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ABSTRACT 

Tuberculosis (TB) remains a major global health concern, and early detection is crucial for effective treatment. 

This study addresses the challenge of class imbalance in existing machine learning models for TB prediction, 

which often leads to biased results. A novel approach combining the hybrid SMOTE-Tomek Links technique, 

modified focal loss, and class weighting was developed and applied to a dataset of X-ray images categorized 

into normal and TB classes. The hybrid SMOTE-Tomek Links method generates synthetic samples for the 

minority class while removing ambiguous samples, ensuring a balanced dataset. The modified focal loss and 

class weighting help focus on misclassified cases and address class disparities. The model was evaluated against 

benchmark models, including EfficientNetB3, Random Forest, and XGBoost, with and without SMOTE. The 

developed model achieved a remarkable accuracy of 99.7%, outperforming the benchmark models (92.72%–

99.1%). These results demonstrate the effectiveness of the proposed approach in improving TB prediction 

accuracy and handling class imbalance. The study's findings provide valuable insights into medical image 

classification and offer a robust framework for enhancing diagnostic tools, with potential applications beyond 

TB detection. This research could significantly improve TB management and diagnosis in clinical settings. 
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INTRODUCTION 

Tuberculosis (TB), caused by Mycobacterium tuberculosis, 

persists as a formidable global public health challenge due to 

its highly infectious nature and capacity to precipitate 

widespread outbreaks. Early detection, particularly in 

clustered cases, proves essential for timely intervention and 

containment of transmission, as emphasized by Fox et al. 

(2021). Transmitted through airborne droplets, TB demands 

substantial public health resources, with prevention of 

outbreaks proving far more cost-effective than managing 

established ones, especially in resource-limited settings where 

financial burdens exacerbate morbidity and mortality 

(Mitruka et al., 2011; Althomsons et al., 2022). Recent studies 

underscore the influence of environmental and socio-

economic factors, such as meteorological changes and air 

pollution, on TB transmission dynamics, further complicating 

control efforts (Tang et al., 2023; Wang et al., 2021). Despite 

medical advancements, TB remains the second deadliest 

infectious disease globally, claiming millions of lives 

annually, with treatment failure contributing significantly to 

high mortality rates and necessitating advanced diagnostic 

tools (Makam and Matsa, 2021). Machine learning has 

emerged as a transformative approach to enhance TB 

prediction and inform treatment decisions, offering potential 

to address these challenges (Ahmed et al., 2020; Chekroud et 

al., 2021). However, dataset imbalance in medical imaging, 

particularly in chest X-ray (CXR) analysis, where TB-positive 

cases are underrepresented, poses a significant obstacle to 

achieving high model accuracy and sensitivity (Kieu et al., 

2020). 

This work builds upon the methodology and techniques 

proposed by Nafisah and Mohammad (2024), who developed 

an automatic TB detection system for chest X-rays using deep 

learning and segmentation techniques, achieving an 

impressive 99.1% accuracy with EfficientNetB3, highlighting 

the critical role of segmentation in improving detection 

accuracy. However, certain limitations in their approach 

warrant attention to further enhance performance. The 

benchmark study does not explicitly address class imbalance, 

a prevalent issue in medical datasets where TB-positive cases 

are significantly fewer than TB-negative ones. Without 

targeted techniques to mitigate this imbalance, models risk 

bias toward the majority class (TB-negative), resulting in 

reduced sensitivity for detecting TB-positive cases, which is 

paramount for early diagnosis. To overcome this limitation, a 

hybrid approach is adopted, integrating Synthetic Minority 

Over-sampling Technique (SMOTE) with Tomek Links, 

alongside class weighting and Modified Focal Loss (MFE). 

SMOTE generates synthetic TB-positive samples to balance 

the dataset, while Tomek Links eliminates noisy or 

ambiguous samples to ensure data quality. Class weighting 

adjusts the loss function to prioritize the minority class (TB-

positive), and MFE enhances focus on challenging examples, 

collectively improving sensitivity to TB-positive cases 

compared to the benchmark’s approach, which lacks these 

mechanisms. 

