
THE ODD RAYLEIGH-G FAMILY OF DIST…            Sadiq et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 514 – 527 514 

8 

 

THE ODD RAYLEIGH-G FAMILY OF DISTRIBUTION: PROPERTIES, APPLICATIONS, AND 

PERFORMANCE COMPARISONS 

 

*Ibrahim Abubakar Sadiq, Saminu Garba, Jibril Yahaya Kajuru, Abubakar Usman, Aliyu Ismail Ishaq,  

Yahaya Zakari, Sani Ibrahim Doguwa and Abubakar Yahaya 

 

Department of Statistics, Ahmadu Bello University, Zaria 810107, Nigeria. 

 

*Corresponding authors’ email: isabubakar@abu.edu.ng   Phone: +2348137526770 

 

ABSTRACT 

This study introduces the Odd Rayleigh-G (OR-G) family of distribution and explores its mathematical 

properties, applications, and performance comparisons. The Odd Rayleigh-Weibull distribution (ORWD) is 

developed by incorporating the "Odd" transformation into the Rayleigh and Weibull distribution, resulting in 

a flexible model suitable for various real-life and survival data applications. The probability density function 

(PDF), cumulative distribution function (CDF), hazard function, and survival function of the ORWD are 

derived and analyzed. Parameter estimation is performed using the Maximum Likelihood Estimation (MLE) 

method, and the performance of the ORWD is assessed through simulation studies. The simulations for 

parameter estimates at 100 sample sizes were conducted and the plot of the simulated data on the PDF, CDF, 

survival and hazard function demonstrate a comprehensive view of the characteristics of the Odd Rayleigh 

Weibull distribution. This information is useful for understanding the behaviour of the distribution and for 

applications in reliability analysis and survival studies. The results demonstrate the consistency and efficiency 

of the MLE method for the ORWD. The ORWD is compared with other distributions, including the Weibull, 

Power Rayleigh, and Rayleigh distributions, using goodness-of-fit measures such as the Akaike Information 

Criterion (AIC = 111.0238 and 87.4294), Bayesian Information Criterion (BIC = 117.2564 and 96.0320), and 

Kolmogorov-Smirnov (KS = 0.9559 and 0.9889) test with p-values (p-val = 7.772e-16 and 2.2e-16). The 

ORWD shows superior performance in fitting the mortality dataset and the Reddit advertisement dataset, 

highlighting its potential for modelling complex data structures. Overall, this study provides a comprehensive 

framework for the ORWD, demonstrating its versatility and effectiveness in statistical modelling and data 

analysis.  
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INTRODUCTION 

The development of a generalized form of probability 

distribution captivates academics and dedicated statisticians 

due to its remarkable flexibility and potential applications. 

(sadiq et al., 2023a). Statistics deal with variability and 

uncertainty, and from such a vital role of statistical inference 

and distribution theory usefulness cannot be quantified. The 

variability and uncertainty in survival and reliability data, 

simulated data, experimental data, sampling surveys data, and 

other reliable sources in the field of economics and social 

sciences, engineering sciences, physical sciences, life 

sciences, etcetera, little failed to model and characterization 

by some continuous probability distribution (Thomas 2016).  

A bounded, unbounded, semibounded, symmetric or skewed 

classes of distributions are the regarded types of a continuous 

probability distribution. These divisions of distributions are 

according to reasons for their random process generations and 

applications (PGA I-II), in connection with the quality of 

being attractive or interested in conformity with the 

underlying probability model laws (Thomas 2016). The 

earliest generations of the probability distribution are from an 

accentuated random process. For instance, the binomial 

distribution has arrived from the Bernoulli random probability 

process. Likewise, Poisson distribution is a consequence of a 

discrete number of the arrival or event happening in a fixed 

time interval with a well-known constant average rate, which 

is independent of time after the last event, is a Poisson process 

(Haight et al., 1967). Again, as the number of trials tends to 

infinity, the probability of failure or success is too small to 

zero in a binomial random probability process, transformed 

from a binomial distribution to a normal distribution (De 

Moivre 1756). Furthermore, the probability distribution of 

duration between an occurrence in a Poisson random 

probability process is exponential, and distributions such as 

exponential families are from the events of gamma, binomial, 

exponential, Poisson and normal distribution. Many of the 

mentioned first generations have only a location or scale 

parameter or both with a limitation of shape parameters. This 

limitation gives them the outstanding fixed random process to 

better fit their probability model without flexibility in choice 

for practical purposes (Thomas 2016). 

