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ABSTRACT 

Conventional diagnostic approaches for polycystic ovarian syndrome (PCOS – a condition characterized by 

heterogeneity and the absence of a singular diagnostic test) are often invasive, time-consuming, and rely on 

varying criteria, resulting in inconsistencies in diagnosis. This study addresses the pressing challenge of 

improving the diagnosis of PCOS by exploring machine learning applications to bridge gaps in its prediction 

and diagnosis, offering a potential pathway toward greater accuracy and efficiency. The Cross-Industry 

Standard Process for Data Mining methodology was adopted for implementation using a comprehensive 

dataset from a public library – Kaggle. Results identified XGBoost algorithm as the most effective predictive 

model for diagnosing and predicting PCOS, achieving an accuracy of 98.7%. The results of the study indicated 

that the XGBoost algorithm is reliable with strong accuracy and dependability in diagnosing PCOS, 

establishing the PCOS Predictor as a valuable tool in clinical environments.  This study thus represents a 

significant step forward in transforming the diagnostic landscape of PCOS, combining technological 

advancements with clinical insights to enhance women's healthcare.  
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INTRODUCTION 

Polycystic Ovarian Syndrome is a widespread condition that 

affects millions of women around the globe caused primarily 

by high androgen levels. Indications by Taieb & Feryel (2024) 

have shown that this hormonal imbalance at such levels leads 

to being able to reproduce as well as related complications in 

metabolism. While the medical literature deems 

hyperandrogenism as a significant area of focus in regard to 

PCOS, PCOS research needs to be broadened to cover its 

different roots. In the opinions by Mohamed et al. (2023) and 

Thorat et al. (2024), PCOS is an inherently genetic condition 

where environmental influences and lifestyle factor in its 

development and prevalence. It is now well established that 

the condition affects women’s fertility and their metabolism, 

but little attention has been paid to significant damage – when 

the side effects are left unattended to, it becomes a burden for 

those diagnosed with PCOS (Mohamed et al., 2023). As an 

inherently multifaced condition, PCOS encompasses 

hormonal aberrations, metabolic irregularities, and problems 

associated with reproduction in women of age as pointed out 

by Siddiqui et al. (2022). This disorder is estimated to have a 

widespread rating 5-10% of reproductive-age women 

diagnostically; treatment of the disorder is a challenge since 

the symptoms are wide-ranging such as irregular periods, 

hirsutism, skin lesions, or even being unable to conceive 

(Poojitha and Talla, 2024; Rani et al., 2024).  

The prevalence of PCOS indeed varies significantly, ranging 

from 6% to 20%, depending on the population studied and the 

diagnostic criteria applied (Rani et al., 2024). This variability 

is largely attributed to the different diagnostic criteria used, 

such as the national institute of health – NIH 1990, Rotterdam 

2003, and Androgen Excess – AE-PCOS 2006, as well as the 

characteristics of the study populations, including age and 

ethnicity (Lazareva, 2023; Hatoum et al., 2024; Neven et al., 

2024). According to the study by Hatoum et al. (2024), the 

prevalence rates using the NIH 1990 criteria are generally 

lower, with studies reporting around 4.98% in adolescents. 

Corroborating this assertion, the study by Lazareva (2023), 

had confirmed the Rotterdam 2003 criteria as the most 

inclusive set, often resulting in higher prevalence rates, such 

as 8.80% in adolescents and up to 21% in broader populations. 

In addition, the “AE-PCOS 2006 criteria”, which is similar to 

the “NIH”, was reported to have yielded lower prevalence 

rates, around 4.74% in adolescents (Hatoum et al., 2024). 

With references to Neven et al. (2024), a global meta-analysis 

indicates a prevalence of 9.8% using the Rotterdam criteria 

and 6.3% with the “International Evidence-based Guideline 

criteria”, which exclude polycystic ovarian morphology to 

prevent over-diagnosis.  

