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ABSTRACT 

In this paper, a new modified continuous asymmetric probability distribution Lomax-Unit Teissier distribution 

(LxUTD) which extends the baseline Unit Teissier (UTD) distribution was developed. However, the new 

distribution is capable of handling an asymmetric data sets. Some statistical properties like moments, moment 

generating function, renyi entropy, quantile function, and order statistics was derived and presented 

theoretically. We also, proceed to test the validity of the new constructed continuous asymmetric probability 

distribution. A simulation was conducted to determine the efficiency of the estimated value by increasing the 

sample size. The result shows that when simulated or real life datasets are being used the new asymmetric 

probability distribution will give better fit than the competitive models.  
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INTRODUCTION 

The asymmetric statistical distributions are commonly 

applied to describe real-world phenomena. Due to the 

usefulness of the asymmetric continuous probability 

distributions, their theory is widely studied and new modified 

distributions are developed. The idea behind the development 

of more flexible continuous probability distributions remains 

high in the statistics field. More generalized categories of 

continuous distributions have been developed and applied to 

describe various field. 

The common properties of these asymmetric continuous 

probability distribution is that, they contain more statistical 

parameters. The quality of any good continuous probability 

distribution is basically really on fitting the assumed 

probability distribution to the random variable or data. 

Moreover, there are situation where any of these continuous 

probability distributions do not fit some complex data 

appropriately, especially in finance, medicine, engineering, 

and environmental situation. The use of appropriate 

probability distributions to be applied on real-life situation 

plays a vital role in order to the improving the quality, 

efficiency, power, and sensitivity of statistical tests. The 

distribution that will fit the data appropriately is term as 

effective model. Therefore, good knowledge of the suitable 

distribution to be used for an identified data set is absolutely 

important. Asymmetrical continuous probability distributions 

are very useful in data analysis. They can be apply to analyze 

a great range of data shapes in applied areas. 

In the statistical literature of continuous probability 

distributions is important with various continuous 

distributions and still improving rapidly. Various extensions 

of some well-defined continuous distributions have been 

developed during the last three decades for modeling of  types 

of real life situation that form different nature. The 

improvement is attain to examine various techniques for 

generating/modifying new lifetime or existing distributions 

due to baselines once have different distributions and hence 

gives the probabilityin analyzing a complex data. The idea 

used to introduce new asymmetrical distributions are 

basically term as as connectors in the statistical review and 

are they can be able give better fit than the baseline models. 

Some well-known family generators include Lomax-G by 

Cordeiro et al.(2013), Kumaraswamy Marshall-Olkin by 

Alizadeh et al.(2015), Generalized transmuted family by 

Alizadeh et al.(2016), Another generalized transmuted family 

by Merovci et al.(2016), Transmuted geometric G family by 

Afify et al.(2016), Beta transmuted-H family by Afify et 

al.,(2017), Kumaraswamy transmuted-G family by Afify et 

al.(2016), Topp–Leone Family of Distributions by Al-

Shomrani et al.,(2016), The extended Weibull-G family of 

distributions by Kokmaz (2018). The aim of this research 

paper is to propose new modified probability distributions that 

are flexible and adaptive in modeling datasets that are 

asymmetric in nature 

 

MATERIALS AND METHODS 

The Unit Teissier distribution 

Krishna et al., (2022) proposed the one parameter namely unit 

Teissier distribution. The UTD is dcomputed from the 

transformation 𝑍 = 𝑒𝑘using Teissier distribution as the 

baseline distribution. The UTD serves as the extension of 

Teissier distribution by the French biologist Georges Teissier 

(1934). A random variable X is said to follow the UTD with 

one scale parameter𝜃 > 0, if its CDF is of the following form: 

𝐹(𝑥; 𝜃) = 𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃 + 1), 𝑥 ∈ (0,1)   (1) 

The corresponding pdf is given by  

𝑓(𝑥; 𝜃) = 𝜃(𝑥−𝜃 − 1)𝑥−(𝜃+1) 𝑒𝑥𝑝(−𝑥−𝜃 + 1)   (2) 

From equations (1) and (2), the survival function 𝑆(𝑥; 𝜃), 
hazard rate function ℎ(𝑥; 𝜃) and reversed hazard rate function 

𝜏(𝑥; 𝜃) of UTD are obtained as follows. 

𝑆(𝑥; 𝜃) = 1 − 𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃 + 1)  (3) 

ℎ(𝑥; 𝜃) =
𝜃(𝑥−𝜃−1)𝑥−(𝜃+1) 𝑒𝑥𝑝(−𝑥−𝜃+1)

1−𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃+1)
  (4) 

𝜏(𝑥; 𝜃) =
𝜃(𝑥−𝜃−1)𝑥−(𝜃+1) 𝑒𝑥𝑝(−𝑥−𝜃+1)

𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃+1)
  (5) 

New Lomax -G Family 

Sapkota et al., (2023) proposed a family of distribution called 

the New Lomax-G family of distribution which serves as the 

extension of Pareto type II (Lomax) distribution so that its 

support begins at zero by Lomax (1954). 

The CDF and PDF of the proposed new family New Lomax-

G Family distribution are given in (6) and (7) respectively. 

𝐺(𝑥; 𝛼, 𝛽) = 𝛽𝛼[𝛽 − 𝑙𝑜𝑔(𝐹(𝑥))]−𝛼       and, (6) 

𝑔(𝑥; 𝛼, 𝛽) = 𝛼𝛽𝛼𝑓(𝑥)𝐹(𝑥)−1[𝛽 − 𝑙𝑜𝑔(𝐹(𝑥))]−(𝛼+1) 
     (7) 

Where 𝛼 > 0and𝛽 > 0are shape and scale parameters 

respectively.From equations (3) and (4), the survival function 
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𝑆(𝑥; 𝛼, 𝛽), hazard rate function ℎ(𝑥; 𝛼, 𝛽) and reversed 

hazard rate function 𝜏(𝑥; 𝛼, 𝛽) of the LG family are obtained 

as follows. 

𝑆(𝑥; 𝛼, 𝛽) = 1 − 𝛽𝛼[𝛽 − 𝑙𝑜𝑔(𝐹(𝑥))]−𝛼 (8) 

ℎ(𝑥; 𝛼, 𝛽) =
𝛼𝛽𝛼𝑓(𝑥)𝐹(𝑥)−1[𝛽−𝑙𝑜𝑔(𝐹(𝑥))]−(𝛼+1)

1−𝛽𝛼[𝛽−𝑙𝑜𝑔(𝐹(𝑥))]−𝛼
 (9) 

𝜏(𝑥; 𝛼, 𝛽) =
𝛼𝛽𝛼𝑓(𝑥)𝐹(𝑥)−1[𝛽−𝑙𝑜𝑔(𝐹(𝑥))]−(𝛼+1)

𝛽𝛼[𝛽−𝑙𝑜𝑔(𝐹(𝑥))]−𝛼
 (10) 

Where𝑥 > 0𝛼 > 0 and 𝛽 > 0 are the Shape and Scale 

parameters respectively. 

