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ABSTRACT 

Predicting students' performance has become increasingly challenging due to the large volume of data in 

educational databases. Academic achievement reflects learning effectiveness and serves as a key indicator of 

teaching quality, institutional standards, and overall student development. Higher education systems operate 

hierarchically, with students progressing through academic levels annually or exiting as graduates or dropouts. 

Understanding and evaluating student progression is vital amidst evolving educational dynamics. This study 

models students’ academic performance and progression using a discrete-time Markov chain approach to 

predict future outcomes. Data on students’ enrollment and performance for five(5) sessions were collected 

from the Department of Statistics, Federal University of Technology, Minna. The Markov chain model was 

constructed for different academic levels and their absorbing states. Key metrics, including expected time spent 

at each level, absorption probabilities, and graduation or withdrawal likelihoods, were estimated. The findings 

show that 100-level entrants have an 80.5% chance of graduating and a 19.5% risk of withdrawal, with 

graduation likelihoods increasing with progression—reaching 99.4% at 500-level. The forecasts from the 

constructed Markov chain models showed that 100-level entrants are 99.4% likely to graduate after five 

sessions, 200-level entrants after three sessions, and 300-level entrants after one session. The study shows that 

while attrition rates are higher in the early stages, students advancing beyond the 200-level exhibit strong 

prospects for completion. These findings underscore the university’s effective programs and support systems, 

particularly in retaining and advancing students beyond the critical early stages.  

 

Keywords: Academic Performance, Discrete-Time Markov Chain, Absorption Probability, Transient State,  

Absorbing State 

 

INTRODUCTION 

Student academic performance serves as a measure of 

learning effectiveness and is often used to evaluate both 

individual student development and the overall quality of 

teaching in higher education. It functions as an indicator of 

educational outcomes, helping educators explore strategies 

that enhance learning and promote academic achievement in 

vocational institutions.  

In the study of Zheng & Mustappha (2022), they said 

schoolwork, or academic work, is what is meant by academic. 

"School work" refers to the learning tasks assigned by the 

school and is separated into phases, whereas "academic work" 

refers to the objectives reached by students as a result of the 

accumulation of learning. Performance is the result of a test 

in a particular subject or the full course; achievement, on the 

other hand, is the degree to which a student can reach after 

completing a term of study or training (Lamas, 2015). 

Academic performance is thought to be equal to academic 

achievement. According to Zheng & Mustappha (2022) in 

their study, said the credit point average, or GPA, of college 

students is a generally used indicator of their academic 

success and can be accurately calculated from their course 

grades (Zheng & Mustappha, 2022). However, a number of 

scholars have put forth various definitions of academic 

performance since they feel that grades are synonymous with 

achievement (Brookhart  et al. , 2016). According to Astin 

(2014) academic success encompasses behavioral, 

psychological, and non-cognitive outcomes in addition to 

cognitive ones and also according to Bloom (1956) academic 

success entails the following: knowledge, skills, and proper 

actions. It also involves values and attitudes. Every 

educational system has to include an evaluation of pupils' 

development. All postsecondary educational establishments 

can be viewed as hierarchical structures, with each student 

residing in a particular study phase for a full academic year 

before either graduating or dropping out. The challenge of 

comprehending and evaluating pupils' progress within the 

educational system is crucial because of ongoing changes and 

an increase in data (Mashat et al.,  2012).  

Markov chain models have been widely applied in various 

contexts to analyze progression, retention, and forecasting in 

educational, demographic, and environmental studies. In 

higher education, several studies have utilized these models 

to track student performance and transitions across academic 

levels. Dalvi (2023), Olu (2020), and Brezavšček et al. (2017) 

demonstrated high graduation probabilities and declining 

withdrawal rates as students advanced through academic 

levels, while Muhammad et al. (2019) and Adeleke et al. 