Diagnosing PCOS can feel like a frustrating journey for many 

women and healthcare providers. The variability in PCOS 

prevalence highlights the complexity of its diagnosis and the 

influence of diagnostic criteria. The process of diagnosing 

presents significant diagnostic challenges due to its 

heterogeneous nature and the absence of a singular diagnostic 

test. While the Rotterdam criteria often result in higher 

prevalence rates, the exclusion of certain features like 

polycystic ovarian morphology in newer guidelines aims to 

reduce over-diagnosis (Unfer et al., 2024). This complexity 

necessitates a multifaceted approach to diagnosis and 

understanding of the condition. As a result, the need for 

standardized diagnostic approaches to better understand and 

manage PCOS across different populations is highlighted in 

the present study. More so, a study suggests incorporating 

additional parameters to enhance diagnostic accuracy (Unfer 

et al., 2024). Another study noted that new markers, such as 

the triglyceride glucose (TyG) index, show promise in 

identifying metabolic risks associated with PCOS (Keyif et 

al., 2023). In addition, technological innovations such as 

artificial intelligence (AI) and machine learning (ML) are 

being explored as tools to improve diagnostic precision and 

reduce errors (Fahs et al., 2023). The conceptual approach and 

application of artificial language are paramount to the present 

study in lieu of understanding PCOS predictions and its 

health-related diagnosis. 

In the domain of AI and ML, numerous models have been 

used in predicting the outcomes with varying levels of success 

in the healthcare profession. For related efforts, Bharati et al. 
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(2020) used “gradient boosting (GB), random forest (RF), 

linear regression (LR), and an ensemble RFLR model that 

combined RF and LR using a univariate feature selection 

(UFS) algorithm” on a dataset of PCOS. The dataset was split 

by using holdout and cross-validation techniques for training 

and testing. The outcome of the result showed that the RFLR 

model with UFS combined performed better. Tiwari et al. 

(2020) applied a feature selection method based on correlation 

to choose a subset of the relevant features in the dataset. They 

tested various machine learning models, including support 

vector machine (SVM), LR, RF, decision tree (DT), k-nearest 

neighbors (KNN), Quadratic Discriminant Analysis (QDA), 

Linear Discriminant Analysis (LDA), GB, AdaBoost (AB), 

XGBoost (XB), and CatBoost. The RF model is considered 

the best under the correlation thresholds. Thakre et al. (2021) 

employed various machine-learning models to identify the 

presence or absence of PCOS in females. They applied “chi-

square feature selection” and retained the top 30 features, 

keeping in mind that RF was the best-performing model for 

its high accuracy rate. Khanna et al. (2023) investigated 

machine learning and deep learning techniques: LR, DT, RF, 

SVM, Naïve Bayes (NB), KNN, AdaBoost, XGBoost, 

ExtraTrees and proposed a “multi-stacking machine learning 

framework for PCOS prediction using Explainable AI (XAI) 

methodologies” to enhance the interpretability, reliability, 

and understanding of model predictions. The results showed 

that the multi-stacking machine learning approach 

outperformed other models in terms of performance, as also 

evidenced by Kumar et al. (2024). 

Despite the advancements in understanding PCOS, some 

argue that the reliance on established criteria may overlook 

unique presentations of the syndrome, suggesting a need for 

personalized diagnostic approaches that consider individual 

patient profiles and symptoms (Rani et al., 2024). A blur in 

diagnosis can lead to a poor diagnostic prediction for patients 

who might be saddled with a winding road filled with more 

doctor visits, misdiagnoses, and delays in receiving the right 

treatment. These delays can have grave consequences down 

the line, increasing the risk of long-term health problems. 

Poor diagnosis is a major challenge motivating this research. 

In justifying this research motivation, the widely accepted 

Rotterdam criteria, while useful, do not encompass all 

manifestations of the disorder, leading to potential 

misdiagnosis or underdiagnosis according to Unfer et al. 

(2024). Thus, keying into personalized diagnostic approach as 

opined by Rani et al. (2024), solutions from across literature 

and bio-laboratory have highlighted new ways in addition to 

the Rotterdam criteria including artificial intelligence under 

the capabilities of machine learning models for improving the 

diagnostic predictions. Consequently, the present study 

focuses on integrating advanced technologies like machine 

learning to complement existing diagnostic criteria while 

emphasizing the importance of leveraging innovation to 

mitigate the limitations of traditional methods. It further 

proposes an interface deployed on a machine learning model 

for seamlessly diagnosing PCOS presence and absence in 

females of reproductive age; trains and evaluates the model 

efficiency and presents the findings.  