 

The New Modified Distribution 

Lomax-Unit Teissier Distribution 

To obtain the CDF and PDF of the Lx-UT distribution, let the 

CDF and PDFof the Unit Teissier distribution given in (1) and 

(2) are then substitute in (6) and (7) respectively.  

Then the CDF of Lx-UTD is obtained as in (11).  

𝐺(𝑥; 𝛼, 𝛽, 𝜃) = 𝛽𝛼[𝛽 − 𝑙𝑜𝑔(𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃 + 1))]
−𝛼

       

and,       (11) 

The corresponding PDF is given by (12) 

𝑔(𝑥; 𝛼, 𝛽, 𝜃) = 𝛼𝛽𝛼
𝜃(𝑥−𝜃−1)𝑥−(𝜃+1) 𝑒𝑥𝑝(−𝑥−𝜃+1)

𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃+1)
[𝛽 −

𝑙𝑜𝑔(𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃 + 1))]
−(𝛼+1)

  (12) 

Where 𝑥 > 0 and𝜃 > 0 is the scale parameter and 𝛼, 𝛽 >
0are the shape parameters respectively. 

Proof: 

To prove that, the CDF for new Lx-UTD we take the integral 

of the PDF (12) with respect to 𝑥. 

𝐺𝐿𝑥−𝑈𝑇(𝑥; 𝛼, 𝛽, 𝜃) = ∫ 𝑔(
𝐺(𝑥)

0
𝑥; 𝛼, 𝛽, 𝜃)𝑑𝑥 (13) 

𝐺(𝑥; 𝛼, 𝛽, 𝜃) = ∫ 𝛼𝛽𝛼
𝜃(𝑥−𝜃−1)𝑥−(𝜃+1) 𝑒𝑥𝑝(−𝑥−𝜃+1)

𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃+1)
[𝛽 −

𝑇(𝑥)

0

𝑙𝑜𝑔(𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃 + 1))]
−(𝛼+1)

𝑑𝑥  (14) 

Let  

𝑦 = 𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃 + 1) = 𝑢𝑣 

We differentiate y using the product rule given by; 
𝑑(𝑢𝑣)

𝑑𝑥
= 𝑢

𝑑𝑣

𝑑𝑥
+ 𝑣

𝑑𝑢

𝑑𝑥
, 𝑢 = 𝑥−𝜃,   𝑣 = 𝑒−𝑥

−𝜃+1 

𝑢
𝑑𝑣

𝑑𝑥
= 𝜃𝑥−𝜃−1𝑥−𝜃𝑒−𝑥

−𝜃+1,  𝑣
𝑑𝑢

𝑑𝑥
= −𝜃𝑥−𝜃−1𝑒−𝑥

−𝜃+1 

𝑑𝑦

𝑑𝑥
= 𝜃𝑥−2𝜃−1𝑒−𝑥

−𝜃+1 − 𝜃𝑥−𝜃−1𝑒−𝑥
−𝜃+1

= 𝜃(𝑥−𝜃 − 1)𝑥−𝜃−1𝑒−𝑥
−𝜃+1 

𝑑𝑥 =
𝑑𝑦

𝜃(𝑥−𝜃 − 1)𝑥−𝜃−1𝑒−𝑥
−𝜃+1

 

∫ 𝛼𝛽𝛼𝑦−1(𝛽 − 𝑙𝑜𝑔( 𝑦))−(𝛼+1
𝐹(𝑥)

0
𝑑𝑦  (15) 

Let  

𝑘 = 𝛽 − 𝑙𝑜𝑔( 𝑦),  
𝑑𝑘

𝑑𝑦
= −

1

𝑦
,     Therefore,  𝑑𝑦 = −

1

𝑦−1
𝑑𝑘 

We then substitute for 𝑘 and 𝑑𝑦in (15) which implies (16) 

∫ 𝛼𝛽𝛼(𝑘)−(𝛼+1
𝛽−𝑙𝑜𝑔(𝑘)

0
𝑑𝑘   (16) 

When 𝑦 = 𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃 + 1) then  

𝑘 = 𝛽 − 𝑙𝑜𝑔 (𝑥−𝜃𝑒−𝑥
−𝜃+1) 

= −
𝛼𝛽𝛼[𝑘−(𝛼+1)+1]

0

𝛽−𝑙𝑜𝑔(𝑥−𝜃𝑒−𝑥
−𝜃+1)

−(𝛼+1)+1
  

𝐺(𝑥; 𝛼, 𝛽, 𝜃) = 𝛽𝛼 [𝛽 − 𝑙𝑜𝑔 (𝑥−𝜃𝑒−𝑥
−𝜃+1)]

−𝛼
 (17) 

Where 𝑥 > 0 and𝜃 > 0 is the scale parameter and 𝛼, 𝛽 >
0are the shape parameters respectively. 

To obtain the corresponding PDF we differentiate the CDF 

(17) with respect to 𝑥. 

𝑦 = [𝛽 − 𝑙𝑜𝑔 (𝑥−𝜃𝑒−𝑥
−𝜃+1)]

−𝛼
,       

𝑢 = 𝛽 − 𝑙𝑜𝑔 (𝑥−𝜃𝑒−𝑥
−𝜃+1),   𝑘 = (𝑥−𝜃𝑒−𝑥

−𝜃+1) 

𝑦 = 𝑢−𝛼, 𝑢 = 𝛽 − 𝑙𝑜𝑔 𝑘,      𝑘 = (𝑥−𝜃𝑒−𝑥
−𝜃+1) = 𝑢𝑣,  

𝑑𝑦

𝑑𝑢
=

−𝛼𝑢−𝛼−1,   
𝑑𝑢

𝑑𝑘
= −

1

𝑘
 

𝑑(𝑢𝑣)

𝑑𝑥
= 𝑢

𝑑𝑣

𝑑𝑥
+ 𝑣

𝑑𝑢

𝑑𝑥
= 𝜃𝑥−𝜃−1𝑥−𝜃𝑒−𝑥

−𝜃+1

− 𝜃𝑥−𝜃−1𝑒−𝑥
−𝜃+1 

That is,  
𝑑𝑘

𝑑𝑥
= 𝜃(𝑥−𝜃 − 1)𝑥−𝜃−1𝑒−𝑥

−𝜃+1 

𝑑𝑦

𝑑𝑥
=

𝛼𝛽𝛼𝜃(𝑥−𝜃−1)𝑥−𝜃−1𝑒−𝑥
−𝜃+1

(𝑥−𝜃𝑒−𝑥
−𝜃+1)

(𝛽 −

𝑙𝑜𝑔 (𝑥−𝜃𝑒−𝑥
−𝜃+1))

−(𝛼+1)
  

Therefore,  

𝑓𝐿−𝑈𝑇𝐷(𝑥; 𝛼, 𝛽, 𝜃) =
𝛼𝛽𝛼𝜃(𝑥−𝜃−1)𝑥−𝜃−1𝑒−𝑥

−𝜃+1

(𝑥−𝜃𝑒−𝑥
−𝜃+1)

(𝛽 −

𝑙𝑜𝑔 (𝑥−𝜃𝑒−𝑥
−𝜃+1))

−(𝛼+1)
   (18) 

Where 𝑥 > 0 and𝜃 > 0 is the scale parameter and 𝛼, 𝛽 >
0are the shape parameters respectively. 