Furthermore, the benchmark study relies predominantly on 

EfficientNetB3 for feature extraction, achieving high 

accuracy but without incorporating multiple architectures to 

bolster robustness. Dependence on a single model may 

constrain the diversity of extracted features, potentially 

overlooking complementary patterns critical for complex 

medical images like chest X-rays. To address this, two pre-

trained convolutional neural networks (CNNs), 

EfficientNetB0 and DenseNet121, are employed for feature 

extraction. EfficientNetB0 offers computational efficiency, 

while DenseNet121’s densely connected layers facilitate 

enhanced feature propagation by allowing each layer to 

receive inputs from all preceding layers. By combining 

features from both architectures, a broader and more 
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comprehensive feature set is captured from chest X-ray 

images, improving robustness and generalization compared to 

the benchmark’s single-model approach. 

This methodology leverages transfer learning frameworks 

with EfficientNetB0 and DenseNet121 for feature extraction, 

followed by a Random Forest classifier for robust prediction. 

Data augmentation and preprocessing, facilitated by 

ImageDataGenerator, ensure consistent input, while 

comprehensive evaluation using metrics such as the confusion 

matrix and Receiver Operating Characteristic (ROC) curve 

verifies reliable performance. By addressing the identified 

limitations in the benchmark study, this approach advances 

machine learning-based diagnostic tools, contributing to more 

effective early detection strategies for TB, particularly in 

resource-constrained settings. 

 

Modified Focal Loss 

Modified Focal Loss extends the standard Focal Loss to better 

handle class imbalance in machine learning tasks, particularly 

in medical image classification and object detection (Yeung 

et al., 2022; Chen et al., 2022). It is effective in datasets with 

a small number of positive samples relative to a large number 

of negative samples, preventing model bias toward the 

majority class. 

Focal Loss enhances Cross-Entropy loss by emphasizing 

hard-to-classify examples and down-weighting easy ones (Xi 

et al., 2023; Guo, 2024). It is mathematically defined as: 

The standard Focal Loss function is represented as: 

𝐹𝐿(𝑝𝑡) =  −𝛼𝑡(1 − 𝑝𝑡)𝛾log (𝑝𝑡)  (1) 

Where: 

𝑝𝑡  is the predicted probability for the correct class. 

𝛼𝑡 is a weighting factor that adjusts the importance of positive 

versus negative samples. 

γ is the focusing parameter that controls the modulating 

factor. When γ = 0, Focal Loss reduces to Cross-Entropy 

Loss, and when γ > 0, it emphasizes harder examples. 

Modified Focal Loss enhances this by incorporating class 

weighting strategies, improving model focus on minority 

class instances, such as TB-positive or cancerous cases, which 

are often harder to classify in medical datasets. The modified 

function is: 

𝑀𝐹𝐿(𝑝𝑡) =  −𝑤𝑐  . 𝛼𝑡(1 − 𝑝𝑡)𝛾log (𝑝𝑡) (2) 

Where: 

𝑤𝑐  is the class weight, introduced to give more importance to 

the minority class. 

Other terms (𝑝𝑡 , 𝛼𝑡, and γ) remain as in the original Focal 

Loss function. 

This adaptation improves model sensitivity to rare cases, 

reducing false negatives, which is crucial in healthcare to 

prevent undetected diseases. For tuberculosis detection, 

Modified Focal Loss enhances deep learning models' ability 

to correctly identify TB-positive cases despite their rarity. 

When combined with oversampling techniques like SMOTE 

and Tomek Links in a transfer learning framework, this 

approach strengthens model performance, leading to more 

reliable diagnostic predictions and improved healthcare 

outcomes. 

 

Tomek Link 

Tomek Links refine oversampling techniques like SMOTE by 

addressing class overlap in imbalanced datasets, particularly 

in medical diagnostics (Alamri & Ykhlef, 2024; Leng et al., 

2024). While oversampling generates synthetic samples to 

balance classes, it may introduce noise or place samples near 

the decision boundary, leading to misclassification (Rao et al., 

2024; Wen et al., 2024; Xie et al., 2023). Tomek Links help 

mitigate this by identifying and removing ambiguous pairs of 

samples from different classes that are each other's nearest 

neighbors (Swana et al., 2022). 

A Tomek Link exists when a minority class instance (e.g., a 

disease-positive case) and a majority class instance (e.g., a 

healthy case) are closer to each other than to any other sample 

in their respective classes. These pairs typically lie near the 

decision boundary and may introduce classification errors. 