(2014) emphasized improved academic performance and 

retention over time. Similar findings by Kibiya et al. (2020) 

highlighted the importance of early intervention to address 

higher withdrawal rates in initial years. In secondary 

education, Egbo et al. (2018) and Auwalu et al. (2013) 

effectively modeled student progression and resource 

management, aligning with the broader trend of using Markov 

chains for enrollment forecasting and reducing wastage. 

Beyond education, Azizah et al. (2019)) utilized Markov 

models to forecast rainfall patterns, and Nkemnole & Ikegwu 

(2022) explored population growth strategies in Nigeria, 

identifying the impact of extended birth gaps and 

contraceptive use. Studies such as Hlavatý & Dömeová 

(2014) and Otieno & Oyala (2020) further illustrated the 

versatility of Markov models in evaluating exam outcomes 

and academic career development. These applications 

underscore the utility of Markov chains in understanding 
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dynamic processes and informing policy and strategic 

decision-making across various fields.  

 

MATERIALS AND METHODS 

Materials  

A combination of software tools was employed for data 

preparation, statistical analysis, and modeling. For the initial 

stage, Microsoft Excel 2016 were used to organize the raw 

data. The data were arranged and sorted by academic levels, 

and additional columns were included to classify students' 

performance statuses. After the data preparation in Excel, the 

dataset was imported into Python 3 through Jupyter Notebook 

with the ipykernel environment. Python were used for 

detailed analysis, including tracking students' performance at 

each level and monitoring their progression to the next level. 

The students’ IDs serves as unique identifiers to determine 

whether each student progresses, graduates, or withdraws.  

 

Method 

Discrete-Time Markov Chain Model 

Discrete Markov Regardless of the past, the future state of a 

sequential process that depends only on the current state is 

predicted and analyzed using chain modeling, a potent 

mathematical framework. A wide range of industries, 

including economics, engineering, biology, and education, 

have adopted this modeling method. (Ross, 2014).  Discrete 

Markov The foundation of chain modeling is the idea of a 

Markov chain, which is a stochastic process that changes 

states depending on predetermined transition probabilities. 

(Norris, 1998). The Memoryless property state that the current 

state is the only factor that determines the future state; the 

preceding series of events is not relevant. The Memoryless 

Property is that; 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖𝑛, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 =
𝑖0) = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖), where 𝑋𝑛 is a series of random 

variables having discrete time intervals between 𝑡0, 𝑡1, . . . , 𝑡𝑛, 

there must be a countable or finite collection of states in the 

operation.  

 

Basic Discrete-Time Markov Chain Model 

A probability distribution controls each transition as the 

process moves through discrete time steps in a discrete-time 

Markov chain. The transition probability matrices are the 

general form of a discrete-time or state transition matrix of an 

absorbing state with "a" absorbing and "t" transient states, 

utilizing the (Grinstead & Snell, 2012) notations is given by; 

𝑃𝑖𝑗 = [
𝑄 𝐴
0 𝐼

]    (1a) 

Where each of the element in the matrix in equation (1a) are 

the canonical form for the Transition Probability matrix and; 

Q = t x t matrix showing the transition probability between 

the transient states. A= t x a (non-zero) matrix representing 

the transition probability from the transient states to the 

absorbing states, 0 = a x t (Zero-matrix) showing the transition 

probability from the absorbing states to the transient states 

and I = a x a matrix showing the transition probability 

between the absorbing states, it is an identity matrix. 

 

The transition probability matrix [TPM] (𝑃𝑖𝑗) 

𝑃𝑖𝑗 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿
𝑊
𝐺 [

 
 
 
 
 
 
 
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿 𝑊 𝐺
0 𝜋12 0 0 0 0 0
0 𝜋22 𝜋23 0 0 𝜋2𝑊 0
0 0 𝜋33 𝜋34 0 𝜋3𝑊 0
0 0 0 𝜋44 𝜋45 𝜋4𝑊 0
0 0 0 0 𝜋55 𝜋5𝑊 𝜋5𝐺
0 0 0 0 0 1 0
0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 

 

     (1b) 

Where π22, π33, π44, and π55 are the probabilities that the 

students repeated 200, 300, 400 and 500 level respectively, 

π12, π23, π34 and π34 are the probabilities that the students 

promoted to the next level from 100 to 200, 200 to 300, 300 

to 400 and 400 to 500 level respectively, π2w, π3w, π4w and π5w 

are the probabilities that the students are been withdrawn at 

200, 300, 400 and 500 level respectively and π5G is the 

probability that students graduated at 500 level. 

