
𝑡 and 𝜎2

�̂�  are the actual and predicted volatilities of 

the exchange rate returns at time t, k predictions are carried 

out from 𝑡 = 𝑇 + 1 to t = 𝑇 + 𝑘. 
 

RESULTS AND DISCUSSION 

The analysis of the empirical study on volatility of NSE price 

series returns using asymmetric GARCH models, EGARCH, 

GJR-GARCH and APARCH incorporated with holiday’s 

effects reveals insightful findings which are discussed 

subsequently.  

Note that in the subsequent tables, 𝛿1, 𝛿2, 𝛿3, 𝛿4 and 

𝛿5represents Mondays, Tuesdays,…, Fridays effects in that 

order. 
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Table 1: Parameters estimates and persistence of EGARCH (1,1) model with Holiday’s Effects 

Parameters 
Normal Skewed student’s t Generalized Error Distribution 

Estimates Estimates Estimates 

𝜔 -0.643349   (0.000036) -1.209287    (0.000083) 0.325355     (0.000567) 

𝛼1 0.011419    (0.448353) -0.043284    (0.107527) -0.023211    (0.361503) 

𝛽1 0.929102    (0.000000) 0.869527    (0.000000) 0.880156    (0.000000) 

𝛾1 0.322819   (0.000001) 0.491391    (0.000000) 0.433498    (0.000000) 

𝛿1 0.003175  (0.013614) 0.000987    (0.320139) 0.000017    (0.765090) 

𝛿2 0.002313   (0.109151) 0.001352    (0.297631) 0.000027    (0.930570) 

𝛿3 0.003011    (0.058378) 0.002512    (0.058382) 0.001628    (0.621801) 

𝛿4 0.002312    (0.125238) 0.002803    (0.025774) 0.001597    (0.568911) 

𝛿5  -0.003270   (0.014848) 0.001232    (0.231335) 0.000017    (0.804289) 

Persistence 1.1019305 1.0719385 1.073694 

AIC -6.5380 -6.6281 -6.6408 

   (The values in the parenthesis represent the p-values) 

 

By table 1, it shows that the parameter, 𝛿1of Mondays (with 

effect 0.003175) and 𝛿5of Fridays (with effect -0.003270) 

under normal assumptions of innovations are significant 

(implying that the series returns of Mondays and Fridays will 

increase and decrease respectively per unit change of the 

holidays that falls on these days) while the rest of the days are 

not at 5% level. 

The Thursday’s parameter, 𝛿4 (with effect 0.002803) under 

skewed student’s t error distribution of innovations is 

significance at 5% level while the rest of the days are not. 

Under Generalized distributions of innovations, all the 

parameters of the five days indicated non-significance at 5% 

level. 

On the other hand, 𝛼1(with effects 0.011419, -0.043284, and 

-0.023211 under Normal, Skewed student’s t, and GED 

respectively) are not statistically significant at 5% level.  

𝛽1, (with effects 0.929102, 0.869527, and 0.880156 under 

Normal, Skewed student’s t and GED respectively) are 

statistically significant at 5% level. The constant term, ω (has 

effects, -0.643349, -1.20928, and 0.325355 under Normal, 

Skewed student’s t and GED respectively) are statistically 

significant at 5% level. 

The parameter γ, is the leverage effects (with effects, 

0.322819, 0.491391, and 0.433498 under Normal, Skewed 

student’s t, and GED respectively) are statistically significant 

at 5% level. However, leverage effect will only exist if 𝛾1 ≠
0.Therefore, the hypothesis of leverage effect is accepted for 

EGARCH model. 

The persistence (with effects 1.1019305, 1.0719385, and 

1.073694 under Normal, Skewed student’s t, and GED 

respectively) exceeds 1, indicating the shocks to volatility are 

high and the variances are not stationary.  

Conclusively, the EGARCH model under generalized error 

distribution is found to be the best because it has lower AIC. 