 

 

 

Validity Check for Lomax-Unit TeissierDistribution 

To ensure the proposed probability distribution function (PDF) of the new L-UTD is valid, it must satisfy the fact that; 

∫ 𝑓𝐿−𝑈𝑇𝐷(𝑥; 𝛼, 𝛽, 𝜃) = 1
∞

0
         (19) 

∫
𝛼𝛽𝛼𝜃(𝑥−𝜃−1)𝑥−𝜃−1𝑒−𝑥

−𝜃+1

(𝑥−𝜃𝑒−𝑥
−𝜃+1)

(𝛽 − 𝑙𝑜𝑔 (𝑥−𝜃𝑒−𝑥
−𝜃+1))

−(𝛼+1)∞

0
𝑑𝑥 = 1     (20)  

Let  

𝑦 = 𝛽 − 𝑙𝑜𝑔 (𝑥−𝜃𝑒−𝑥
−𝜃+1), and 𝑘 = 𝑥−𝜃𝑒−𝑥

−𝜃+1, ⇒ 𝑦 = 𝛽 − 𝑙𝑜𝑔 𝑘, 𝑘 = 𝑢𝑣 

𝑑𝑦

𝑑𝑘
= −

1

𝑘
, 
𝑑𝑘

𝑑𝑥
= 𝜃(𝑥−𝜃 − 1)𝑥−𝜃−1𝑒−𝑥

−𝜃+1, and 𝑑𝑥 =
𝑑𝑘

𝜃(𝑥−𝜃−1)𝑥−𝜃−1𝑒−𝑥
−𝜃+1

 

∫
𝛼𝛽𝛼𝜃(𝑥−𝜃−1)𝑥−𝜃−1𝑒−𝑥

−𝜃+1(𝑥−𝜃𝑒−𝑥
−𝜃+1)

−1
(𝛽−𝑙𝑜𝑔 𝑘)−(𝛼+1)

(𝑥−𝜃𝑒−𝑥
−𝜃+1)

𝑑𝑘

𝜃(𝑥−𝜃−1)𝑥−𝜃−1𝑒−𝑥
−𝜃+1

∞

0
    (21) 

∫ −
∞

0
𝛼𝛽𝛼(𝛽 − 𝑙𝑜𝑔 𝑘)−(𝛼+1)𝑑𝑘        (22) 

=
−𝛼𝛽𝛼(𝛽 − 𝑙𝑜𝑔 𝑘)0

∞

−𝛼
 

∫ 𝑓(𝑥;
∞

0

𝛼, 𝛽, 𝜃) = (1 − (0)) − (1 − (1)) = 1 

Hence, the model in equation (12) is a valid probability density function 

Survival Function, Hazard, and Reverse Hazard Rate Functions for Lomax-Unit Teissier Distribution. 
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To obtain the survival function we substitute (1) into (8) which will give us (23). 

𝑆(𝑥; 𝛼, 𝛽) = 1 − 𝛽𝛼[𝛽 − 𝑙𝑜𝑔(𝑥−𝜃 𝑒𝑥𝑝(−𝑥−𝜃 + 1))]
−𝛼

      (23) 

Then to obtain the corresponding hazard rate function is by substitute (1) and (2) into (9) respectively. 

ℎ(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
𝛼𝛽𝛼𝜃(𝑥−𝜃−1)𝑥−(𝜃+1) 𝑒𝑥𝑝(−𝑥−𝜃+1)(𝑥−𝜃𝑒−𝑥

−𝜃+1)
−1

[𝛽−𝑙𝑜𝑔(𝑥−𝜃𝑒−𝑥
−𝜃+1)]

−(𝛼+1)

1−𝛽𝛼[𝛽−𝑙𝑜𝑔(𝑥−𝜃𝑒−𝑥
−𝜃+1)]

−𝛼    (24) 

Also, the reverse hazard rate function is by substituting (1) and (2) into (10) respectively. 

𝜏(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
𝛼𝛽𝛼𝜃(𝑥−𝜃−1)𝑥−(𝜃+1) 𝑒𝑥𝑝(−𝑥−𝜃+1)(𝑥−𝜃𝑒−𝑥

−𝜃+1)[𝛽−𝑙𝑜𝑔(𝑥−𝜃𝑒−𝑥
−𝜃+1)]

−(𝛼+1)

𝛽𝛼[𝛽−𝑙𝑜𝑔(𝑥−𝜃𝑒−𝑥
−𝜃+1)]

−𝛼

   

(25) 

Where 𝑥 > 0and 𝜃 > 0 is the scale parameter and 𝛼, 𝛽 > 0are the shape parameters 

 

Linear Representation 

Moments for Lomax-Unit Teissier distribution 

Let 𝑋 be a random variable that have a Lomax-Dagum-X family distribution, then the 𝑟𝑡ℎ moment about the origin,  𝐸(𝑋𝑟)is 

given by 

𝑀𝑥(𝑡) = 𝐸(𝑋𝑟) = ∫ 𝑋𝑟𝑓(𝑥)𝑑𝑥
∞

0
        (26) 

𝐸(𝑋𝑟) = ∫ 𝑋𝑟𝛼𝛽𝛼𝜃(𝑥−𝜃 − 1)𝑥−1 {𝛽 − log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼−1
𝑑𝑥

∞

0
    (27) 

Let  𝐴 = {𝛽 − log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼−1
 

𝐴 = {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼−1
 

𝐴 = ∑ (−1)𝑖∞
𝑖=0 (

𝛼 + 𝑖 − 1
𝑖

) 𝛽−𝑖 ∑
(−1)𝑗

𝑗!
𝑥−𝜃𝑗𝑒−𝑦∞

𝑗=0   

𝐸(𝑋𝑟) = ∫ 𝑋𝑟𝛼𝛽𝛼𝜃(𝑥−𝜃 − 1)𝑥−1𝑒−𝑥
−𝜃+1

∑ (−1)𝑖∞
𝑖=0 (

𝛼+𝑖−1
𝑖

)𝛽−𝑖∑
(−1)𝑗

𝑗!
𝑥−𝜃𝑗𝑒−𝑦∞

𝑗=0

−𝜃𝑥−𝜃−1𝑗(𝑥−𝜃+1)
𝑑𝑦

∞

0
   (28) 

𝐸(𝑋𝑟) = ∫ 𝛼𝛽𝛼−𝑖 ∑ (
𝛼 + 𝑖 − 1

𝑖
)∞

𝑖=0 ∑
(−1)𝑗

𝑗!𝑗
((

𝑦−𝑗

𝑗
)
−
1

𝜃
)

𝑟+𝜃+𝜃𝑗

𝑒−𝑦∞
𝑗=0 𝑑𝑦

∞

0
    (29) 