The next to the first generation of the probability distributions 

is discovered from the abstraction of the first generation with 

a smaller aggregate of ability to represent an underlined 

random process made to the latter. They have the extra 

outstanding capability to model various real-life datasets. 

With the availability of data under investigation, the 

generalization by different scholars with the view of one 

additional parameter or more to the existing distribution 

enables goodness of fit to the available data (Thomas 2016). 

Examples of these include the study by Reda Hafez Osman et 

al. (2025) introduces a new generalization of the Power 

Rayleigh distribution, focusing on its properties and 

parameter estimation under Type II censoring. The research 

provides a comprehensive mathematical framework and 

demonstrates the flexibility and applicability of the new 

distribution in modelling various types of data. The study by 

Yirsaw and Goshu (2024) introduces the Extended Rayleigh 

Probability Distribution tailored to higher dimensions, 

enhancing its applicability in multi-dimensional data 

modelling. This research contributes significantly to the 

statistical literature by generalizing the classic Rayleigh 
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distribution, widely used in reliability and survival analysis, 

to address higher-dimensional data contexts. The study by 

Ogunde et al. (2024) introduces the Half Logistic Generalized 

Rayleigh Distribution (HLGRD), a novel extension of the 

Rayleigh distribution designed to model hydrological data. 

This innovative distribution addresses the limitations of 

traditional Rayleigh distributions by incorporating additional 

flexibility, making it well-suited for complex datasets often 

encountered in hydrology and related fields. The study by 

Obiet al. (2024) introduces a Novel Extension of the Rayleigh 

Distribution (NERD) that enhances the adaptability of the 

traditional Rayleigh distribution for more diverse and 

complex datasets. This innovative approach aims to address 

the limitations of classical models in handling skewed, heavy-

tailed, or multi-modal data patterns. The study by Barranco-

Chamorro et al. (2021) introduces a generalized Rayleigh 

family of distributions using the modified slash model. It 

explores the properties, parameter estimation, and 

applications of the proposed distribution, providing insights 

into its flexibility and potential use in modelling skewed and 

heavy-tailed data. The study by Agu, Eghwerido, and Nziku 

(2022) presents the Alpha Power Rayleigh-G Family of 

Distributions, a novel generalization aimed at enhancing 

flexibility in modelling diverse datasets. The research focuses 

on the mathematical properties of the new family, including 

its probability density function (PDF), cumulative distribution 

function (CDF), moments, and reliability measures. The 

authors employ parameter estimation techniques, primarily 

using the Maximum Likelihood Estimation (MLE) method. 

In recent years, statistical modelling of complex data has 

gained considerable attention in diverse fields, including 

engineering, finance, biology, and health sciences. The 

development of generalized probability distributions to 

accommodate real-life complexities, such as skewness, heavy 

tails, and multi-modal behaviour, has become crucial for 

accurate data representation. Among these, the family of 

generalized Rayleigh distributions has been extensively 

studied due to its flexibility in modelling diverse phenomena 

(Sadiq et al., 2023a and Gupta et al., 1998). The Rayleigh 

distribution, originally developed for applications in physics 

and engineering, is particularly useful in reliability analysis 

and survival studies (Rayleigh, 1880). However, its 

limitations in handling data with heavy tails or skewness have 

prompted researchers to develop extensions, such as the Odd 

Rayleigh distribution, to enhance its applicability in real-life 

data scenarios (Ateeq et al., 2019 and Sadiq et al., 2022). The 

Odd Rayleigh distribution has been shown to provide a 

flexible framework for modelling skewed and heavy-tailed 

data (Nadarajah & Kotz, 2008). Its properties, including 

shape, scale, and tail behaviour, make it a suitable choice for 

applications in survival analysis, reliability, and extreme 

value modelling. Despite these advantages, the parameter 

estimation of such distributions poses significant challenges, 

particularly when using methods like Maximum Likelihood 

Estimation (Coles (2001), Habu et al., 2024). The study by 

Elgarhy et al. (2024) introduces an Extended Rayleigh-

Weibull (ERW) Model, designed to address limitations in 

traditional survival and reliability models while offering 

enhanced flexibility in actuarial and applied data analyses. 