 

Table 2: Parameters estimates of GJR-GARCH (1,1) model with Holiday’s Effect 

Parameters 
Normal Skewed student’s t Generalized Error Distribution 

Estimates Estimates Estimates 

𝜔 0.000007    (0.000000) 0.000086    (0.000182) 0.000011    (0.000000) 

𝛼1 0.190110    (0.000000) 1.000000    (0.000000) 0.240828    (0.000000) 

𝛽1 0.758207    (0.000000) 0.498154    (0.000147) 0.651225    (0.000000) 

𝛾1 -0.015757   (0.565375) -1.000000   (0.000000)  0.064780    (0.24266) 

𝛿1 0.003239    (0.013001) 0.000827    (0.494195) 0.000010    (0.86500) 

𝛿2 0.002556    (0.080623) 0.002057   (0.138112) 0.000051    (0.96022) 

𝛿3 0.003464    (0.027208) 0.002191    (0.130637) 0.001416   (0.62935) 

𝛿4 0.001255    (0.484108) 0.002869    (0.028864) 0.001054    (0.00000) 

𝛿5 0.000462    (0.832087) 0.000518    (0.640569) 0.000010   (0.85238) 

Persistence 0.9404385 0.998154 0.924443 

AIC -6.5429 -6.5319 -6.6440 

(The values in the parenthesis represent the p-values) 

 

By table 2, there exist significance effects of the holidays that 

falls on Mondays (with effect 0.003239) and Wednesdays 

(with effect 0.003464) under normal assumptions, while 

under skewed student’s t and GED error assumptions of 

innovations, only holiday’s that falls on Thursdays with 

effects 0.002869 and 0.001054 are respectively significance 

at 5%. 

On the other hand, 𝛼1(with effects: 0.190110, 1.000000, and 

0.240828 under Normal, Skewed student’s t, and GED 

respectively) are statistically significant at 5% level, 

indicating the presence of volatility clustering in the GJR-

GARCH model.  

𝛽1, (with effects: 0.758207, 0.498154, and 0.651225 under 

Normal Skewed student’s t, and GED respectively) are 

statistically significant at 5%. 

The constant term, ω (with effects: 0.000007, 0.000086, and 

0.000011 under Normal, Skewed student’s t, and GED 

respectively) are statistically significant at 5% level. 

The leverage effects parameter, 𝛾1 (with effect -1.000000) 

under skewed student’s t assumptions of innovations is 

statistically significant at 5% level but non-significant under 

normal (with effect -0.015757) and GED (with effect 

0.064780).  

The persistence (with effects: 0.9404385, 0.998154 and 

0.924443 under Normal, Skewed student’s t, and GED 
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respectively) are less than 1, indicating the shocks to volatility 

are not high. Hence, we can conclude that the GJR-GARCH 

model under generalized error distribution of innovations to 

be the best because it has lower AIC. 

 

Table 3: Parameters estimates and persistence of APARCH (1,1) model with Holiday’s Effect  

Parameters 
Normal Skewed student’s t Generalized Error Distribution 

Estimates Estimates Estimates 

𝜔 0.000000    (0.894060) 0.000000    (0.841765) 0.000000  (0.607480) 

𝛼1 0.152219    (0.000002) 0.180821    (0.000000) 0.199174    (0.000000) 

𝛽1 0.738945    (0.000000) 0.395243    (0.000000) 0.529609    (0.000000) 

𝛾1 -0.015454    (0.635767) 0.096955    (0.039272) 0.057829    (0.225842) 

𝛿1 0.003359    (0.016213) 0.001158    (0.356491) 0.000129    (0.891602) 

𝛿2 0.002325    (0.124918) 0.001275    (0.389665) 0.000235    (0.886418) 

𝛿3 0.003551    (0.031844) 0.002555    (0.068209) 0.001997    (0.000038) 

𝛿4 0.000457    (0.801307) 0.002832    (0.048499) 0.001885    (0.469815) 

𝛿5  0.000130    (0.935652) 0.000395    (0.761869) -0.000011    (0.984197) 

Persistence 0.883437 0.6245415 0.7576975 

Delta 2.981832    (0.000000) 3.412847    (0.000000) 3.107898    (0.000000) 

AIC -6.5367 -6.6105 -6.6356 

(The values in the parenthesis represent the p-values) 

 

By table 3, it shows that under normal assumptions of 

innovations, the Mondays parameter, 𝛿1(with effect 

0.003359) and Wednesdays, 𝛿3(with effect 0.003551)  are 

significance at 5% level (indicating the series return will 

increase per unit change of the holidays that fall on these days) 

while the rest of the days are not. 

