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ABSTRACT 

Heteroscedasticity in regression analysis occurs when the variance of the error term changes across different 

levels of the independent variable(s), leading to inefficient estimates and incorrect inference. In Generalized 

Linear Models (GLMs), heteroscedasticity significantly impacts prediction and inference accuracy. This study 

evaluates White's test for detecting heteroscedasticity in GLMs through Monte Carlo simulations. We 

investigate the test's power, Type II errors, and Type I errors at different sample sizes (100, 250, and 500). Our 

findings reveal that White test performs well in detecting strong heteroscedasticity, particularly for exponential 

heteroscedasticity structures (EHS), but poorly for weaker forms like linear heteroscedasticity structures (LHS) 

and square root heteroscedasticity structures (SQRTHS). While increased sample size enhances performance, 

the test remains susceptible to over-rejection of homoscedasticity. We recommend cautious use, especially 

with weaker heteroscedasticity or specific structures. For improved performance, use the test with moderate to 

high sample sizes (e.g., n = 500), particularly for EHS and quadratic heteroscedasticity structures (QHS). 

Alternative tests may be considered for researchers with limited sample sizes or dealing 

with LHS and SQRTHS. Finally, we emphasize the importance of assessing the underlying structure of 

heteroscedasticity in the dataset to choose the most suitable test and interpretation.  
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INTRODUCTION 

Heteroscedasticity, a common issue in regression analysis, 

occurs when the variance of the error term changes across 

different levels of the independent variable(s), leading to 

inefficient estimates and incorrect inference (Muhammad et 

al., 2023). In Generalized Linear Models (GLMs), 

heteroscedasticity can have a significant impact on the 

accuracy of predictions and inference. The White test is a 

widely used diagnostic tool for detecting heteroscedasticity in 

GLMs. Furthermore, the test's performance can vary 

significantly across different structures and variations 

(Akewugberu et al., 2024). However, its performance across 

different levels of heteroscedasticity and structures in GLMs 

has not been thoroughly investigated.  

Previous studies have investigated the performance of various 

tests for heteroscedasticity in GLMs, including the White test 

(Onifade & Olanrewaju, 2020). Onifade and Olanrewaju 

(2020) conducted a Monte Carlo simulation study to 

investigate the performance of some statistical tests for 

heteroscedasticity assumption in GLMs, including the White 

test. However, there is still a need for a comprehensive 

evaluation of the White test's performance in detecting 

heteroscedasticity in GLMs across various structures and 

levels using other metrics. 

Existing literature has identified various tests for 

heteroscedasticity in GLMs, including the Breusch-Pagan, 

Bartlett's, Goldfeld-Quandt, White, and Koenker-Bassett tests 

(Wiedermann et al., 2017). The Breusch-Pagan test has been 

recommended for its robustness and sensitivity in detecting 

heteroscedasticity in GLMs (Harvey, 1976; Zeileis, 2004; 

Hayes & Cai, 2007). 

This study aims to fill the gap in the literature by investigating 

the White test's performance in detecting heteroscedasticity in 

GLMs across different levels of heteroscedasticity and 

structures. Specifically, this study evaluates the White test's 

power, frequency of Type II errors (when σ = 0), Type I errors 

(σ ≠ 0) and Power of the test in confirming homoscedasticity 

assumptions at different sample sizes. 

 

MATERIALS AND METHODS 

Forms of heteroscedasticity  

This study examines four distinct heteroscedasticity 

structures, which are variations of additive and multiplicative 

models. For this research, we focus on a specific 

heteroscedastic structure where the error term's variance is 

directly proportional to the response variable's mean. 

There are two primary forms of heteroscedasticity: 

i. Exponential Form: Var(a,a) =  𝜎2ℯ𝐸(𝑦𝑖) Exponential 

form. 

ii. Linear Form: Var(a,a) =  𝜎2𝐸(𝑦𝑖)
𝑔, where g > 0 Linear 

form. 

We explore four heteroscedasticity structures, specifically 

exponential, linear, square-rooted (with g = 0.5), and 

quadratic (with g = 2) forms. 