𝐸(𝑋𝑟) = 𝛼𝛽𝛼−𝑖 ∑ ∑
(−1)𝑗

𝑗!𝑗

∞
𝑖=0

∞
𝑗=0 (

𝛼 + 𝑖 − 1
𝑖

) Γ (1 −
𝑟+𝜃+𝜃𝑗

𝜃
)     (30) 

 

Moment Generating Function for Lomax-Unit Teissier distribution 

Let 𝑋 be a random variable that have a Lomax-Unit Teissier distribution, then the 𝑟𝑡ℎ moment about the origin,  𝐸(𝑒𝑡𝑥)is 

given by 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

0
        (31) 

𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝛼𝛽𝛼𝜃(𝑥−𝜃 − 1)𝑥−1 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−(𝛼+1)
𝑑𝑥

∞

0
    (32) 

Let  

𝐴 = {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−(𝛼+1)
 

(1 − 𝛽−1)−𝛼−1=∑ (−1)𝑖∞
𝑖=0 (

𝛼 + 𝑖
𝑖

) 𝛽−𝑖 

log (𝑥−𝜃𝑒−𝑥
−𝜃+1) = ∑

(−1)𝑘

𝑘!
(𝑥−𝜃𝑒−𝑥

−𝜃+1)
𝑘

∞
𝑘=0   

𝐴 = ∑ (−1)𝑖∞
𝑖=0 (

𝛼 + 𝑖
𝑖

) 𝛽−𝑖 ∑
(−1)𝑘

𝑘!
𝑥−𝜃𝑘𝑒−𝑦∞

𝑘=0   

Where 𝑒𝑡𝑥 = ∑
(𝑡𝑥)𝑣

𝑣!
∞
𝑣=0  

Therefore, the moment generating functioin (33) is obtained by applying gamma function  

𝐸(𝑒𝑡𝑥) = ∑
(𝑡)𝑣(−1)𝑖+𝑘𝛼𝛽𝛼−𝑖

𝑘!𝑘𝑣!
∑ ∑ (

𝛼 + 𝑖
𝑖

)∞
𝑘=0

∞
𝑖=0

∞
𝑣=0 ⁡Γ (1 +

𝑣+𝜃𝑘

𝜃
)     (33) 

 

Quantile Function for Lomax-Unit Teissier distribution 

Let 𝑋 be a random variable that has the CDF given in (11). The quantile function, 𝑄(𝑢) of 𝑋 can be derived as follows: 

𝑄(𝑢) = 𝐹−1(𝑢) 
𝑥 = 𝑄(𝑢) = 𝐹−1(𝑢) 

Let 𝐹(𝑥; 𝛼, 𝛽, 𝜃) = 𝛽𝛼 {𝛽 − log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼
 

𝑢 = 𝛽𝛼 {𝛽 − log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼
        (34) 

Divide both sides by 𝛽𝛼  
𝑢

𝛽𝛼 = {𝛽 − log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼
  

(
𝑢

𝛽𝛼
)
−
1
𝛼
= 1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥

−𝜃+1) 

(
𝑢

𝛽𝛼
)
−
1

𝛼
− 1 = −𝛽−1log⁡(𝑥−𝜃𝑒−𝑥

−𝜃+1)  
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1−(
𝑢

𝛽𝛼
)
−
1
𝛼

𝛽−1
= 𝑙𝑜𝑔𝑥−𝜃  

𝑙𝑜𝑔 [
1−(

𝑢

𝛽𝛼
)
−
1
𝛼

𝛽−1
] = 𝑥−𝜃  

After simplification, the quantile function is express in (35) as 

Therefore,𝑄(𝑢) = 𝑥 = 𝑙𝑜𝑔 [
1−(

𝑢

𝛽𝛼
)
−
1
𝛼

𝛽−1
]

−
1

𝜃

       (35) 

Where 𝑢 is a uniform random number on the interval (0,1) and 𝐺−1(. ) is the inverse function of 𝐺(. ). in particular, 𝑄(0.5) is 
the median of the family and defined by substituting 𝑢 = 0.5 in equation (35): 

𝑄(0.5) = 𝑥 = 𝑙𝑜𝑔 [
1−(

0.5

𝛽𝛼
)
−
1
𝛼

𝛽−1 ]

−
1

𝜃

        (36) 

The first and third quartile can be obtained also by substituting 𝑢 = 0.25 and 𝑢 = 0.75, respectively in equation (35), as 

follows in (37) and (38). 

𝑄(0.25) = 𝑥 = 𝑙𝑜𝑔 [
1−(

0.25

𝛽𝛼
)
−
1
𝛼

𝛽−1
]

−
1

𝜃

        (37) 

and 

𝑄(0.75) = 𝑥 = 𝑙𝑜𝑔 [
1−(

0.75

𝛽𝛼
)
−
1
𝛼

𝛽−1
]

−
1

𝜃

        (38) 

 

Order Statistics for Lomax-Unit Teissier distribution 

The pdf 𝑓𝑖,𝑛(𝑥) of the 𝑖𝑡ℎ order statistics for a random sample (𝑥1……… . . 𝑥𝑛) from the LUTD can be obtain by: 

𝑓𝑖,𝑛(𝑥) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
⁡𝑓(𝑥)[𝐹(𝑥)]𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖      (39) 

[1 − 𝐹(𝑥)]𝑛−𝑖= ∑ (
𝑛 − 𝑖
𝑚

) (−1)𝑚[𝐹(𝑥)]𝑚𝑛−𝑖
𝑚=0  

(
𝑛 − 𝑖
𝑚

) =
(𝑛 − 𝑖)!

𝑚! (𝑛 − 𝑖 −𝑚)!
 

𝑓𝑖,𝑛(𝑥) = ∑
𝑛!

(𝑖−1)!𝑚!(𝑛−𝑖−𝑚)!
𝑛−𝑖
𝑚=0 ⁡𝑓(𝑥)[𝐹(𝑥)]𝑖+𝑚−1 

Therefore,  

𝑓𝑖,𝑛(𝑥) = ∑
𝑛!

(𝑖−1)!𝑚!(𝑛−𝑖−𝑚)!
𝑛−𝑖
𝑚=0 ⁡𝛼𝛽𝛼𝜃(𝑥−𝜃 − 1)𝑥−1 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥

−𝜃+1)}
−𝛼−1

 

[𝛽𝛼 {𝛽 − log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼
]
𝑖+𝑚−1

        (40) 

Let 𝑈 = [𝛽𝛼 {𝛽 − log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼
]
𝑖+𝑚−1

 

Therefore,  

𝑈 = ∑ ∑ ∑
(−1)

𝑟!𝑤!