The Thursday’s parameter, 𝛿4(with effect 0.002832) under 

skewed student’s t is statistical significance at 5% level while 

the rest of the days are not. 

Also, there exists only Wednesday’s significance effects (with 

value 0.001997) under generalized error distribution. 

Furthermore, 𝛼1, which measures the impact of past squared 

returns on present volatility (with effects: 0.152219, 

0.180821, and 0.199174 under Normal, Skewed student’s t, 

and GED respectively) are statistically significant at 5% level. 

This indicates the presence of volatility clustering in 

APARCH (1,1) model. 

The coefficient of 𝛽1 (with effects: 0.738945, 0.395243, and 

0.529609 under Normal, Skewed student’s t, and GED 

respectively)) are statistically significant at 5% level.  

The constant term, ω has zero effects and non-significant at 

5% level in the three assumptions of innovations. 

The coefficient,𝛾1 is positive and statistically significance at 

the 5% level in the skewed student’s t distribution, while for 

the normal and generalized error distribution𝛾1, shows non-

significance. Hence, there exist leverage effect in APARCH 

model under error assumption of skewed student’s t. 

The sum (𝛼1 + 𝛽1 +
𝛾

2
), referred as the persistence (with 

effects: 0.883437, 0.6245415, and 0.7576975 under Normal, 

Skewed student’s t, and GED respectively) are less than 1, 

indicating shocks to volatility are not high. 

Conclusively, the APARCH model under generalized error 

distribution is found to be the best because it has lower AIC. 

 

Table 4: Summary of some GARCH models under three different error assumptions with Holiday’s effect on NSE 
 EGARCH(1,1) GJR-GARCH(1,1) APARCH(1,1) 

 Normal Skewed t GED Normal Skewed t GED Normal Skewed t GED 

RMSE 0.009574 0.009566776 0.009572434 0.009573327 0.009584331 0.009572166 0.009573645 0.00956811 0.009572979 

 

With the help of forecast performance in Table 4, GJR-

GARCH model outperformed EGARCH and APARCH under 

normal and generalized error distribution of innovations while 

EGARCH outperformed both GJR-GARCH and APARCH 

models under skewed student’s t. Since the lowest RMSE 

observed in Table 4 is found in EGARCH model (under 

skewed student’s t), we conclude that EGARCH model 

performed better than the GJR-GARCH and APARCH 

models (see Celik (2023), Gupta (2023)).  

 

CONCLUSION 

This study provides a thorough analysis of volatility dynamic 

in Nigeria Stock Exchange (NSE) price series returns using 

three asymmetric GARCH models: EGARCH(1,1), GJR-

GARCH (1,1), and APARCH(1,1). The aim is to assess their 

performances in capturing holiday’s consequences or effects 

and forecasting volatility over a long period, from 16th 

December 2009 to 6th February 2019 resulting to 2383 of 

observations in total. The GARCH model’s efficacy to 

account for these holidays consequences is core for accurate 

forecast. In determining the performance of the variant 

GARCH models, GJR-GARCH(1,1) model outperformed 

both (1,1) and APARCH(1,1) models under normal and GED 

of innovation, while EGARCH outperformed both GJR-

GARCH and APARCH model under skewed student’s t.Since 

EGARCH (1,1) model under skewed student’s t is declared to 

be the best, we can infer that there are consequences of all the 

holiday’s that falls on Thursday’s (with 0.002803 effect, 

indicating that for any unit of holiday on Thursday(s), there 

will be 0.002803 increase in the volatility of NSE price series 

returns) at 5% level of significant. This is also consistent with 

the findings of Mihir (2023). Furthermore, all the three error 

distributions of innovation considered, Skewed student’s t 

appeared to be better. Hence, considering variant distributions 

of innovation while analyzing time series data is worth noting. 
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