To confirm the homoscedasticity assumption, we use the 

White test. We inject different levels of heteroscedasticity 

into generalized linear models with varying sample sizes 

(100, 250, and 500) and standard deviations (σ = 0, 0.1, 0.3, 

0.5, 0.7, and 0.9).  

 

Procedure for the Monte Carlo Simulation Experiment 

To investigate the finite sample properties of the test statistics 

of the presence of heteroscedasticity in any given dataset, 

Monte Carlo experiment is adopted. The simulation consisted 

of 1000 iterations, each with varying sample sizes of 100, 250 

and 500 data points.  

In each iteration, we generated two data sets, i.e 

Heteroscedastic data and Homoscedastic data. For the 

heteroscedastic data, We simulated x from a standard normal 
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distribution x ∼N(0,1) and y as a linear function of x with 

added noise, where the variance of the noise increased with x. 

𝑦 = 𝛽1𝑥 + 𝜀      (1)  

However, for the homoscedastic data, We simulated x and y 

from same standard normal distribution, x,y ∼ N(0,1), with 

no relationship between x and the variance of y.  

The structure was then formulated thus:  

Linear Form: The variance of the dependent variable 

increases linearly with the independent variable. 

𝜀 ∼ 𝑁(0, 𝜎2(𝑥)) = 𝑁(0, 𝛽1𝑥)  (2)  

Exponential Form: The variance of the dependent variable 

increases exponentially with the independent variable. 

𝜀 ∼ 𝑁(0, 𝜎2(𝑥)) = 𝑁(0, 𝑒𝑥𝑝( 𝛽1𝑥))  (3) 

Quadratic Form: Quadratic Form: The variance of the 

dependent variable changes quadratically with the 

independent variable. 

𝜀 ∼ 𝑁(0, 𝜎2(𝑥)) = 𝑁(0, 𝛽1𝑥
2)  (4) 

Square root Form: The variance of the dependent variable 

increases with the square root of the independent variable. 

 𝜀 ∼ 𝑁(0, 𝜎2(𝑥)) = 𝑁(0, 𝛽1√𝑥)  (5)  

Which were then set to produce the three metrics used for the 

analysis i.e, power, Type I error and Type II error. 

 

White Test  

Another widely used test for homoscedasticity, which doesn't 

require knowledge of the heteroscedasticity form, was 

proposed by White (1980). This test compares the variance of 

OLS estimates under homoscedasticity and 

heteroscedasticity. A key advantage of this test is that it 

doesn't rely on the normality assumption, making it 

straightforward to implement. 

Consider a simple three-variable regression model: 

0 1 1 2 2 i
i

x xy    = + + +    (6) 

The White test is a straightforward procedure to detect 

heteroscedasticity: 

i. Calculate the residual 𝜀𝑖from the original regression 

model (equation 6). 

ii. Run an auxiliary regression using the squared residual 

as the dependent variable and the original regressors, 

their squares, and cross-products as independent 

variables 

𝜀i
2 = 𝛼0 + 𝛼1yi + 𝛼2y2 + 𝛼3yi

2 + 𝛼4y2
2 + 𝛼5y1y2 + vi (7) 

iii. Obtain the R-squared (R2) value from the auxiliary 

regression;  

iv. Under the null hypothesis of homoscedasticity, the 

product of the sample size (n) and R2 follows a chi-

squared distribution with k degrees of freedom, where k 

is the number of regressors in the auxiliary regression: 

𝑛𝑅2 ∼ 𝜒2𝑘:𝑎      (8)  

v. Reject the null hypothesis if nR2 exceeds the critical 

value from the chi-squared distribution at a given 

significance level. 

A note of caution: when dealing with multiple regressors, 

introducing all possible terms and interactions can quickly 

deplete degrees of freedom. Therefore, it's essential to 

exercise caution when applying the White test. 

 

RESULTS AND DISCUSSION 

As stated earlier, White test for detecting heteroscedasticity is 

used in this study, with the use of three metrices, that is the 

number of time (frequency) each test commits type II error 

and type I error as the case may be and the power of the test. 

The null hypothesis assumes that the data exhibits 

homoscedasticity, meaning that the variance of the error 

term is constant. 