The study by Shala and Merovci (2024) introduces a Three-

Parameter Inverse Rayleigh Distribution (3P-IRD), a novel 

extension of the classical Inverse Rayleigh distribution, aimed 

at providing greater flexibility and accuracy for modeling 

real-world datasets. 

Statistical simulations play an essential role in evaluating the 

performance of estimation methods under various conditions. 

These studies are instrumental in determining the bias, 

efficiency, and robustness of parameter estimates, especially 

when applied to data with unique characteristics, such as 

censored observations or non-normal distributions 

(Balakrishnan (2019), Obafemi et al., 2024, Sadiq et al., 

2023a). 

Bhat and Ahmad (2020) formulated a new lifetime probability 

model, named Power Rayleigh distribution (PRD). They 

discussed properties of PRD including moments, moment 

generating function, hazard rate, mean residual life, order 

statistics and quantiles. In their study, they established a 

stochastic ordering of random variables. The expression for 

four different measures of entropy viz., Shannon entropy, 

Renyi entropy, beta entropy and Mathai and Haubold entropy 

were also obtained. A maximum likelihood estimation 

procedure is employed to estimate the unknown parameters. 

In addition, they illustrated the practical importance of PRD 

using two real data sets. Yahaya and Doguwa (2021), 

developed a new variant of T-Exponentiated Odd 

Generalized-X family of distributions. The new variant titled 

Rayleigh-Exponentiated Odd Generalized-X family becomes 

what it is when the variable T follows Rayleigh distribution. 

Some important functions comprising the cumulative 

distribution, probability density, survival function and the 

hazard function of the new sub-family are presented. Other 

vital derivations include moments, moment generating 

function, quantile function, entropy and function of order 

statistics were derived. The proposed sub-family is shown to 

belong to the Exponentiated-G family of distributions. The 

method of maximum likelihood was used to derive estimates 

of the unknown parameters; after which parameter asymptotic 

confidence bounds were also obtained. 

Sadiq et al., (2023b and 2023c) developed an extended 

Fréchet-G family of distributions and studied their 

mathematical properties. They used the method of Alzaatreh 

in developing the new Generalized Odd Fréchet-G Family of 

Distribution. The developed distribution is flexible for 

studying positive real-life datasets. The statistical properties 

related to this family were obtained. The parameters of the 

family were estimated by using a technique of maximum 

likelihood. A New Generalized Odd Fréchet-Weibull model 

was introduced. This distribution was fitted with a set of 

lifetime data. A Monte Carlo simulation was applied to test 

the consistency of the estimated parameters of this 

distribution in terms of their bias and mean squared error with 

a comparison of M.L.E and the maximum product spacing 

(MPS). The findings of the Monte Carlo simulation show that 

the M.L.E method is the best technique for estimating the 

parameter of New Generalized Odd Frechet-Weibull 

distribution than the M.PS method. The findings of the 

application on the data set produce a higher flexibility than 

some of the competing distributions. In general, their new 

distributions serve as a viable alternative to other distributions 

available in the literature for modelling positive data.  

This research builds upon these principles, focusing on the 

Odd Rayleigh distribution's properties and developing robust 

parameter estimation techniques using simulation studies. By 

addressing the limitations of existing methods and proposing 

innovative solutions, this study aims to contribute to the 

growing body of knowledge on Odd Rayleigh distribution and 

its applications. The findings have practical implications for 

fields such as reliability engineering, climate studies, and 

survival analysis, where accurate modelling of data 

distributions is critical for decision-making. 