Removing Tomek Links sharpens class separation, reduces 

noise, and enhances model performance (Viadinugroho, 

2023; Przybyła-Kasperek, 2022; Ai-jun & Peng, 2020). 

For example, in tuberculosis (TB) detection datasets, a Tomek 

Link might form between a TB-positive and TB-negative 

sample due to their proximity in feature space. Removing 

such pairs after applying SMOTE improves dataset clarity, 

reducing misclassification risks. 

Tomek Links are commonly used as a post-processing step 

following oversampling to refine synthetic data, remove 

outliers, and enhance model robustness. This is particularly 

crucial in medical applications where noisy data can lead to 

incorrect diagnoses and adverse patient outcomes. When 

combined with SMOTE and methods like Modified Focal 

Loss, Tomek Links create a more effective framework for 

handling class imbalance, improving the detection of minority 

cases, and enhancing diagnostic accuracy 

 

SMOTE (Synthetic Minority Oversampling Technique) 

SMOTE is a widely used technique for addressing class 

imbalance in medical datasets, particularly in diagnostic 

applications such as disease detection (Awujoola et al., 2020). 

Imbalanced datasets, where the number of positive cases is 

significantly lower than negative cases, can bias machine 

learning models toward the majority class, leading to poor 

sensitivity in detecting diseases (Awujoola et al., 2021). 

Traditional oversampling methods that duplicate minority 

class samples often result in overfitting, reducing model 

generalization. 

SMOTE mitigates this issue by generating synthetic data 

points through interpolation between existing minority class 

samples and their k-nearest neighbors. For example, in a TB 

detection dataset, where TB-positive chest X-ray images are 

underrepresented, SMOTE enhances minority class 

distribution without mere duplication. This approach helps 

models generalize better, improving sensitivity to rare but 

crucial cases such as early-stage diseases. 

To mathematically represent how SMOTE generates 

synthetic instances, consider a minority class data point xi in 

the feature space, and its k-nearest neighbors xi1,xi2,…,xik. 

SMOTE creates a synthetic data point xnew  by interpolating 

between xi and one of its nearest neighbors, say xij using the 

following equation: 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 +  𝜆 . ( 𝑥𝑖𝑗 −  𝑥𝑖)   (3) 

where: 

𝑥𝑖 is the original minority class instance, 

𝑥𝑖𝑗  is one of its k-nearest neighbors, 

λ is a random number between 0 and 1, which controls the 

interpolation between 𝑥𝑖 and 𝑥𝑖𝑗  

This equation ensures that the synthetic instance 𝑥𝑛𝑒𝑤  lies 

along the line segment between 𝑥𝑖 and 𝑥𝑖𝑗  in the feature space. 

By repeating this process for different neighbors and original 

instances, SMOTE generates diverse synthetic samples, 

helping to better represent the minority class and mitigate 

overfitting in imbalanced datasets. 

 

Review of Related Works 

Viswanatha et al. (2023) developed a machine learning model 

using K-Nearest Neighbour (K-NN) and Histogram of 
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Oriented Gradients (HOG) for the early detection of 

tuberculosis (TB). Their model, trained on TB-related 

symptoms and demographic data, achieved 98% accuracy, 

providing a more precise detection method than manual 

diagnosis, potentially reducing TB-related deaths. 

Rodrigues et al. (2024) focused on predicting loss to follow-

up (LTFU) during anti-tuberculosis treatment (ATT) using 

national registry data. They tested three machine learning 

models—Logistic Regression, Random Forest, and Light 

Gradient Boosting—finding that the latter achieved the best 

predictive performance with an AUC of 0.72, aiding 

healthcare workers in identifying at-risk patients. 

Silva et al. (2024) examined TB clusters in Brazil’s 

Amazonian region, utilizing Moran’s I and the Getis-Ord GI* 

method to identify geographical clusters. A Random Forest 

model trained on six surveillance variables achieved an AUC 

of 0.81, helping to predict high-incidence areas for targeted 

TB prevention and control. 