𝑖+𝑟+𝑙+𝑤
∞
𝑟=0

∞
𝑤=0

∞
𝑖=0 𝛽𝛼𝑖𝑥𝜃𝛼𝑤−𝜃𝑙(𝛼𝑤)𝑟(𝑖+𝑚−1

𝑖
)(𝑟

𝑙
)     (41) 

Let  

𝐴 = {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼−1
 

(1 − 𝛽−1)−𝛼−1=∑ (−1)𝑖∞
=0 (

𝛼 + 𝑖
𝑖

) 𝛽−𝑖 

log (𝑥−𝜃𝑒−𝑥
−𝜃+1) = ∑

(−1)𝑘

𝑘!
(𝑥−𝜃𝑒−𝑥

−𝜃+1)
𝑘

∞
𝑘=0   

= ∑
(−1)𝑘

𝑘!
𝑥−𝜃𝑘𝑒−𝑘(𝑥

−𝜃+1)

∞

𝑘=0

 

𝑒−𝑘(𝑥
−𝜃+1) = ∑

(−1)

ℎ!

ℎ
(∞

ℎ=0 𝑘)ℎ ∑ (−1)𝑡(ℎ
𝑡
)∞

𝑡=0 𝑥−𝜃𝑡  

Also, (𝑥−𝜃 − 1) = ∑ (−1)𝑛𝑥−𝜃𝑛∞
𝑛=0  

Let 𝑧 = 𝑖 + 𝑟 + 𝑙 + 𝑤 + 𝑛 + ℎ + 𝑘 + 𝑡,  d=⁡𝛼𝑖 + 𝛼 − 𝑖 and 𝑐 = 𝜃𝛼𝑤 − 𝜃𝑘 − 𝜃𝑡 − 𝜃𝑛 − 𝜃𝑙 − 1 

𝑓(𝑥) = 𝛼𝑟𝜃𝑤𝑟 𝑥
𝑐(𝑘)ℎ

𝑘!ℎ!

𝛽𝑑(−1)

𝑟!𝑤!

𝑧

∑ ∑ ∑ ∑ ∑ (𝑖+𝑚−1
𝑖

)∞
𝑡=0 (∞

ℎ=0 𝑘)ℎ∞
𝑟=0

∞
𝑤=0

∞
𝑖=0   

∑ ∑ ∑ (
𝛼 + 𝑖
𝑖

)∞
𝑘=0 (𝑟

𝑙
)∞

𝑛=0
∞
=0 (ℎ

𝑡
)        (42) 

𝑓𝑖,𝑛(𝑥) = ∑
𝑛!

(𝑖−1)!𝑚!(𝑛−𝑖−𝑚)!
𝑛−𝑖
𝑚=0 𝛼𝑟𝜃𝑤𝑟 𝑥

𝑐(𝑘)ℎ

𝑘!ℎ!

𝛽𝑑(−1)

𝑟!𝑤!

𝑧

 

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ (
𝛼 + 𝑖
𝑖

)∞
𝑘=0 (𝑟

𝑙
)∞

𝑛=0
∞
=0 (ℎ

𝑡
)∞

𝑡=0 (∞
ℎ=0 𝑘)ℎ∞

𝑟=0
∞
𝑤=0

∞
𝑖=0 (𝑖+𝑚−1

𝑖
)    (43) 
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We then substitute at 𝑖 = 1 and⁡𝑖 = 𝑛; that is minimum and maximum order of 𝑋1 and⁡𝑋𝑛. 

 

Renyi Entropyfor Lomax-Unit Teissier distribution 

The entropy of a random variable 𝑋is one of the major properties of probability distribution. It’s basically used to represents 

a measure of uncertainties obtained in a distribution. Let 𝑋 be a random variable that has the PDF given in equation (12), then 

the Renyi entropy of the random variable 𝑋 is defined as: 

𝑅𝜆(𝑥) =
1

1−𝜆
𝑙𝑜𝑔[∫ (𝑓(𝑥))𝜆𝑑𝑥

∞

0
]        (44)  

By inserting equation (12) into (44) which gives  

𝑅𝜆(𝑥) =
1

1−𝜆
𝑙𝑜𝑔 [∫ (𝛼𝛽𝛼𝜃(𝑥−𝜃 − 1)𝑥−1 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥

−𝜃+1)}
−𝛼−1

)
𝜆

𝑑𝑥
∞

0
]  

𝑅𝜆(𝑥) =
1

1−𝜆
𝑙𝑜𝑔 [∫ 𝛼𝜆𝛽𝜆𝛼𝜃𝜆(𝑥−𝜃 − 1)𝜆𝑥−𝜆 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥

−𝜃+1)}
−𝜆(𝛼+1)

𝑑𝑥
∞

0
]   (45) 

Let  𝑉 = {1 − 𝛽−1 log (𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝜆(𝛼+1)

 

=∑ (−1)𝑖∞
𝑖=0 (𝜆

(𝛼 + 𝑖)
𝑖

) 𝛽−𝑖 ∑
(−1)𝑗

𝑗!

∞
𝑗=0 ⁡ 𝑥−𝜃𝑖𝑗 ∑

(−1)𝑘

𝑘!
∞
𝑘=0 ∑ (−1)𝑚∞

𝑚=0 (𝑖𝑗)𝑘 (
𝑘
𝑚
)𝑥−𝜃𝑚 

(𝑥−𝜃 − 1)
𝜆
= ∑ (−1)𝑛(𝜆

𝑛
)𝑥−𝜃𝑛∞

𝑛=0   

𝑅𝜆(𝑥) =
1

1−𝜆
𝑙𝑜𝑔 ∫ 𝛼𝜆𝛽𝜆𝛼𝜃𝜆 ∑ ∑ ∑ ∑ ∑

(−1)𝑖+𝑗+𝑘+𝑚+𝑛

𝑗!𝑘!
∞
𝑛=0

∞
𝑚=0

∞
𝑖=0

∞
𝑘=0

∞
𝑗=0 𝑥−(𝜃𝑖𝑗+𝜃𝑚+𝜃𝑛−𝜆)(𝑖𝑗)𝑘

∞

0
  

(𝜆
(𝛼 + 𝑖)
𝑖

) 𝛽𝜆𝛼−𝑖(𝜆
𝑛
) (

𝑘
𝑚
)𝑑𝑥         (46)  

𝐶1 = 𝛼𝜆𝛽𝜆𝛼𝜃𝜆 ∑ ∑ ∑ ∑ ∑
(−1)𝑖+𝑗+𝑘+𝑚+𝑛

𝑗!𝑘!
∞
𝑛=0

∞
𝑚=0

∞
𝑖=0

∞
𝑘=0

∞
𝑗=0 (𝑖𝑗)𝑘 (

𝜆(𝛼 + 𝑖)
𝑖

) 𝛽𝜆𝛼−𝑖(𝜆
𝑛
) (

𝑘
𝑚
)  

𝑅𝜆(𝑥) =
1

1−𝜆
𝑙𝑜𝑔[𝐶1 ∫ 𝑥−(𝜃𝑖𝑗+𝜃𝑚+𝜃𝑛−𝜆)𝑑𝑥

∞

0
]       (47)  

𝑅𝜆(𝑥) =
1

1−𝜆
𝑙𝑜𝑔 [𝐶1

1

𝜃𝑖𝑗+𝜃𝑚+𝜃𝑛−𝜆+1
]  