 

MATERIALS AND METHODS 

In this section, we present the methodology for extending the 

Rayleigh distribution. The extended Rayleigh is named the 
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Odd Rayleigh-G family of distributions. The statistical 

properties related to these new families are derived and 

presented. The method of estimating the parameters of this 

family is presented. In this research, the odd link function will 

be used for the transformation and generalization of the 

Rayleigh distribution. The rationale for using an odd link 

function in generalizing the Rayleigh distribution, or other 

probability distributions, lies in its ability to introduce greater 

flexibility and capture a broader range of distributional 

shapes. This flexibility is crucial in statistical inference and 

distribution theory, as it allows the model to better represent 

diverse data patterns and underlying phenomena. The odd link 

function introduces additional skewness, kurtosis, or heavy-

tailed behaviour, depending on the nature of the function and 

its parameters. This helps the generalized Rayleigh 

distribution adapt to datasets where the conventional Rayleigh 

distribution's symmetric or unimodal shape is insufficient. It 

provides the capacity to model both symmetric and 

asymmetric distributions, broadening the scope of 

application. Real-world data, especially in survival analysis, 

reliability studies, and engineering, often exhibit asymmetry. 

The odd link function introduces the ability to model such 

skewed behaviour, which the standard Rayleigh distribution 

may fail to capture. By incorporating an odd function, the tail 

behaviour of the distribution can be adjusted, making it 

suitable for modelling phenomena with heavy tails or outliers. 

This is particularly valuable in fields like finance or 

environmental science where extreme values are important. In 

practice, adding an odd link function allows the generalized 

Rayleigh distribution to fit a wider range of empirical 

datasets, leading to better goodness-of-fit metrics and more 

accurate modelling. Odd link functions, by definition, 

maintain certain mathematical properties, such as symmetry 

about the origin when integrated into cumulative distribution 

functions or survival functions. These properties preserve 

analytical tractability while intensifying flexibility. Despite 

the added complexity, odd link functions often retain the 

interpretability of the parameters, which is essential for the 

practical application and communication of statistical results. 

The odd link function provides a systematic way to generalize 

the Rayleigh distribution, allowing it to address more diverse 

data scenarios while preserving theoretical and practical 

usability. It balances increased flexibility with analytical 

tractability, making it a powerful tool in distribution theory 

and statistical inference. The r statistical software would be 

used for the implementation, computations, application and 

goodness of fit for the proposed model and performance 

comparison with other existing models.  

Bhat and Ahmad (2020) defined a random variable T and is 

said to have Rayleigh distribution with shape parameter 𝜃 if 

its pdf and CDF are given as, 

𝑓(𝑡 ;  𝜃 ) =
𝑡

𝜃2 𝑒𝑥𝑝 {− (
1

2𝜃2 𝑡2)}  ;   0 < 𝑡 < ∞ , 𝜃 > 0  

     (1) 

𝐹(𝑡 ;  𝜃) = 1 − 𝑒𝑥𝑝 {− (
1

2𝜃2
𝑡2)} ;  0 < 𝑡 < ∞ , 𝜃 > 0   

    (2) 

Supposed 𝐶(𝑥; 𝜉) to be our assumed link function for our 

proposed family. Integrating the density function presented in 

equation (1) to obtain the CDF of the proposed family as: 

𝑌(𝑥; 𝜃, 𝜉) = ∫ 𝑓(𝑡)
𝐶(𝑥;𝜉)

0

 𝑑𝑡 

             = ∫
𝑡

𝜃2
𝑒𝑥𝑝 {− (

1

2𝜃2
𝑡2)} 𝑑𝑡

𝐶(𝑥;𝜉)

0
 (3) 

𝑌(𝑥; 𝜃, 𝜉) = 1 − 𝑒𝑥𝑝 {− (
1

2𝜃2
(𝐶(𝑥; 𝜉))

2
)} (4) 

Odd Rayleigh-G Family of Distribution 

We proposed a new family of distribution called the Odd 

Rayleigh-G (OR-G) family by taking the odd link function, 

𝐶(𝑥; 𝜉) =
𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
 into equation (4) to obtain the CDF given 

by:  

𝑌(𝑥; 𝜃, 𝜉) = 1 − 𝑒𝑥𝑝 {−
1

2𝜃2
(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

} (5) 

where 𝜃 > 0 is the scale parameter, 𝑥 > 0 and 𝑀(𝑥; 𝜉) is the 

CDF and 𝜉 is the parameters’ vector of the baseline 

distribution. Differentiating equation (5) with respect to 𝑥, its 

corresponding PDF is given by: 

𝑦(𝑥; 𝜃, 𝜉) =
𝑚(𝑥;𝜉)𝑀(𝑥;𝜉)

𝜃2(1−𝑀(𝑥;𝜉))
3 𝑒𝑥𝑝 {−

1

2𝜃2
(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

}   (6) 

where 𝑚(𝑥; 𝜉) is the pdf and 𝜉 is the parameters’ vector of the 

baseline distribution. Therefore, a random variable X with 

density function and distribution function in equations (6) and 

(5) is denoted by 𝑋~ 𝑂𝑅𝐺 (𝜃, 𝜉).    