Sharma et al. (2024) developed a deep learning model for TB 

diagnosis from chest X-rays, incorporating UNet for 

segmentation and Xception for classification. Their model 

achieved an accuracy of 99.29% and an AUC of 0.999, with 

Grad-CAM heatmaps offering interpretable insights into TB 

lesions, improving diagnostic precision. 

Kumar et al. (2024) proposed a system using VGG16 and 

machine learning classifiers to diagnose TB from chest X-

rays. The Adaboost classifier achieved the best accuracy at 

95.11%, demonstrating the potential for improved TB 

diagnosis with large datasets and machine learning. 

Ou et al. (2024) employed multiple deep learning models, 

including U-Net and Attention U-Net, to detect and segment 

TB lesions in chest X-rays. Their ensemble model 

outperformed individual models, achieving high accuracy and 

a mean intersection-over-union (MIoU) of 0.70, offering 

reliable tools for TB lesion detection. 

Jonathan et al. (2024) investigated the use of trained TB-

detection rats, applying machine learning models like SVM 

and random forest to predict rat performance. The SVM 

model achieved 83.39% accuracy, improving the 

effectiveness of rat-based TB detection by analyzing patterns 

in detection behavior. 

Nafisah and Mohammad (2024) developed an automatic TB 

detection system for chest X-rays using deep learning and 

segmentation techniques. EfficientNetB3 achieved 99.1% 

accuracy, outperforming other models, and highlighting the 

importance of image segmentation for improving TB 

detection accuracy. 

 

MATERIALS AND METHODS 

The research methodology for this study focuses on the 

development and evaluation of a deep learning framework 

aimed at mitigating class imbalance in tuberculosis (TB) 

detection using chest X-ray images. This approach leverages 

advanced techniques such as Synthetic Minority Over-

sampling Technique (SMOTE), Tomek Links, Modified 

Focal Loss (MFL), and class weighting within a transfer 

learning architecture to enhance prediction accuracy, 

particularly for the minority class of TB-positive cases. The 

study employs transfer learning models like EfficientNetB0 

and DenseNet121 for feature extraction and utilizes Random 

Forest as the classifier to achieve robust performance in TB 

detection. Figure 1 depicts the research methodology flow. 

 

 
Figure 1: Research methodology Flow 

 

Research Model Description 

The model developed for tuberculosis (TB) detection using 

chest X-ray images incorporates advanced techniques to 

tackle the inherent challenge of class imbalance, a common 

issue in medical datasets where the number of TB-positive 

cases is significantly smaller than the TB-negative cases. To 

address this, a hybrid approach is employed, combining the 

Synthetic Minority Over-sampling Technique (SMOTE) with 

Tomek Links, along with Modified Focal Loss (MFE) and 

class weighting loss. The purpose of this approach is to 

enhance the model’s performance in detecting minority 

classes, specifically TB-positive cases. For feature extraction, 

two deep learning architectures, EfficientNetB0 and 

DenseNet121, are utilized, and Random Forest is used as the 

final classifier for prediction. This multi-faceted methodology 

not only improves the balance in the dataset but also enhances 

the model’s overall accuracy. 

The model begins by employing the ImageDataGenerator to 

handle data augmentation and preprocessing. This function 

normalizes the pixel values in the chest X-ray images by 

scaling them between 0 and 1, which is critical for ensuring 

consistent input to the model during training. Furthermore, 

ImageDataGenerator efficiently loads and batches the data, 

preventing memory overload during training and evaluation. 

Normalizing and batching large datasets help improve the 

model’s convergence and performance. 

For feature extraction, two pre-trained convolutional neural 

networks (CNNs), EfficientNetB0 and DenseNet121, are 

employed. Both networks are initially trained on the 

ImageNet dataset, allowing them to learn generalized image 

features. EfficientNetB0, known for its computational 

efficiency, is particularly useful in this model due to its ability 

to balance performance and resource usage. On the other 

hand, DenseNet121 enhances feature propagation through its 

densely connected layers, where each layer receives input 

from all preceding layers. This architecture improves the 

model’s ability to extract deep, relevant features from medical 

images, which is critical for TB detection. By leveraging these 

two models, the feature extraction process is both efficient 

and comprehensive. 

The challenge of class imbalance is addressed through a 

combination of SMOTE and Tomek Links. SMOTE is a 

widely-used technique for generating synthetic examples of 

the minority class, thereby balancing the dataset and allowing 

the model to learn from more instances of TB-positive cases. 