For advances in knowledge, the study projects the potential to 

improve healthcare outcomes for women with PCOS, 

emphasizing the need for early and more accurate adjustable 

diagnostic framework that accommodates the diverse 

presentations of PCOS. Significantly, it contributes to the 

field by:  

Enhancing diagnostic precision with machine learning 

models to improve the accuracy and reliability of PCOS 

diagnosis. This represents a shift toward data-driven, 

personalized diagnostic approaches that consider individual 

patient profiles and symptoms via the interface developed. 

This integration broadens the diagnostic landscape, 

potentially reducing underdiagnosis and misdiagnosis. 

Proposing an interface with a machine learning model that 

demonstrates the feasibility of using AI to predict and 

diagnose PCOS, setting a precedent for similar applications in 

reproductive health and beyond. This contributes to the 

ongoing discourse on developing more comprehensive and 

inclusive diagnostic tools for PCOS. 

Highlighting that the findings have direct implications for 

improving patient experiences, reducing diagnostic delays, 

and mitigating the long-term health risks associated with poor 

diagnostic predictions. 

 

MATERIALS AND METHODS 

This study employs supervised machine learning 

classification techniques to predict the presence of PCOS in 

individuals; this approach aligns with the Cross-Industry 

Standard Process for Data Mining – CRISP-DM 

methodology. CRISP-DM is a structured approach used in 

data science projects to guide them from inception to 

completion (Lathifah et al., 2023; Oliha and Omobude, 2023; 

Kumar et al., 2024). As depicted in Figure 1, the process 

encompasses investigating the problem domain, data 

understanding, data preparation, modelling, evaluation, and 

deployment. However, the present study adapts the 

methodology to inaugurate with data understanding phase. 

This structured approach ensures thorough data analysis and 

robust model development, leading to practical and actionable 

insights for stakeholders in the health sector. 
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Figure 1: Crisp-DM Phases (Lathifah et al., 2023) 

 

Data Understanding and Preparation. 

The Kaggle dataset, which contained 2000 records was 

selected as the data source for the study. Each record 

represents an individual with PCOS or no PCOS with 44 

distinct features. Among these, 11 are categorical indicating 

the presence or absence of features such as acne, skin 

darkening, weight gain, etc. The other 33 features are 

numerical detailing specifications such as body 

measurements and various hormone levels. This 

comprehensive dataset provides a robust foundation for 

developing and validating our PCOS prediction models. Table 

1 below summarizes the features of the datasets. 

 

Table 1: PCOS Dataset Summary 

Attribute Name Description  Type of Data 

Sl. No Serial number of the patient numerical 

Patient File No. Unique file number for each patient numerical 

PCOS (Y/N) Indicates whether the patient has PCOS or not categorical 

Age (yrs) Age of the patient in years numerical 

Weight (Kg) Patient’s weight in kilograms numerical 

Height (Cm) Patient’s height in centimetres numerical 

BMI Body Mass Index calculated from weight and height numerical 

Blood Group Patient’s blood group type categorical 

FSH(mIU/mL) Follicle-Stimulating Hormone level numerical 

LH(mIU/mL) Luteinizing Hormone level numerical 

TSH (mIU/L) Thyroid-Stimulating Hormone level numerical 

AMH(ng/mL Anti-Mullerian Hormone level numerical 

Weight gain(Y/N) Indicates if the patient experienced weight gain categorical 

hair growth(Y/N) Indicates if the patient has abnormal hair growth categorical 

Skin darkening (Y/N) Indicates if the patient has skin darkening categorical 

Fast food (Y/N) Indicates if the patient frequently consumes fast food. categorical 