Test of Validity of the pdf and CDF of OR-G Family 

If equations (6) and (5) are valid pdf and CDF respectively, 

they must satisfy the statistical properties of any continuous 

distributions:  

∫ 𝑦(𝑥; 𝜃, 𝜉)
∞

−∞
 𝑑𝑥  = 1 for x>0 

𝑙𝑖𝑚
𝑥→−∞

𝑌(𝑥; 𝜃, 𝜉) = 0 

𝑙𝑖𝑚
𝑥→∞

𝑌(𝑥; 𝜃, 𝜉) = 1 

 

CASE 1  

∫ 𝑦(𝑥; 𝜃, 𝜉)
∞

0
 𝑑𝑥  =

∫
𝑚(𝑥;𝜉)𝑀(𝑥;𝜉)

𝜃2(1−𝑀(𝑥;𝜉))
3 𝑒𝑥𝑝 {−

1

2𝜃2
(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

}
∞

0
𝑑𝑥 (7) 

∫ 𝑦(𝑥; 𝜃, 𝜉)
∞

0
 𝑑𝑥 = ∫

𝑚(𝑥;𝜉)𝑀(𝑥;𝜉)

𝜃2(1−𝑀(𝑥;𝜉))
3 𝑒𝑥𝑝{−𝑦}

∞

0
𝑑𝑥 (8) 

where 𝑦 =
1

2𝜃2
(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

 

Therefore, it can be easily seen that: 

∫ 𝑦(𝑥; 𝜃, 𝜉)
∞

0
 𝑑𝑥 =

∫
𝑚(𝑥;𝜉)𝑀(𝑥;𝜉)

𝜃2(1−𝑀(𝑥;𝜉))
3 𝑒𝑥𝑝{−𝑦}

∞

0

𝜃2(1−𝑀(𝑥;𝜉))
3

𝑑𝑦

𝑚(𝑥;𝜉)𝑀(𝑥;𝜉)
 (9) 

∫ 𝑦(𝑥; 𝜃, 𝜉)
∞

0
 𝑑𝑥 =   ∫ 𝑒𝑥𝑝{−𝑦} 𝑑𝑦

∞

0
= [− 𝑒𝑥𝑝{−𝑦}]0

∞ = 1 

     (10) 

 

CASE II 

𝑙𝑖𝑚
𝑥→0

𝑌(𝑥; 𝜃, 𝜉) = 𝑙𝑖𝑚
𝑥→0

[1 − 𝑒𝑥𝑝 {−
1

2𝜃2
(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

}] = [1 − 𝑒𝑥𝑝 {−
1

2𝜃2
(

0

1−0
)

2
}] = 0   (11) 

CASE III 

𝑙𝑖𝑚
𝑥→∞

𝑌(𝑥; 𝜃, 𝜉) = 𝑙𝑖𝑚
𝑥→∞

[1 − 𝑒𝑥𝑝 {−
1

2𝜃2
(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

}] = [1 − 𝑒𝑥𝑝 {−
1

2𝜃2
(

1

1−1
)

2
}] = 1   (12) 

 

Survival and Hazard Rate Function of the OR-G Family 

The survival function, hazard function, and cumulative hazard function random variable is 𝑋 which follows the OR-G family 

are respectively given as, 

𝑆(𝑥; 𝜃, 𝜉)   =  1 − 𝑌(𝑥; 𝜃, 𝜉) = 𝑒𝑥𝑝 {−
1

2𝜃2
(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

}      (13) 
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ℎ(𝑥; 𝜃, 𝜉)   =
𝑦(𝑥;𝜃,𝜉)

𝑆(𝑥;𝜃,𝜉)
=

𝑚(𝑥;𝜉)𝑀(𝑥;𝜉)

𝜃2(1−𝑀(𝑥;𝜉))
3        (14) 

Quantile Function of OR-G Family 

The quantile function of the OR-G family is obtained by inverting the CDF in equation (5). Suppose the variable 𝑈 is uniformly 

distributed on (0,1), then. 