Tomek Links complement SMOTE by identifying and 

removing noisy or ambiguous samples, ensuring that the 

synthetic samples generated are representative and realistic. 

This process reduces the risk of overfitting, which can occur 
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when the model learns patterns from noise rather than genuine 

features. 

To further address class imbalance, class weighting is applied 

during model training. The class weighting technique adjusts 

the loss function, giving more importance to the minority 

class, in this case, TB-positive instances. This ensures that the 

model focuses on hard-to-classify examples and does not 

become biased toward the majority class. Class weighting 

works in tandem with SMOTE and Tomek Links to improve 

the model’s sensitivity to TB-positive cases, enhancing its 

ability to detect early signs of the disease in chest X-ray 

images. 

Following feature extraction, a Random Forest classifier is 

used for the final prediction stage. Random Forest is an 

ensemble learning method that constructs multiple decision 

trees and aggregates their predictions to form the final output. 

This method is particularly effective in handling large datasets 

and offers a robust solution to overfitting. By averaging the 

predictions of many decision trees, Random Forest enhances 

the model’s ability to generalize well to new, unseen data, 

thus improving the reliability of the TB detection system. 

For evaluating the model’s performance, key metrics such as 

the confusion matrix and Receiver Operating Characteristic 

(ROC) curve are used. The confusion matrix provides detailed 

insights into the model’s classification performance, 

indicating the number of true positives, false positives, true 

negatives, and false negatives. This information is critical for 

understanding how well the model distinguishes between TB-

positive and TB-negative cases. Additionally, the ROC curve 

visualizes the trade-off between sensitivity and specificity 

across different classification thresholds, with the area under 

the curve (AUC) providing a summary measure of the 

classifier’s performance. A high AUC value indicates that the 

model is proficient in distinguishing between positive and 

negative cases, reinforcing its utility in medical diagnostics. 

The tuberculosis detection model therefore, integrates 

multiple advanced techniques to overcome the challenges 

posed by class imbalance and the complexity of medical 

image processing. By employing EfficientNetB0 and 

DenseNet121 for feature extraction, and Random Forest for 

classification, the model is able to achieve high accuracy and 

robustness. The hybrid approach using SMOTE, Tomek 

Links, Modified Focal Loss, and class weighting ensures that 

the model is sensitive to the minority class without overfitting, 

leading to a more effective diagnostic tool for TB detection. 

The comprehensive evaluation of the model through metrics 

like the confusion matrix and ROC curve demonstrates its 

capability to make accurate and reliable predictions, 

providing valuable assistance in the early detection of 

tuberculosis. Figure 3.1 depicts the research methodology. 

 

Dataset Source 

In this research, the dataset used for tuberculosis (TB) 

detection was born out of collaborative team of researchers 

from Qatar University in Doha, Qatar, and the University of 

Dhaka in Bangladesh, alongside their partners from Malaysia, 

has developed an extensive database of chest X-ray images 

specifically curated for the study of Tuberculosis (TB). This 

project, carried out in conjunction with medical doctors from 

Hamad Medical Corporation in Qatar and healthcare 

professionals from Bangladesh, aims to provide a valuable 

resource for the advancement of TB detection through 

medical imaging. 

The dataset contains chest X-ray images of both TB-positive 

cases and healthy, normal cases, offering a robust foundation 

for the development of diagnostic models using artificial 

intelligence and machine learning. In its current public 

release, the database includes 700 readily accessible TB-

positive X-ray images. Additionally, an expanded set of 2,800 

TB-positive images is available for download from the 

National Institute of Allergy and Infectious Diseases (NIAID) 

TB portal. Access to these additional images requires signing 

a data-sharing agreement to ensure ethical use and data 

privacy. Complementing this, the dataset also contains 3,500 

X-ray images of healthy individuals, providing a balanced set 

of normal images to facilitate comparative studies and model 

training. 

This database represents a significant step forward in creating 

open-access medical datasets that can support research efforts 

in TB detection, enabling the development of more accurate 

diagnostic tools and improving the global response to TB 

through early and reliable detection. The dataset can be 

sourced through the NIAID TB portal program dataset 

[Online]. Available:https://tbportals.niaid.nih.gov/download-

data. 