𝑅𝜆(𝑥) =
1

1−𝜆
[
𝜃𝑖𝑗+𝜃𝑚+𝜃𝑛−𝜆+1

𝐶1
]  

𝑅𝜆(𝑥) =
𝜃𝑖𝑗+𝜃𝑚+𝜃𝑛−𝜆+1

𝐶1(1−𝜆)
         (48) 

 

Asymptotic Behavior/Limiting Function for Lomax-Unit Teissier distribution 

The limit of the pdf of LUTD 𝑓(𝑥; 𝛼, 𝛽, 𝜃) as 𝑥 → ∞ and as 𝑥 → 𝜃 is zero 0. This can be proved by taking the limit of 

𝑓(𝑥; 𝛼, 𝛽, 𝜃) as 𝑥 → ∞⁡𝑎𝑛𝑑⁡𝑥 → 𝜃. 
That is; lim

𝑥→∞
𝑓(𝑥; 𝛼, 𝛽, 𝜃) = lim

𝑥→0
𝑓(𝑥; 𝛼, 𝛽, 𝜃) = 0 

The proof 

lim
𝑥→∞

𝑓(𝑥; 𝛼, 𝛽, 𝜃) = lim
𝑥→∞

𝛼𝛽𝛼𝜃(𝑥−𝜃 − 1)𝑥−1 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼−1
    (49) 

= 𝛼𝛽𝛼𝜃(∞−𝜃 − 1)∞−1 {1 − 𝛽−1log⁡(∞−𝜃𝑒−∞
−𝜃+1)}

−𝛼−1
  

= 0 

lim
𝑥→0

𝑓(𝑥; 𝛼, 𝛽, 𝜃) = lim
𝑥→0

𝛼𝛽𝛼𝜃(0−𝜃 − 1)0−1 {1 − 𝛽−1log⁡(0−𝜃𝑒−0
−𝜃+1)}

−𝛼−1
 

= lim
𝑥→0

𝛼𝛽𝛼𝜃(0−𝜃 − 1)0−1 {1 − 𝛽−1log⁡(0−𝜃𝑒−0
−𝜃+1)}

−𝛼−1
  

= 0  

When the limit of the pdf for the distribution follow 𝑥 → ∞ and 𝑥 → 0. It proved that the pdf of LUTD have a mode (uni-

modal). 

Lemma II: 

The limit of the CDF of LUTD 𝐹(𝑥; 𝛼, 𝛽, 𝜃), as 𝑥 → ∞ is 1 and also as 𝑥 → 0 is 0. 

That is,  

lim
𝑥→∞

𝑓(𝑥; 𝛼, 𝛽, 𝜃) = 1  

lim
𝑥→0

𝑓(𝑥; 𝛼, 𝛽, 𝜃) = 0  

The proof  

lim
𝑥→∞

𝑓(𝑥; 𝛼, 𝛽, 𝜃) = lim
𝑥→∞

{1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼−1
      (50) 

= 1 − 𝛽𝛼log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)−𝛼  

= 1 − 0 

= 1 

lim
𝑥→0

𝑓(𝑥; 𝛼, 𝛽, 𝜃) = lim
𝑥→0

{1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼−1
  

= 1 − 𝛽𝛼log⁡(0)  

= 1 − 1 

= 0  
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Parameter Estimation for Lomax-Unit Teissier distribution 

Let 𝑥1……… . . 𝑥𝑛 be a random sample from the LUT-X family distributions with parameter 𝛼, 𝛽, 𝛿, 𝜃, 𝜆. The log-likelihood 

function for 𝜓, 𝑠𝑎𝑦𝑠⁡ℒ = ℒ(𝜓). 
ℒ(𝜓)= ∏ 𝑓(𝑥; 𝛼, 𝛽, 𝜃, )𝑛

𝑖=1          (51) 

ℒ(𝜓)= ∏ 𝛼𝛽𝛼𝜃(𝑥−𝜃 − 1)𝑥−1 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}

−𝛼−1
𝑛
𝑖=1      (52) 

= 𝛼𝑛𝛽𝑛𝛼𝜃𝑛 ∑ (𝑥−𝜃 − 1)∑ 𝑥−1𝑛
𝑖=1

𝑛
𝑖=1 ∑ {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥

−𝜃+1)}
−(𝛼+1)

𝑛
𝑖=1   

By taking the log of the likelihood function  

𝑙𝑜𝑔ℒ(𝜓) = ⁡𝑛𝑙𝑜𝑔𝛼 + 𝛼𝑛𝑙𝑜𝑔𝛽 + 𝑛𝑙𝑜𝑔𝜃 -∑ 𝑙𝑜𝑔𝑥 + ∑ 𝑙𝑜𝑔(𝑥−𝜃 − 1)𝑛
𝑖=1

𝑛
𝑖=1  

−(𝛼 + 1)∑ 𝑙𝑜𝑔 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)}𝑛

𝑖=1        (53) 

In order to maximize the log likelihood, we solve the nonlinear likelihood equation simultaneously obtained from the 

differentiation of (53) with respect to 𝛼, 𝛽, 𝜃, as shown below. 
𝜕𝑙𝑜𝑔ℒ(𝜓)

𝜕𝛼
= ⁡

𝑛

𝛼
+

𝑛

𝛽
− ∑ 𝑙𝑜𝑔 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥

−𝜃+1)}𝑛
𝑖=1       (54) 

𝜕𝑙𝑜𝑔ℒ(𝜓)

𝜕𝛽
= ⁡

𝑛𝛼

𝛽
− (𝛼 + 1)∑ 𝑙𝑜𝑔 {1 − 𝛽−1log⁡(𝑥−𝜃𝑒−𝑥

−𝜃+1)}𝑛
𝑖=1      (55) 

𝜕𝑙𝑜𝑔ℒ(𝜓)

𝜕𝜃
= ⁡

𝑛

𝜃
−

𝜃∑ 𝑥−𝜃−1𝑛
𝑖=1

𝑥−𝜃−1
−

(𝛼+1)∑ (𝑥−𝜃−1𝜃(𝑥−𝜃−1)𝑒−𝑥
−𝜃+1)𝑛

𝑖=1

1−𝛽−1log⁡(𝑥−𝜃𝑒−𝑥
−𝜃+1)

     (56) 

That is 
𝜕𝑙𝑜𝑔ℒ(𝜓)

𝜕𝛼
= 0,

𝜕𝑙𝑜𝑔ℒ(𝜓)

𝜕𝛽
= 0,

𝜕𝑙𝑜𝑔ℒ(𝜓)

𝜕𝜃
= 0 which gives the estimate of the maximum likelihood estimate of the 

parameters. 

 

RESULTS AND DISCUSSION  

Plots CDF and PDF of Lomax-Unit Teissier distribution 

Plots of cumulative distribution function and probability density function of Lomax-Unit Teissier distribution for 

selected/varying parameter values are given in Figures 3 and 4 and furthermore, for a similarity, 𝑎 = 𝛼, 𝑏 = 𝛽, 𝑎𝑛𝑑⁡𝑐 = 𝜃. 