 

Fundamental matrix 

It is used to analyze the Markov Chain’s behavior. Each entry 

represents the expected number of times the chain is in each 

transient state. It is typically denoted by N and is computed as  

𝐹𝑡𝑥𝑡 = [𝐼𝑡𝑥𝑡 − 𝑄𝑡𝑥𝑡]
−1   (2) 

Where I in equation (2) is totally different from the one in 

equation (1a), the identity matrix I in equation (1a) is a matrix 

with dimension (a x a) , where a is absorbing state while the 

Identity matrix I in equation (2) is a matrix of (t x t) 

dimension, where t mean the transient state and Q is the (t x 

t) transition matrix for the transient states. (Hlavatý & 

Dömeová, 2014). If 𝑓𝑖𝑗  are the entries for the fundamental 

matrix  𝐹𝑡𝑥𝑡 then 𝑓𝑖𝑗  is given by 

{
  
 

  
 

1

1−𝑃𝑖𝑖
, 𝑖 = 𝑗

∏ 𝑃𝑎𝑎+1
𝑖−1
𝑎=1

∏ (1−𝑃𝑎𝑎+1)
𝑖
𝑎=1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (3) 

 

The expected steps before the absorbing state/time to 

absorption 

This is the average number of steps it takes for the system to 

reach an absorbing state starting from any initial state. For 

each of the transient state, the number of steps taken can be 

represented by the ith entry of the column vector E in (3) 

𝐸𝑡𝑥1 = 𝐹𝑡𝑥𝑡𝐶𝑡𝑥1     (4) 

Where F is the (t x t) fundamental matrix and C is a column 

vector of dimension (t x t) with one (1) as its entries. 

 

The probabilities of absorption 

This is the likelihood that the chain or system will reach the 

absorbing state. Given that the process began in the transitory 

state i, let B have the entries 𝑏𝑖𝑗 (where 𝑏𝑖𝑗 is the chance of 

being absorbed in absorbing state j). B is a (t x a) matrix, and 

it may be obtained by 

 𝐵𝑡𝑥𝑎 = 𝐹𝑡𝑥𝑡𝐴𝑡𝑥𝑎    (5) 

 

Data Source and Description 

The data for the thesis is a secondary type of data, which is 

the records for undergraduate students enrolled into Statistics 

Department Federal University of Technology, Minna during 

the five consecutive years and their progress for the five years 

of their program. These records include information such as 

the student ID numbers, academic levels, enrollment status 

(enrolled, graduate, Withdrawn) and demographic 

information (Gender, Date of birth, State of Origin and Local 

Government Area). The defined states and transition 

probabilities based on the university's academic structure are; 

Transient states (100 level to 500 level) and Absorbing states 

(Withdrawal, Graduation). The assumptions to be adopted 

based on the rule guiding the progress of students of Federal 

university of technology, Minna according to the Student 

handbook, 2019-2024 session; Students who are currently in 

100 level can only progress to the 200 level, cannot be 

repeated nor withdrawn, students who are currently in 200 

level to 400 level can either progress to the next level, 
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repeated same level or been withdrawn, students who are 

currently in 500 level can either graduate, repeat or withdraw 

and the students who has been withdrawn can never graduate 

and the graduated ones cannot re-enrolled the same 

programme which has just been successful finished. 

 

States transition diagram 

 
Figure 1: Transition Diagram 

 

Figure (1) is the summary Markov chain that describes the 5 transient and 2 absorbing states for the all the students in Federal 

University of Technology, Minna irrespective level that were enrolled. 