Reg.Exercise(Y/N) Indicates if the patient exercises regularly categorical 

BP _Systolic (mmHg) Systolic blood pressure measurement numerical 

BP _Diastolic (mmHg) Diastolic blood pressure measurement numerical 

Follicle No. (L) Number of follicles in the left ovary numerical 

Follicle No. (R)  Number of follicles in the right ovary numerical 

Endometrium (mm) Thickness of the endometrium in millimetres numerical 

Pulse rate(bpm) Patient’s heart rate measured in beats per minute numerical 

RR(breaths/min) Respiratory rate in breaths per minute numerical 

Hb(g/dl) Haemoglobin level in grams per deciliter numerical 

Cycle(R/I) Type of menstrual cycle (Regular/Irregular) categorical 

Cycle length(days) Duration of the menstrual cycle in days numerical 

Marriage Status(Yrs) Duration of marriage in years numerical 

Pregnant(Y/N) Indicates whether the patient is pregnant categorical 

No. Of Abortions Number of abortions the patient has had numerical 

I beta-HCG(mIU/mL) First beta-HCG hormone level numerical 

II beta-HCG(mIU/mL) Second beta-HCG hormone level numerical 
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FSH/LH Ratio of FSH to LH levels numerical 

Hip(inch) Hip measurement in inches numerical 

 

The study employed extensive exploratory data analysis 

(EDA) to gain insights into the dataset’s features. Upon this, 

the categorical feature proportion was adopted and presented 

using pie charts to gain insights into the relative distribution 

of these features. The pie charts as depicted in Figure 2 

provide a visual representation of the proportion of each 

category within the features with binary (Y/N) markings.  

 

 
  

  
 

 
 

 
 

 
 

 
 

 

 

Figure 2: Pie chart of Categorical Features 

 

Figure 2 explores the features with categorical distributions 

from Table 1 (with all Y/N), including “pregnancy, weight 

gain, hair growth, skin darkening, hair loss, pimples, fast 

food, and regular exercise”. It is evident from Figure 2 that 

the features average over 51% positivity for each category, 

further validating the categorical veracity of the PCOS binary 

features. For numerical features, the boxplot was adopted for 

visualization. Figure 3 utilizes box plots to visualize the 

distribution, spread, and skewness of numerical features 

including hormone levels; body measurements such as height 

and weight, and measurements in the female reproductive 

organ such as endometrium thickness. 
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Figure 3: Boxplots of Numerical Features. 

 

In the next phase of the CRISP-DM, the preparation of the 

PCOS dataset for predictive insights was next. This phase 

involved data cleaning – checking for and addressing missing 

values, duplicates, and incorrect data entries as well as dealing 

with outliers; feature selection – identifying and selecting 

relevant features that contribute significantly to PCOS 

diagnosis using SelectKBest and Chi-square test; data 

transformation – normalizing or standardizing the data and 

encoding categorical variables; splitting the dataset – dividing 

the data into training and testing sets to evaluate the model's 

performance. Data cleaning was achieved by addressing 

missing values and outliers. The transformation was achieved 

by normalizing, aggregating, and encoding variables and 

finally, features were selected categorically. 

 

Model Evaluation 

In this phase of the methodology, the task of selecting suitable 

ML algorithms for prediction models, training the selected 

models, and optimizing them for optimal performance. The 

following ML models were selected for evaluation based on 

their popularity and effectiveness in binary classification 

tasks: LR, RF, DT, SVM, KNN, NB, and XGB (Vinothini et 

al., 2024). Vinothini et al. (2024) discussed these ML models 

noting that the LR has a high utilization rate in medical 

diagnosis cases because it serves as a technique for estimating 

the likelihood of a binary outcome – producing binary values 

of true or false (yes or no). RF, serves as a classification and 

regression tool with a massive success rate, providing 

measures for changing relevance or large-scale challenges. 

DT is another ML technique with high significance regarding 

modelling circumstances of categorization method, providing 

classification criteria to human understanding. SVM adopts 

ML theory to enhance predictive accuracy while 

automatically avoiding overfitting to the dataset – creating a 

hyperliner that separates data into different classes. XGB is a 

classification technique that uses a gradient-boosting 

algorithm with regularization terms to avoid overfitting. It has 

become the de facto standard model in the Kaggle space used 

in healthcare, finance, and marketing (Tiwari et al., 2022). 