 

 
Figure 1: CDF plot of  LUTD 

 
Figure 2: PDF plot of LUDT 

 

The above Figure (1) displays the cumulative distribution 

function of L-UTD for different values of the shape and scale 

parameters. Figure (2) displays the density function of L-UTD 

for different values of the shape and scale parameters. It is 

both left and right skewed distribution and has different level 

kurtosis which shows the flexibility of the distribution for 

modeling asymmetric datasets.  

 

 
Figure 3: Survival plot of LUTD 

 
Figure 4: Hazard plot of LUTD 

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

C
D

F

key

a=1.0,b=10.0,c=15.0

 a=1.5,b=9.5,c=8.0

 a=2.0,b=12.5,c=10.0

 a=1.5,b=14.5,c=20.0

0.0 0.5 1.0 1.5

0
2

0
4

0
6

0
8

0
1

0
0

x

P
D

F
 o

f 
L

U
T

D

key

a = 4.5, b = 25.0, c = 3.0

a = 4.0, b = 20.5, c = 3.5

a = 2.8, b = 15.2, c = 10.4

a = 4.5, b = 14.5, c = 3.0

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

S
(x

) o
f L

U
T

D

key

a=4.75,b=10.0,c=5.0

 a=1.05,b=9.5,c=8.0

 a=2.0,b=12.5,c=10.0

 a=1.55,b=14.5,c=20.0

0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00

x

h(
x)

 o
f L

U
TD

key

a=-3.4,b=15.0,c=2.12

 a=-5.0,b=13.5,c=2.4

 a=-4.5,b=15.5,c=1.5

 a=-5.7,b=14.5,c=2.0



ON THE LOMAX-UNIT TEISSIER DISTR…            Halidu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 1, January, 2025, pp 225 – 233 231 

 

Also, figure (3) of survival function shows varying shapes 

decreasing, constant and reversed-J shapes. Whereas figure 

(4) of hazard rate plot show varying shapes like bathtub, 

reversed-J shape and constant failure rate. 

 

Numerical Application of LxUTD and Goodness of Fit 

Statistics 

In this part, the goodness of fit of LxUTD has been computed 

by using numerical example (datasets) which represents times 

between failures of secondary reactor pumps by 

Suprawhardana and Prayoto (1999).  

We demonstrate the application of the developed models by 

the use of different criteria to compare all our developed 

distribution with other releted model were discussed. 

Information criteria are used for model selection, particularly 

in the context of comparing different statistical models. They 

provide a means to evaluate the trade-off between model 

complexity and goodness of fit. In a situation where models 

are not nested, the likelihood ratio test become inappropate. 

To ovaercome this challenge, information criteria such as 

Akaike Information criteria (AIC), Bayesian Information 

criteria (BIC), Hannan Queinn Information criteria (HQIC), 

Consistent Akaike Information criteria (CAIC) are employed. 

The mathematical expression for AIC, BIC, HQIC and CAIC 

are given as: 

 

Akaike Information Criteria 

𝐴𝐼𝐶 = 2𝑘 − 2ln⁡(𝐿)     (57) 

Where k is the number of parameters and L is the likelihood 

of the model. 

 

Bayesian Information Criteria (BIC) 

𝐵𝐼𝐶 = ln(𝑛) 𝑘 − 2ln⁡(𝐿)      (58) 

Where n is the number of observations. It also penalizes 

complexity but does not so more strongly than AIC 

Both goodness of fit test and information criteria are essential 

tools in statistical modeling, helping researchers evaluate how 

well their models perform and choose among competing 

models effectively.In comparing the vaues of the information 

criteria AIC, BIC, HQIC and CAIC for each model or 

distribution, the model with least values of these criteria is 

regarded as the best model among the competing once.  

Data 1:This data was previously used by Musa et.al (2021)  

0.68879, 0.50813, 0.66621, 0.74526, 0.86947, 0.88076, 

0.84688, 0.91463, 0.75655, 0.55329, 0.79042, 0.82429, 

0.92593, 0.80172, 0.79042, 0.83559, 0.68879, 0.74526, 

0.80172, 0.93722, 0.85818, 0.98238, 0.29359, 0.99368, 

0.67751, 0.80172, 0.93722, 0.63234, 0.64363, 0.73397, 

0.89205, 0.64363, 0.77913, 0.41779, 0.58717, 0.88076, 

0.91463, 0.80172, 0.68879, 0.72267, 0.90334, 0.76784, 

0.93722, 0.21454, 0.38392. 

Table 1: The MLEs of the LUTD parameters  

Models Parameter Parameter Parameter P-Value 

LUTD a = 0.629398 b = 7.841393 c = 2.300553 5.16e-09 

UTD  

LLD 

a = 0.3625 

- 

- 

- 

- 

c = 2.12  

0.7341 

0.5573 

TLEx 

UBD 

ETLD 

- 

a = 0.1639 

a = 0.6567 

b = 0.0070 

b= 2.4273 

b = 1.6566 

c = 1.2220 

- 

- 

- 

0.1688 

0.6536 

Table 2: Goodness of Fit Test for LUTD compared with other models for Datasets I 

Models AIC CAIC BIC HQIC 

LUTD -390.3034 -389.7181 -384.8835 -388.2829 

UTD  

LLD 

-250.3635 

-244.3731 

-230.3579 

-222.7812 

-240.1678 

-7.3517 

-243.889 

- 

TLEx 

UBD 

ETLD 

-274.4007 

-31.0588 

-36.3418 

- 

-30.4588 

-26.7878 

- 

-28.7878 

-34.0708 

- 

- 

 

Data sets II: The datasets consist of the annual flood discharge 

of the North Saskatchew in units of 1000 f/second of river at 

Edmonton over 48 years which is reported by Van Montfort 

(1970). 

19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760, 

26.720, 27.500, 28.100, 28.600, 30.200, 30.380, 31.500, 

32.680, 34.400, 35.347, 35.700, 38.100, 39.020, 39..200, 

40.000, 40..400, 40.400, 42.250, 44.020, 44.730, 44.900, 

46..300, 50.330, 51.442, 57.220, 58.700, 58.800, 61.200, 

61.740, 65.440, 65.597, 66.000, 74.100, 75..800, 84.100, 

106.600, 109.700, 121.970, 185.560 

 

Table 3: Goodness of Fit Test for LUTD compared with other models for Datasets II 

Models AIC AICc BIC HQIC 

LUTD -431.3917 -429.8917 -428.4045 -32.81144 

UTD  

LLD 

-25.1635 

-9.3431 

-23.1679 

- 

-24.1678 

-7.3517 

- 

- 

TLEx 

UBD 

ETLD 

174.4007 

-31.0588 

-36.3418 

- 

-30.4588 

-26.7878 

- 

-28.7878 

-34.0708 

- 

- 

 

Simulation Study of the Models 

The simulation studies conducted for LUTD has the samples 

5000 that was generated of varying sizes, 𝑛 = 10,
50, 𝑎𝑛𝑑⁡100, for the arbitrary choice of parameters for 𝛼 =
0.0004, 𝛽 = 0.0003 and 𝜃 = 0.0002 while another sizes 