 

RESULTS AND DISCUSSION 

The Summary of Student Enrolled and their Progress 

Table 1: The Summary of Progression for all the Student Enrolled into Statistics Department for the Five Sessions 

Under Study 

  100 LEVEL 200 LEVEL 300 LEVEL 400 LEVEL 500 LEVEL 

PROMOTED 469 507 418 409 354 

REPEATED 0 0 57 0 53 

WITHDRAW 0 54 38 9 2 

TOTAL 469 561 513 418 409 

 

States Transition Probabilities Matrix 

To develop a one-step transition probabilities matrix, equation 

(1) which shows the summary matrix for the students is first 

derived from table (1) and each row element is divided by its 

row totals to obtain the one-step transition probability matrix 

in equation (2) 

𝑛𝑖𝑗 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿
𝑊
𝐺 [

 
 
 
 
 
 
 
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿 𝑊 𝐺
0 469 0 0 0 0 0
0 0 507 0 0 54 0
0 0 57 418 0 38 0
0 0 0 0 409 9 0
0 0 0 0 53 2 354
0 0 0 0 0 103 0
0 0 0 0 0 0 354]

 
 
 
 
 
 
 

 

     (6) 

Transition probabilities matrix Pij estimate 

Equation (7) shows the probabilities of transitioning between 

the different states.  
𝑃𝑖𝑗 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿
𝑊
𝐺 [

 
 
 
 
 
 
 
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿 𝑊 𝐺
0 1 0 0 0 0 0
0 0 0.904 0 0 0.096 0
0 0 0.111 0.815 0 0.074 0
0 0 0 0 0.978 0.022 0
0 0 0 0 0.130 0.005 0.866
0 0 0 0 0 1 0
0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 

 

     (7) 

 

The canonical form for TPM estimate 

The canonical form for the Transition Probabilities Matrix in 

equation (7) is given as the matrices in equation (8), (9), (10) 

and (11) 

Equation (8) shows the probabilities of transitioning within 

the transient state. That is, the probability that a student will 

remain in the transient state. 

𝑄 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿 [

 
 
 
 
 
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿
0 1 0 0 0
0 0 0.904 0 0
0 0 0.111 0.815 0
0 0 0 0 0.978
0 0 0 0 0.130]

 
 
 
 
 

  (8) 

Equation (8) shows that, the probability that a 100 level 

student returns as a 100 level student after the long vacation 

is 0%, he/she has 100% chance of returning as a 200 level 

student, 0% chance of returning as a 300 level, 400, and 500 

level student. Also, the probability that a 200 level student 

returns as a 100 level student is 0%, he/she has 90.4% chance 

of returning as a 300 level student and 0% chance of returning 

as 200, 400 and 500 level students and same as others. 

Equation (9) shows the transition probabilities matrix from 

the transient states to the absorbing states. 

100L 200L 300L 400L 
500L 

Graduate   

  withdraw 

200L 

300L 

Graduated 

Student  

New 

Student 

Withdrawn  

Student  
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𝐴 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿 [

 
 
 
 
 
𝑊 𝐺
0 0

0.096 0
0.074 0
0.022 0
0.005 0.866]

 
 
 
 
 

   (9) 

The transition probability matrix in equation (9) shows that, 

the probability of a student transitioning from 100 level to any 

of the absorbing state (withdraw, graduate) is 0%, there is 

9.6%, 7.4%, 2.2% and 0.5% chance that a student in 200, 300, 

400 and 500 level been withdrawn respectively. A student at 

100, 200, 300 or 400 has 0% chance of been a graduate while 

a student at 500 level has 86.6% chance of being a graduate. 

Equation (10) shows the transition probability from the 

absorbing states to the transient states. 

0 = 𝑊
𝐺

[
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿
0 0 0 0 0
0 0 0 0 0

] (10) 

The transition probability matrix in equation (10) shows that 

a student who has been withdrawn or graduated from the 

programme has 0% chance of enrolling back for the same 

program. 

Equation (11) shows the transition probabilities within the 

absorbing states. 