 

Data Preprocessing 

The preprocessing of the Tuberculosis (TB) image dataset is 

a crucial step in the development of the model, ensuring that 

the images are properly prepared for training and evaluation. 

The preprocessing begins with the use of the 

ImageDataGenerator, a powerful function that handles data 

augmentation and normalization. One of its primary functions 

is to normalize the pixel values of the chest X-ray images by 

scaling them between 0 and 1. This normalization is essential 

for maintaining consistency in the input data and helps ensure 

that the deep learning model can interpret the image data 

effectively. By standardizing pixel values, the model can 

focus on identifying patterns within the images, improving its 

ability to detect TB. 

In addition to normalization, ImageDataGenerator performs 

data augmentation, which is a technique used to artificially 

expand the size of the training dataset by applying random 

transformations such as rotations, zooms, and flips. This step 

is particularly valuable in medical imaging, where obtaining 

large and diverse datasets can be challenging. Augmentation 

introduces variability into the training data, enhancing the 

model’s robustness and helping it generalize better to unseen 

data, ultimately improving its performance in real-world 

scenarios. 

Another important function of ImageDataGenerator is its 

efficient handling of large datasets. The function loads and 

batches the data in real-time during training, rather than 

loading the entire dataset into memory at once. This prevents 

memory overload, especially when dealing with high-

resolution medical images, and ensures that the training 

process remains smooth. By organizing the data into 

manageable batches, the model can process the images more 

effectively, leading to faster convergence during training. 

The preprocessing of the TB dataset using 

ImageDataGenerator involves normalization to ensure 

consistency in pixel values, data augmentation to improve 

model robustness, and efficient data batching to manage 

memory usage. These preprocessing steps collectively 

contribute to enhancing the model’s performance and its 

ability to accurately detect TB from chest X-ray images. 

 

Performance Evaluation 

Performance evaluation is a critical component of this study, 

providing insight into the effectiveness of the developed 

model in detecting Tuberculosis (TB) from chest X-ray 

images. The evaluation process involves several metrics and 

visual tools that help assess how well the model performs in 

distinguishing between TB-positive and normal cases. 

https://tbportals.niaid.nih.gov/download-data
https://tbportals.niaid.nih.gov/download-data
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The first step in evaluating the model is the use of a confusion 

matrix, a tabular representation of the true positives, true 

negatives, false positives, and false negatives. The confusion 

matrix is especially useful in understanding the distribution of 

correct and incorrect predictions. In the context of TB 

detection, it provides valuable insights into how often the 

model correctly identifies TB-positive cases (true positives) 

and how often it mistakenly classifies normal cases as TB-

positive or vice versa. By analyzing this matrix, one can 

assess the model’s sensitivity (or recall), which reflects its 

ability to detect TB cases, and specificity, which measures 

how well it avoids false positives. 

 

Accuracy 

Measures the proportion of correct predictions made by the 

model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +𝐹𝑃 + 𝐹𝑁
   (4) 

Where: 

a. TP = True Positives 

b. TN = True Negatives 

c. FP = False Positives 

d. FN = False Negatives 

 

Precision (or Positive Predictive Value) 

Measures how many of the predicted positive cases are 

actually positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (5) 

 

Recall (or Sensitivity, True Positive Rate) 

Measures how many actual positive cases the model correctly 

identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    (6) 

 

Specificity (or True Negative Rate) 

Measures how well the model identifies true negatives. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
   (7) 

 

 

F1-Score 

The harmonic means of precision and recall, used when there 

is an uneven class distribution (imbalanced data). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
  (8) 

 

False Positive Rate (FPR) 

Measures the proportion of negative instances that were 

incorrectly classified as positive. 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
    (9) 

 

False Negative Rate (FNR) 

Measures the proportion of positive instances that were 

incorrectly classified as negative. 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
    (10) 

The model’s ability to distinguish between TB-positive and 

normal cases is further evaluated using the Receiver 

Operating Characteristic (ROC) curve. The ROC curve plots 

the true positive rate against the false positive rate at various 

threshold settings. The area under the ROC curve (AUC) is a 

key metric, where a higher AUC indicates a better model. A 

high AUC value reflects the model’s strong discriminatory 

power in differentiating between TB and non-TB cases across 

different decision thresholds. 