 

Table 1: Performance of White test when n=100 across different heteroscedasticity structures 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

Performance of the test when error follows LHS at 5% level of significance 

N=100 Power 0.044 0.053 0.046 0.051 0.065 0.051 

Type I Error 0.074 0.048 0.050 0.051 0.050 0.044 

Type II Error 0.956 0.947 0.954 0.949 0.935 0.949 

 

Performance of the test when error follows EHS at 5% level of significance 

N=100 Power 0.404 0.435 0.466 0.444 0.434 0.430 

Type I Error 0.919 0.914 0.915 0.880 0.793 0.768 

Type II Error 0.596 0.565 0.534 0.556 0.566 0.570 

 

Performance of the test when error follows QHS at 5% level of significance 

N=100 Power 0.128 0.123 0.123 0.137 0.134 0.132 

Type I Error 0.201 0.179 0.179 0.190 0.189 0.183 

Type II Error 0.872 0.877 0.877 0.863 0.866 0.868 

 

Performance of the test when error follows SQRTHS at 5% level of significance 

N=100 Power 0.042 0.042 0.134 0.041 0.044 0.051 

Type I Error 0.054 0.054 0.181 0.044 0.039 0.046 

Type II Error 0.958 0.958 0.866 0.959 0.956 0.949 
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Figure 1: Error Rates and Power by Sigma Level when error 

follows LHS 

Figure 2: Error Rates and Power by Sigma Level when 

error follows EHS 

 

Figure 3: Error Rates and Power by Sigma Level when error 

follows QHS 

Figure 4: Error Rates and Power by Sigma Level when 

error follows SQRTHS 

The above Figures shows the performance of White test when n=100 across different heteroscedasticity structures.  

 

Table 2: Performance of White test when n=250 across different heteroscedasticity structures 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

Performance of the test when error follows LHS at 5% level of significance 

N=250 Power 0.043 0.046 0.052 0.044 0.061 0.061 

Type I Error 0.069 0.057 0.052 0.046 0.040 0.040 

Type II Error 0.957 0.954 0.948 0.956 0.939 0.939 
 

Performance of the test when error follows EHS at 5% level of significance 

N=250 Power 0.755 0.753 0.781 0.777 0.762 0.773 

Type I Error 0.999 0.999 1.000 0.997 0.990 0.970 

Type II Error 0.245 0.247 0.219 0.223 0.238 0.227 
 

Performance of the test when error follows QHS at 5% level of significance  

N=250 Power 0.153 0.191 0.180 0.187 0.186 0.177 

Type I Error 0.211 0.246 0.238 0.264 0.264 0.255 

Type II Error 0.847 0.809 0.820 0.813 0.814 0.823 
 

Performance of the test when error follows SQRTHS at 5% level of significance 

N=250 Power 0.037 0.041 0.041 0.051 0.054 0.043 

Type I Error 0.118 0.098 0.098 0.040 0.051 0.039 

Type II Error 0.963 0.959 0.959 0.949 0.946 0.957 
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Figure 5: Error Rates and Power by Sigma Level when error 

follows LHS 

Figure 6: Error Rates and Power by Sigma Level when error 

follows EHS 

 

Figure 7: Error Rates and Power by Sigma Level when error 

follows QHS 

Figure 8: Error Rates and Power by Sigma Level when error 

follows SQRTHS 

Figures 5,6,7 and 8 above shows the performance of White test when n=250 across different heteroscedasticity structures.  

 

Table 3: Performance of White test when n=500 across different heteroscedasticity structures 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

Performance of the test when error follows LHS at 5% level of significance 

N=500 Power 0.048 0.047 0.045 0.048 0.050 0.047 

Type I Error 0.054 0.058 0.048 0.061 0.052 0.051 

Type II Error 0.952 0.953 0.955 0.952 0.950 0.953 

 

Performance of the test when error follows EHS at 5% level of significance  

N=500 Power 0.924 0.958 0.952 0.959 0.945 0.945 

Type I Error 1.000 1.000 1.000 1.000 0.999 1.000 

Type II Error 0.076 0.042 0.048 0.041 0.055 0.055 

 

Performance of the test when error follows QHS at 5% level of significance 

N=500 Power 0.205 0.188 0.192 0.213 0.205 0.201 

Type I Error 0.264 0.253 0.245 0.247 0.243 0.282 

Type II Error 0.795 0.812 0.808 0.787 0.795 0.799 

 