𝐼 = 𝑊
𝐺

[
𝑊 𝐺
1 0
0 1

]    (11) 

The transition probability matrix in equation (11) shows that 

a student who has been withdrawn will remain 100% 

withdrawn and he/she has 0% of being a graduate and a 

graduate student will remain 100% a graduate from the 

programme and has 0% probability of being withdrawn. 

 

Fundamental Matrix Estimate 

𝐹𝑖𝑗 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿 [

 
 
 
 
 
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿
1 1 1.017 0.828 0.931
0 1 1.017 0.828 0.931
0 0 1.125 0.917 1.030
0 0 0 1 1.124
0 0 0 0 1.149]

 
 
 
 
 

 

     (12) 

 

Estimate for the expected steps before the absorbing state 

(time to absorption) 

𝐸𝑖𝑗 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿 [

 
 
 
 
4.776
3.776
3.072
2.124
1.149]

 
 
 
 

   (13) 

A student starting in the 100 level (1st academic year) is 

expected to remain in the system for about 4.776 more 

sessions on an average before graduation. This number 

suggested that on an average, a student in 100 level has 

approximately 5 more sessions before he or she can graduate. 

A student starting in the 200 level (2nd academic year) is 

expected to remain in the system for about 3.776 more 

sessions on an average before graduation. This suggests that 

a 200level student is expected to progress close to four 

additional sessions, aligning with completing the remaining 

sessions in the program and potentially entering a phase of 

graduation and same as others.  

 

 

 

 

 

 

Estimate for the probability of absorption (withdraw, 

graduation) 



























=

994.0006.0

973.0027.0

892.0108.0

806.0194.0

806.0194.0

500

400

300

200

100

GW

L

L

L

L

L

bij

   (14) 

Equation (14) shows that a student starting in the 100 level 

has 19.4% and 80.6% chance of being withdraw and graduate 

respectively from the university this simply means that a 

student who starts in 100 level is more likely to graduate 

(80.6%) than withdraw (19.4%) and 200level students have 

the same likelihood of withdrawal and graduation, showing 

that the risk of withdrawal doesn’t change between the 100 

and 200 levels. 300level students has its likelihood of 

graduating increases to 89.2%, while the probability of 

withdrawal decreases to 10.8%, indicating a stronger 

tendency to complete the program once a student reaches this 

level and this continue for other levels. The observed steady 

increase in retention rates of the students in this study as they 

advance through academic levels is consistent with the 

findings by Adam (2015) and Adeleke et al. (2014), both of 

whom reported a decline in withdrawal rates and improved 

academic performance at higher academic levels. Unlike Olu 

(2020), who included a vacating state to address classification 

errors, this work assumes a more straightforward structure. 

While this simplifies the modeling process, it might overlook 

certain nuances in student pathways, as evidenced by 

Mamudu (2017), who introduced hiatus states to account for 

temporary breaks in academic progression. 

 

Predicting using the N-Step Transition Probabilities 

Matrices 

Equation (2) is one-step, then (15), (16), (17) and (18) are the 

third to fifth steps given as:  

Figure (15) shows the 2-step transition probability matrix (n= 

2) 
𝑃𝑖𝑗
2 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿
𝑊
𝐺 [

 
 
 
 
 
 
 
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿 𝑊 𝐺
0 0 0.904 0 0 0.096 0
0 0 0.100 0.736 0 0.163 0
0 0 0.012 0.091 0.797 0.100 0
0 0 0 0 0.127 0.026 0.847
0 0 0 0 0.017 0.006 0.978
0 0 0 0 0 1 0
0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 

 

     (15) 

Figure (16) shows the 3-Step Transition Probabilities Matrix 

(n =3) 

𝑃𝑖𝑗
3 =

1𝐿
2𝐿
3𝐿
4𝐿
5𝐿
𝑊
𝐺 [
 
 
 
 
 
 
 