 

RESULTS AND DISCUSSION 

This section analyzes the outcomes of the implemented hybrid 

approach, which integrates Synthetic Minority Over-

sampling Technique (SMOTE), Tomek Links, Modified 

Focal Loss (MFE), and class weighting loss within a transfer 

learning framework. The performance of the proposed 

methods is benchmarked against baseline approaches, 

offering insights into their contributions to model robustness 

and sensitivity in detecting TB-positive cases, which 

represent the minority class. 

Table 1 presents the classification report obtained from the 

experiment, while Figures 2, 3, 4, 5 and 6 illustrate the 

imbalanced class distribution, balanced class distribution, 

training and validation accuracy, training and validation loss, 

and the confusion matrix, respectively. 

 

 

 
Figure 2: Imbalance Data 

 
Figure 3: Balanced Data 

 

Figures 2 and 3visually compare the class distributions before 

and after applying the hybrid technique, respectively. These 

visualizations highlight the effectiveness of the SMOTE-

Tomek Links method in mitigating class imbalance, thereby 

creating a solid foundation for training robust and unbiased 

models for tuberculosis detection 

 



MITIGATING CLASS IMBALANCE IN TUBER…  Ibrahim et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 7, July, 2025, pp 226 – 234 231 

Table 1: Classification Report for the Hybrid model 

Class Precision Recall F1-Score Support 

Normal 1.00 1.00 1.00 525 

Tuberculosis 1.00 0.98 0.99 106 

Accuracy   1.00 631 

Macro Avg 1.00 0.99 0.99 631 

Weighted Avg 1.00 1.00 1.00 631 

 

The classification report presented in Table 4.1 demonstrates 

the performance of the developed tuberculosis detection 

model in classifying X-ray images into two categories: 

Normal and Tuberculosis. The results, as reflected in the 

precision, recall, F1-score, and support metrics, reveal the 

robustness and effectiveness of the model in addressing the 

challenges associated with this classification task. 

Precision, which indicates the proportion of true positive 

predictions among all positive predictions for a given class, 

was recorded at 1.00 for the Normal class and 1.00 for the 

Tuberculosis class. This shows that the model effectively 

minimized false positive errors, accurately distinguishing 

between the two classes. The recall values, measuring the 

proportion of actual positive instances correctly identified, 

were similarly high, with the Normal class achieving 1.00 and 

the Tuberculosis class achieving 0.98. These recall scores 

highlight the model’s capability to correctly identify a 

majority of the instances in both categories, particularly for 

the minority class, Tuberculosis, which is critical for medical 

diagnostics. The F1-score, a balanced metric combining 

precision and recall, was 1.00 for the Normal class and 0.99 

for the Tuberculosis class, demonstrating the model’s ability 

to maintain an excellent trade-off between precision and 

recall. The weighted average F1-score of 1.00 further 

underscores the model's overall effectiveness, even in the 

presence of class imbalance. The support metric, representing 

the number of samples in each class, indicates that the dataset 

included 525 samples of Normal images and 106 samples of 

Tuberculosis images, reflecting an imbalanced distribution. 

The accuracy of the model across the entire dataset was 

0.9968 approximated to be 1.00, signifying that the model 

correctly classified all samples with near-perfect precision. 

This exceptional performance can be attributed to the hybrid 

SMOTE-Tomek Links class balancing technique, which 

addressed the issue of class imbalance by generating synthetic 

samples for the minority class while removing ambiguous 

samples to improve decision boundaries. Additionally, the 

integration of the Modified Focal Loss function further 

enhanced the model's ability to handle class imbalance by 

penalizing misclassification of minority class samples. The 

classification report, therefore highlights the effectiveness of 

the developed model in distinguishing between Normal and 

Tuberculosis cases with remarkable precision, recall, and 

overall accuracy. This performance establishes the model as a 

reliable tool for tuberculosis detection, capable of mitigating 

class imbalance issues and providing robust predictions for 

real-world medical applications. 

 

 
Figure 4: Training and Validation Accuracy 

 
Figure 5: Training and Validation Error 

 

Figure 4 depicts the trends in training and validation accuracy 

over successive epochs during the model training process. 