KNN is another ML technique commonly used in large-scale 

applications for anomaly detection. It is most effective when 

decision boundaries are irregular according to Vinothini et al. 

(2024). NB is a classification algorithm for classification 

tasks and works well with categorical data. It emphasizes 

feature independence and might be incompatible with 

imbalanced datasets. The study is drawn to these ML models 

according to the prepositions by Vinothini et al. (2024) on 

performance priority. 

Due to the categorical approach – a binary classification task, 

categorizing individuals into groups of PCOS or no PCOS 

requires some degree of accuracy and precision. For the 

presence of PCOS prediction, the dataset was split into 

training and test subsets – a 70/30 split, to ensure a robust 

evaluation of the models. The training set was used to fit the 

models while the test set, which remained untouched during 

training, provided an unbiased estimate of the model’s 

generalization performance. This approach ensured that our 

evaluation was not influenced by the test data during the 

model selection process. The three top-performing models 

were evaluated based on training time and qualitative factors 

before the final model was selected. Figure 4 depicts the 

training times for the models. 

 

 
Figure 4: Training times of the models 

 

The models were evaluated to assess their performance using 

accuracy, precision, recall, and F1 score. Cross-validation 

was ensured for the generalization of data. After selecting the 

final models, hyperparameter tuning was performed using 

GridSearchCV to provide the best model parameters and 

metrics. An interface was developed to deploy the best 

performing model. 
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PCOS Predictor Interface and Deployment 

The predictor interfaces are depicted in Figure 5 and Figure 6. 

The PCOS predictor is a user-friendly web-based interface to 

make the prediction model accessible and practical for health 

care providers. This dashboard allows healthcare providers to 

input key medical information to obtain PCOS predictions 

and the probability of the presence of disease in case patients 

want a second opinion. Its intuitive design ensures ease of use, 

even for those without technical expertise, thereby bridging 

the gap between sophisticated machine learning models and 

practical healthcare applications. 

 

 
Figure 5: The deployed PCOS Predictor 

 
Figure 6: PCOS Predictor Results Page 

 

RESULTS AND DISCUSSION 

The models evaluated for PCOS diagnosis demonstrated some degree of prediction using the metrics of accuracy, precision, 

recall, and F1 score as depicted in Figure 7.  

 

 
Figure 7: Model Evaluation Results 

 

The logistic regression provides relatively modest 

performance compared to other algorithms. While its 

precision (88.7%) indicates it has a lower rate of false 

positives, the recall (77.7%) suggests it struggles to detect all 

true cases of PCOS. This algorithm might miss some cases, 

making it less ideal for clinical use where high sensitivity is 

crucial. Random Forest achieves the highest performance 

across all metrics, with near-perfect precision (99.48%) and 

recall (96.54%). This indicates that it can accurately identify 

PCOS cases and minimize both false positives and negatives, 

making it a strong candidate for PCOS diagnosis. Decision 

Tree performs well, with high recall (97.03%) and precision 

(96.55%). While slightly less effective than Random Forest, 

it remains a reliable choice, particularly for interpretable 

decision-making in a clinical setting. SVM demonstrates good 

performance, particularly with high precision (97.74%). 

However, its recall (85.64%) is relatively lower, suggesting it 

might miss some PCOS cases. SVM could be suitable when 

minimizing false positives is prioritized. KNN's performance 

is moderate, with high precision (93.41%) but lower recall 

(77.22%). Similar to Logistic Regression, it may fail to 

identify all cases, which could limit its utility in highly 

sensitive diagnostic tasks. Naive Bayes shows the lowest 

performance among the algorithms, with particularly low 

precision (77.83%). While recall (85.15%) is decent, the 

overall lower metrics suggest it may not be ideal for PCOS 

prediction. XGBoost performs almost on par with Random 

Forest, showcasing excellent metrics across the board. Its 

precision (99.49%) and recall (96.04%) highlight its 

reliability and robustness for PCOS prediction. AdaBoost 

achieves a balance between precision (95.72%) and recall 

(88.61%), making it a competitive choice. However, it falls 

short of Random Forest and XGBoost in overall performance. 