1𝐿 2𝐿 3𝐿 4𝐿 5𝐿 𝑊 𝐺
0 0 0.100 0.736 0 0.163 0
0 0 0.011 0.082 0.721 0.186 0
0 0 0.001 0.010 0.192 0.107 0.690
0 0 0 0 0.016 0.027 0.957
0 0 0 0 0.002 0.006 0.992
0 0 0 0 0 1 0
0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 

 

     (16) 

Figure (17) shows the 4-Step Transition Probabilities Matrix 
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𝑃𝑖𝑗
4 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿
𝑊
𝐺 [

 
 
 
 
 
 
 
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿 𝑊 𝐺
0 0 0.011 0.082 0.721 0.186 0
0 0 0.001 0.009 0.173 0.193 0.624
0 0 0.0002 0.001 0.035 0.108 0.856
0 0 0 0 0.002 0.027 0.971
0 0 0 0 0.0003 0.006 0.994
0 0 0 0 0 1 0
0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 

 

     (17) 

Figure (18) shows 5-Step Transition Probabilities Matrix 
𝑃5𝑌𝑒𝑎𝑟𝑠 =

100𝐿
200𝐿
300𝐿
400𝐿
500𝐿
𝑊
𝐺 [

 
 
 
 
 
 
 
100𝐿 200𝐿 300𝐿 400𝐿 500𝐿 𝑊 𝐺
0 0. 0.001 0.009 0.173 0.193 0.624
0 0 0.0001 0.001 0.031 0.194 0.774
0 0 0.00002 0.0001 0.006 0.108 0.886
0 0 0 0 0.0003 0.027 0.973
0 0 0 0 0.00004 0.006 0.994
0 0 0 0 0 1 0
0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 

 

     (18) 

All departments in FUTMINNA expect or hope that most of 

the students enrolled into 100 level will graduate within five 

years. It is interesting to see that the model in equation (18) 

shows that after 5 years, a 100 level student at FUTMINNA 

has a 99.4% chance of graduating and 0.6% chance of being 

withdrawn.  

The findings align closely with the findings of Olu (2020) and 

Muhammad et al. (2019), both of whom noted higher 

instability and withdrawal rates among first-year students. 

Similar to the results, Olu (2020) attributed this very low 

withdrawal rates to students' struggles with adapting to new 

academic environments and institutional frameworks. 

Similarly, Muhammad et al. (2019) observed an improvement 

in students' academic performance and reduced dropout rates 

as they advanced through academic levels, a trend consistent 

with our observations. Additionally, Dalvi (2023) and Kibiya 

et al. (2020) also reported that the probability of graduation 

increases significantly as students progress to higher levels, 

underscoring the importance of student retention strategies in 

the early years. In this study, the pattern is further 

corroborated, emphasizing the critical role of foundational 

support systems to mitigate early withdrawals. The emphasis 

on early intervention strategies to reduce withdrawals aligns 

with Kibiya et al. (2020) and Hlavatý & Dömeová (2014), 

both of whom identified critical points in students' academic 

journeys where targeted support could significantly improve 

outcomes. By identifying periods of instability, the results 

reinforce the importance of proactive measures in the first 

year of study, consistent with Olu (2020)s’ recommendations. 

The findings from this study, like those of Egbo et al. (2018) 

and Otieno & Oyala (2020), provide valuable insights for 

institutional planning and policy development and by 

emphasizing the predictive capabilities of Markov models, it 

contributes to a growing body of evidence supporting their 

use in optimizing resource allocation and improving student 

outcomes. 

 

CONCLUSION 

The analysis of students’ progression at the Federal 

University of Technology Minna over the past five academic 

sessions reveals key insights into the dynamics of academic 

performance and retention. The findings indicate that the 

early years of a student's academic journey are critical, with a 

significant risk of withdrawal, but those who progress beyond 

the 200 level have a markedly higher chance of completing 

their studies. This trend suggests a robust educational system 

that effectively supports students as they advance through 

their academic careers, with the most significant attrition 

occurring in the early stages. The higher retention and 

graduation rates in the later years reflect the effectiveness of 

the university’s academic programs and student support 

systems at those levels. 
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