𝑛 = 200, 300, 𝑎𝑛𝑑⁡700, for the true parameter values of 𝛼 =
0.00002, 𝛽 = 0.00004 and 𝜃 = 0.00003 as shown in Table 

4 and 5 respectively. 
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Table 4: Estimate of parameter, bias, MSE, and Variance 

Sample 

𝜶 = 𝟎. 𝟎𝟎𝟎𝟒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜷 = 𝟎. 𝟎𝟎𝟎𝟑⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜽 = 𝟎. 𝟎𝟎𝟎𝟐  

Parameters Estimate Bias MSE Variance 

10 

α 1601705 1601725 5.305008e + 16 2.73954e + 16 

β 2622820 2622820 2.764835e + 17 2.07691e + 17 

θ 1.042554 1.04233 2.247208 1.160746 

50 

α 2549051 2549052 1.192739e + 17 5.4297e + 16 

β 2896627 2896627 3.415831e + 19 2.576786e + 19 

θ 0.898483 0.898286 0.9392732 0.1323616 

100 

α 24502276  24502273  2.068785e+19 1.468424e+19 

β  4.968378  4.968378e +12  1.48095e + 26 1.234111e+26 

θ  0.790053  0.790053  0.9560469 0.3321792 

 

Table 5: Estimate of parameter, bias, MSE, and Variance 

 𝜶 = 𝟎. 𝟎𝟎𝟎𝟎𝟐⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜷 = 𝟎. 𝟎𝟎𝟎𝟎𝟒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜽 = 𝟎. 𝟎𝟎𝟎𝟎𝟑  

Sample Parameters Estimate Bias MSE Variance 

200 

α 0.06841382 0.06839282 0.00474858 7.086507e - 05 

β 508.4523 508.4523 901383 642859.3 

θ 1.222264 1.222234 1.509834 0.01597703 

300 

α 0.0523367 0.05231666 0.0028837 0.00014670 

β 116.5617 116.5617 24582.72 10996.1 

θ 1.218703 1.218673 1.500924 0.0157594 

700 

α 837813 837813 4.211589e+18 3.509657e+18 

β 157135.7 157135.7 13486466 1.10173e+11 

θ 0.805852 0.805852 0.7232361 0.0738868 

 

Discussion 

Figure (1) displays the cumulative distribution function of 

LxUTD for different values of the shape and scale parameters. 

Figure (2) displays the density function of LxUTD for 

different values of the shape and scale parameters. It is both 

left and right skewed distribution and has different level 

kurtosis which shows the flexibility of the distribution for 

modeling asymmetric datasets. 

Table 1 represents the MLEs of the computed parameters. 

Also, table 2 shows the different models selection criteria, it 

can be observed that LxUTD has the lowest values which 

makes best fit for the above data. 

 

CONCLUSION  

The Lomax-Unit Teissier LxUTD distribution has been 

introduced in this study. Moment, Moment generating 

function, order statistics, reliability analysis and quantile 

functions was derived. Also, method of parameter estimations 

(MLEs) and its application was computed using real life 

numerical data sets. Hence, looking at the output presented, 

Lomax-Unit Teissier LxUTD  distribution perform better than 

compared models with it. 

 

REFERENCES 

Afify A.Z., Alizadeh M, Yousof H.M., Aryal, G., & Ahmad, 

M., (2016): The transmuted geometric-G family of 

distributions: Theory and applications. Pakistan Journal of 

Statistics forth coming. 

 

Afify A.Z., Cordeiro G.M., Alizadeh M,  Nofal Z.M & 

Yousof H.M.(2016):The kumaraswamy transmuted-G family 

of distribution: Properties and Applications. Journal of Data 

Science 14: 245-270. 

 

Afify A.Z., Yousof  H.M., & Nadarajah, S., (2017). The beta 

transmuted-H fam  ily for lifetime data. Stat. Its Interface 

2017, 10, 505–520. 

 

Al-Shomrani A, Arif O, Shewky A, Hanif S, & Shahbaz 

M.O., (2016): Topp-Leone Familyof distributions. Some 

properties and applications. Parkistan Journal of Statistical 

Operational Research 3:443-451.

 
 

Cordeiro G.M., Afify A.Z., Ortega E.M.M., Suzuki A.K & 

Mead M.E., (2013): The odd Lomax-Generator of 

distributions properties, Estimation and Application, Journal 

of computer and Applied Mathematics 345, 222-237. 

 

Korkmaz M. C., (2018): A new family of distributions: The 

extended Weibull-G family. Ankara university. 

Communicaton faculty of science university of Zalkara-Series 

Ai mathematics and statistics 68(1), 218-270.

 
 

Korkmaz M. C., Alizadeh M., Yousof H.M. & Butt N. S. 

(2018). The generalized odd Weibull generated a family of 

distributions: statistical properties and applications. Pakistan 

Journal of Statistical Operation Research vol.XIV. No. 

3:541-556.  

 

Krishna A.; Maya R., Chesneau, C., & Irshad, M.R.,(2022): 

The Unit Teissier Distribution and Its Applications. 

Mathematical and Computational. Application 27, 12. 

https://doi.org/10.3390/mca27010012  

 

Manu F., Usman U., & Audu A., (2023): New Life-Time 

Continuous Probability Distribution With Flexible Failure 

Rate Function. FUDMA Journal of Sciences (FJS), Vol. 7 No. 

1, pp 323 – 329. DOI: https://doi.org/10.33003/fjs-2023-

0701-2070 

 

Manu F., Usman U., Audu A., & Isah B.Y., (2023). A New 

Life-Time Model with Bathtub and Inverted Bathtub Failure 

Rate Function. Vol.25, page  107-119. 

 

https://doi.org/10.3390/mca27010012


ON THE LOMAX-UNIT TEISSIER DISTR…            Halidu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 1, January, 2025, pp 225 – 233 233 

 ©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

Merovci F., Alizadeh M., & Hamedani G.G., (2016): Another 

generalized transmuted family of distributions: properties and 

applications. Australian Journal of Statistics Forth coming. 

 

Musa Y, Muhammad A.B., Usman U., Zakari Y., (2021): On 

the properties of Burr X-Topp Leone Distribution and its 

application. Lapai Journal of Applied and Natural Sciences. 

6(1):114-120. 

 

Sapkota L. P.,  Bakr M. E., Kumar V., & Balogun S. O., 

(2023). New Lomax-G Family of Distributions: Statistical 

Properties and Applications. AIP advance 13, 

https://doi.org/10.1063/5.0171949  

 

Suprawhardana M.S., & Prayoto S., (1999): Total time on test 

plots analysis for mechanical components of the RSG-GAS 

reactor. Atom Indomes 25, 81-90 

 

Teissier G., (1934). Recherches sur le vieillissement et sur les 

lois de la mortalité. Annual. Physiological Physicochim. 

Biology. 10, 237–284.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0171949