The plot reveals a rapid improvement in accuracy within the 

first few epochs, indicating that the model was able to learn 

key features from the dataset early in the training process. The 

training accuracy shows a consistent upward trend, stabilizing 

around the 5th epoch, and continues to improve gradually 

towards the 9th epoch. Similarly, validation accuracy follows 

a similar trajectory, demonstrating a high level of alignment 

with the training accuracy, which signifies minimal 

overfitting. By the end of training, both training and 

validation accuracy surpass 99%, showcasing the model's 

excellent generalization ability on unseen data 

In Figure 5, the training and validation error are presented as 

complementary measures to the accuracy. The training loss 

decreases sharply within the first few epochs, reflecting the 

model's ability to minimize errors through the optimization 

process. A similar trend is observed in the validation loss, 

which also drops significantly early on and stabilizes after the 

3rd epoch. Notably, the gap between training and validation 

loss remains minimal throughout the epochs, further 

reinforcing the robustness of the model and its capability to 

generalize well across the training and validation datasets. 

Finally, the analysis of both figures demonstrates that the 

model training process was effective, with the hybrid 

SMOTE-Tomek Links balancing technique and Modified 

Focal Loss function likely contributing to this outstanding 

performance. These results validate the model's suitability for 

detecting tuberculosis in X-ray images with high reliability 

and precision. 
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Figure 6: Confusion Matrix 

 

The confusion matrix presented in Figure 4.5 provides a 

comprehensive summary of the classification performance of 

the developed model on the test dataset. The matrix comprises 

two rows corresponding to the actual classes and two columns 

representing the predicted classes. The diagonal elements 

indicate the instances that were correctly classified, while the 

off-diagonal elements represent misclassified cases. For the 

Normal class, the model accurately classified 525 instances as 

Normal, showcasing a perfect match between the actual and 

predicted labels for this category. There were no misclassified 

instances of the Normal class, highlighting the model's 

exceptional precision and recall for this group. 

For the Tuberculosis class, the model demonstrated high 

accuracy by correctly classifying 104 out of 106 actual 

Tuberculosis cases. However, two instances from this class 

were misclassified as Normal. These misclassifications 

suggest a minor limitation in the model's ability to distinguish 

certain Tuberculosis cases, potentially due to subtle feature 

overlaps, noise in the data, or challenging edge cases present 

in the dataset. 

The model's performance is remarkably robust, with a total of 

629 correctly classified instances out of 631, resulting in an 

impressive accuracy of approximately 99.7%. While the two 

misclassified Tuberculosis cases point to areas where the 

model could be refined, its ability to correctly identify the 

majority of cases in both categories demonstrates its 

reliability for tuberculosis detection in medical imaging. 

Further investigation of the misclassified cases could provide 

valuable insights for enhancing the model's performance and 

addressing any underlying challenges. 

 

CONCLUSION 

In conclusion, this study successfully developed an advanced 

machine learning model for Tuberculosis prediction using 

medical X-ray images. By addressing the prevalent challenge 

of class imbalance in medical datasets, the research 

introduced innovative techniques, including the hybrid 

SMOTE-Tomek Links method, a modified focal loss 

function, and class weighting. These approaches enhanced the 

model’s ability to accurately classify both majority and 

minority classes, ensuring a balanced learning process. 

The developed model demonstrated superior performance, 

achieving an impressive accuracy of 99.7%, surpassing 

established benchmark models such as EfficientNetB3, 

Random Forest, and XGBoost. The hybrid SMOTE-Tomek 

Links technique effectively balanced the dataset, while the 

modified focal loss and class weighting prioritized learning 

from underrepresented classes. These advancements 

significantly improved the model's predictive accuracy and 

generalization capability. 

The results affirm the effectiveness of the proposed 

methodology in addressing class imbalance and enhancing 

predictive performance in medical image classification tasks. 

The findings have practical implications for improving early 

and accurate detection of Tuberculosis, potentially aiding in 

better clinical decision-making and patient management. 

Furthermore, this research underscores the importance of 

integrating innovative machine learning techniques to 

overcome limitations in traditional approaches, setting a 

foundation for future advancements in the field of healthcare 

and medical diagnostics. 
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