The comparison of their performance is illustrated in Figure 8 

as well.  

Analyzing the bar charts in Figure 8, the performance metrics 

for LR are visibly lower compared to other models. The 

Recall parameter was the lowest among the four metrics, 

indicating that Logistic Regression struggles to capture all 

true cases of PCOS, which is crucial for medical diagnostics. 

RF consistently achieves near-perfect scores across all 

metrics (accuracy, precision, recall, and F1 score). The height 

of the bars for Random Forest is nearly at the maximum (close 

to 1), reflecting its robustness and reliability for PCOS 

prediction. DT Performs slightly worse than Random Forest 

but still achieves high values across all metrics – its recall and 

precision are well-balanced, making it a reliable yet 

interpretable model. SVM precision is very high, but recall is 

noticeably lower than Random Forest and Decision Tree. This 

makes SVM suitable in scenarios where minimizing false 

positives is more important than capturing all cases of PCOS. 

KNN shows moderate performance with good precision but 

lower recall, similar to Logistic Regression. While its 

simplicity is appealing, the lower recall makes it less reliable 

for medical diagnostics. 
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Figure 8: Model Comparison Metrics 

 

For NB, all four metrics are significantly lower compared to 

other models, especially precision and accuracy. Naive Bayes 

is not ideal for this application as it struggles to handle 

complex relationships between features in PCOS datasets. 

XGB performance is nearly identical to Random Forest, with 

precision and recall at very high levels. XGBoost’s 

consistency across metrics and its efficiency in handling 

imbalanced datasets make it a strong choice. AdaBoost shows 

balanced performance with high precision and recall but falls 

short of Random Forest and XGBoost. Its metrics are still 

above average, making it a competitive option, especially 

when computational efficiency is a concern. 

Both Random Forest and XGBoost outperform other models 

consistently. Their ability to capture complex patterns in data 

is evident, making them ideal for PCOS prediction. These 

models are less prone to overfitting, especially when 

compared to standalone models like Decision Tree or Logistic 

Regression. Models like SVM prioritize precision but 

sacrifice recall, which might not be ideal for PCOS diagnosis 

where missing true cases (low recall) can lead to delayed 

treatment. Random Forest and XGBoost achieve a better 

balance, making them preferable for sensitive medical 

applications. While Logistic Regression and Naive Bayes are 

simpler to implement and interpret, their lower metrics make 

them less suited for this task. Models like Decision Tree offer 

a middle ground, combining interpretability with decent 

performance. For clinical applications, Random Forest and 

XGBoost stand out due to their accuracy and robustness. If 

interpretability is a key requirement, Decision Tree or 

explainable versions of ensemble models can be considered.  

From the evaluation, it was determined that XGBoost was the 

ideal model for the classification problem. Hyperparameter 

tuning was then performed on the model using GridSearchCV 

and the best model was saved to be used in the interface as 

shown in Figure 9. 

 

 
Figure 9: Best Parameters and Model Metrics of the XGBoost Model 

 

Figure 9 displays the best parameters and the best metrics 

achieved by the XGBoost model for PCOS prediction. 

Dilating the hyperparameters, the learning frequency with a 

value of 0.2 indicates a moderately fast convergence rate, 

balancing between speed and accuracy while avoiding 

overshooting the optimal solution. A relatively shallow depth 

(3) for the trees suggests the model prioritizes generalization 

over capturing very complex patterns, particularly to prevent 

overfitting. With 100 estimators, the model achieves a balance 

between complexity and computational efficiency, ensuring 

robust learning while keeping resource usage reasonable. The 

accuracy indicates that approximately 98.66% of all 

predictions (both positive and negative cases) were correct. 

High accuracy is expected since a precision of 99.48% 
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suggests that the model is highly effective at minimizing false 

positives (i.e., incorrectly diagnosing someone without PCOS 

as having it). This is critical in reducing unnecessary anxiety 

or medical interventions for individuals. A recall of 96.53% 

indicates that the model successfully identifies the majority of 

true PCOS cases. An implication that is essential in medical 

diagnostics is to ensure that most affected individuals are 

correctly diagnosed and receive appropriate treatment. 