Performance of the test when error follows SQRTHS at 5% level of significance 

N=500 Power 0.047 0.041 0.044 0.051 0.051 0.043 

Type I Error 0.146 0.129 0.060 0.043 0.061 0.050 

Type II Error 0.953 0.959 0.956 0.949 0.949 0.957 
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Figure 9: Error Rates and Power by Sigma Level when 

error follows LHS 

Figure 10: Error Rates and Power by Sigma Level when error 

follows EHS 

 

Figure 11: Error Rates and Power by Sigma Level when 

error follows QHS 

Figure 12: Error Rates and Power by Sigma Level when 

error follows SQRTHS 

Figures 9,10,11 and 12 shows the performance of White test when n=500 across different heteroscedasticity structures.  

 

Table 1 above shows the performance of White test when 

evaluated across different heteroscedasticity structures (LHS, 

EHS, QHS, SQRTHS) at 5% significance with varying error 

standard deviation (σ) levels, using a sample size of 100. 

When σ=0 (no heteroscedasticity), the test exhibits low power 

(<0.05) and high Type II error (>0.94) across all structures. 

As σ increases (introducing heteroscedasticity), power 

improves substantially for EHS (up to 46.6%), moderately for 

QHS (up to 13.7%), but remains low for LHS and SQRTHS 

(<6.5%). Notably, EHS shows high Type I error rates (up to 

91.9%), indicating over-rejection of homoscedasticity. As 

heteroscedasticity increases (σ=0.3 to σ=0.9), the test's power 

generally plateaus or decreases for LHS, QHS, and SQRTHS, 

while EHS's power remains relatively stable. 

Table 2 shows the performance of White test when evaluated 

across different heteroscedasticity structures (LHS, EHS, 

QHS, SQRTHS) at 5% significance with varying error 

standard deviation (σ) levels, using a sample size of 250. 

When σ=0 (no heteroscedasticity), the test exhibits low power 

(<0.06) and high Type II error (>0.94) across all structures. 

As σ increases (introducing heteroscedasticity), power 

improves substantially for EHS (up to 78.1%), moderately for 

QHS (up to 19.1%), but remains low for LHS and SQRTHS 

(<6.1%). Notably, EHS shows high Type I error rates (up to 

1.000), indicating over-rejection of homoscedasticity. As 

heteroscedasticity increases (σ=0.3 to σ=0.9), the test's power 

generally stabilizes for EHS and QHS, while LHS and 

SQRTHS remain challenging to detect. 

Table 3 shows the performance of white test when evaluated 

across different heteroscedasticity structures (LHS, EHS, 

QHS, SQRTHS) at 5% significance with varying error 

standard deviation (σ) levels, using a sample size of 500. 

When σ=0 (no heteroscedasticity), the test exhibits low power 

(<0.05) and high Type II error (>0.95) across all structures. 

As σ increases (introducing heteroscedasticity), power 

improves substantially for EHS (up to 95.9%), moderately for 



MONTE CARLO EVALUATION OF WHITE'S…            Akewugberu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 309 - 314 314 

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

QHS (up to 21.3%), but remains low for LHS and SQRTHS 

(<0.05). Notably, EHS shows high Type I error rates (up to 

1.000), indicating over-rejection of homoscedasticity. As 

heteroscedasticity increases (σ=0.1 to σ=0.9), EHS power 

stabilizes, QHS power fluctuates slightly, and LHS and 

SQRTHS remain challenging to detect.  

 

CONCLUSION 

The Monte Carlo simulation results demonstrate that the 

White test's performance varies significantly across different 

heteroscedasticity structures and sample sizes. While it excels 

at detecting strong heteroscedasticity (EHS), its power and 

Type I error rates are less desirable for weaker forms (LHS, 

QHS, SQRTHS). Increasing sample size improves detection 

ability, especially for EHS. However, the test's tendency to 

over-reject homoscedasticity and struggle with weaker 

heteroscedasticity structures warrants caution. These findings 

have important implications for researchers using generalized 

linear models, highlighting the need for careful consideration 

of heteroscedasticity structure and sample size when 

employing the White test. 
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