Reiterating that the F1-score is the harmonic mean of 

precision and recall, providing a balanced view of the model’s 

performance. Thus, at 97.99%, the high F1-score confirms 

that the model effectively balances precision and recall, 

making it reliable for both detection and reducing false 

positives. From Figure 9, the results and findings support the 

study’s primary choice for PCOS prediction using XGBoost 

as the ML model. It is highly reliable and can handle the 

complex, non-linear (categorical) features associated with 

PCOS datasets.  

 

CONCLUSION 

The present study has projected XGBoost as a more suitable 

model for PCOS prediction and hence developed the PCOS 

predictive system – “PCOS Predictor” and deployed it with 

ease for research and clinical purposes. Thus, the deployment 

of the PCOS predictor on the XGBoost model revealed that 

the optimal parameters, particularly the shallow max depth, 

indicate the model is tuned to avoid overfitting while still 

capturing the key patterns in the data – enhancing its 

robustness across diverse datasets and populations. Also, the 

high precision minimizes false positives, avoiding 

unnecessary treatments or stress for patients misdiagnosed 

with PCOS – reducing the risk of missed diagnoses. This 

outcome extends the proposition pointed out by Thakre et al. 

(2021) and Khanna et al. (2023).  

For research or exploratory use, the study results also showed 

that Decision Tree had the fastest training time and Random 

Forest had the slowest training time. XGBoost was not too far 

off from the Decision Tree but had higher accuracy, precision, 

and recall than the Decision Tree. Consequently, the 

development of a PCOS predictor that deploys the XGBoost 

model for prediction establishes a significant contribution to 

the field as it can aid healthcare professionals and individuals 

in the early detection and management of PCOS. Thus, the 

use of the XGBoost algorithm has shown high accuracy and 

reliability, making the PCOS Predictor a valuable resource in 

clinical settings. This amounted to another reason why 

XGBoost is a more suitable model for PCOS prediction, also 

corroborating the findings by Tiwari et al. (2020) on the 

impact of categorized features in predictive models and the 

proposition by Rani et al. (2024) on personalized diagnostics 

and hyper tuning in line with established criteria. The 

XGBoost proved to be an excellent choice due to its 

transparency and relatively high performance. With metrics 

like these, this XGBoost model is highly deployable in 

clinical settings. 

The results and findings from this study align with the impact 

of using ML for the prediction of PCOS as pointed out by 

Khanna et al. (2023). The findings also corroborate the idea 

of Kumar et al. (2024) on the proposition of building an 

interface for both clinical and experimental use. The study 

findings also raised concerns that could be possible 

limitations for the models on achieving optimal performance. 

For example, the model only predicts using text data of 

ultrasound images due to the nature of the dataset needed to 

test. This means that for prediction to take place, healthcare 

professionals need to analyze the ultrasound images to find 

features used in prediction such as endometrium thickness, 

number of follicles on the left and right ovaries, average 

follicle size, endometrium thickness – there was no use of 

advanced imaging results. Also, the current dataset may not 

encompass the full diversity of the population, which could 

affect the model's generalizability. This means that there 

could still be more combinations of features not included in 

the dataset that led to a PCOS diagnosis. 

It is believed that the PCOS Predictor System can be further 

refined to provide even more reliable and accurate diagnostic 

support for PCOS. To improve the work, some suggestions 

were recommended, for example, the RF and XGB should be 

prioritized for their robust and consistent performance: that is, 

further improvements can be achieved by optimizing feature 

selection and ensuring balanced datasets, as PCOS datasets 

might have imbalances that skew results. The pairing of 

models like XGB with other tools for interpretability to make 

predictions more transparent for clinical adoption is also 

suggested. Future studies should aim to incorporate a larger 

and more diverse dataset to improve the model's robustness 

and generalizability. This should include data from different 

populations to ensure the model can accurately predict PCOS 

across diverse groups. It is hoped that by addressing these 

recommendations, the PCOS Predictor System can be further 

refined to provide even more reliable and accurate diagnostic 

support for PCOS, improving patient outcomes. 
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