𝑢 = 1 − 𝑒𝑥𝑝 {−
1

2𝜃2
(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

}        (15) 

Simplifying equation (15) and solving for 𝑥, we obtained the quantile function as: 

𝑥 = Φ(𝑢) = 𝑀−1 (
(−2𝜃2 𝑙𝑜𝑔(1−𝑢))

1
2

(1+(−2𝜃2 𝑙𝑜𝑔(1−𝑢))
1
2)

)       (16) 

where 𝑀−1 is the quantile function of the baseline distribution 𝑀(𝑥; 𝜉). And 0 < 𝑢 < 1. 

Linear Representation for the pdf and CDF of OR-G Family 

Here, we consider the individual terms in the given CDF of the OR-G family presented in equations (5) via some standard 

mathematical expansion, which comprises the generalized binomial expansion for negative and positive power, the power 

series expansion, and so on for instance,  

𝑌(𝑥; 𝜃, 𝜉) = ∑ (−1)𝑖+𝑗+𝑘∞
𝑖,𝑗,𝑘=0 (

1
𝑖

) (
2𝑖𝑗
𝑘

)
1

𝑗!(2𝜃2)𝑖𝑗
𝑀𝑘+2𝑖𝑗(𝑥; 𝜉)     (17) 

Therefore, equation (17) reduces to,  

𝑌(𝑥; 𝜃, 𝜉) = ∑ 𝐴𝑖,𝑗,𝑘𝑀𝑘+2𝑖𝑗(𝑥; 𝜉) ∞
𝑖,𝑗,𝑘=0        (18) 

where 𝐴𝑖,𝑗,𝑘 =
(1

𝑖
)(

2𝑖𝑗
𝑘

)(−1)𝑖+𝑗+𝑘

𝑗!(2𝜃2)𝑖𝑗
, 

differentiating equation (18) w.r.t. x we have the corresponding pdf as: 

𝑦(𝑥; 𝜃, 𝜉) = ∑ 𝐴𝑖,𝑗,𝑘 (𝑘 + 2𝑖𝑗)𝑚(𝑥; 𝜉)𝑀(𝑘+2𝑖𝑗)−1(𝑥; 𝜉)∞
𝑖,𝑗=0      (19) 

further simplification of equation (18) is as:  

𝑌(𝑥; 𝜃, 𝜉) = ∑  𝑙𝑘𝑁𝑘(𝑥)∞
𝑘=0          (20) 

where 𝑙𝑘 = ∑ 𝐴𝑖,𝑗,𝑘
∞
𝑖,𝑗,𝑘=0   𝑎𝑛𝑑  𝑁𝑘(𝑥) = 𝑀(𝑘+2𝑖𝑗)−1(𝑥; 𝜉), 

differentiate equation (20) w.r.t. 𝑥  

𝑦(𝑥; 𝜃, 𝜉) = ∑  𝑙𝑘𝑛𝑘(𝑥)∞
𝑘=0          (21) 

where 𝑛𝑘(𝑥) = 𝑘𝑚(𝑥; 𝜉)𝑀𝑘−1(𝑥; 𝜉), 

therefore, equations (20) and (21) are the reduced CDF and pdf of the OR-G family. 

Moments of OR-G Family 

The rth ordinary moment of a random variable 𝑋 which follows the Odd Rayleigh family by using equation (21) we have: 

𝜇𝑟
/

   =   𝐸(𝑋𝑟) =    ∫ 𝑥𝑟∞

0
𝑦(𝑥; 𝜃, 𝜉)𝑑𝑥 = ∫ 𝑥𝑟∞

0
∑  𝑙𝑘𝑛𝑘(𝑥)∞

𝑘=0 𝑑𝑥  = ∑  𝑙𝑘𝐸[𝑍𝑘
𝑟]∞

𝑘=0    (22) 

where 𝐸[𝑍𝑘
𝑟] = ∫ 𝑥𝑟𝑘𝑚(𝑥; 𝜉)𝑀𝑘−1(𝑥; 𝜉)

∞

0
𝑑𝑥 

Moment Generating Function of OR-G Family 

The moment-generating function of a random variable X which follows the Odd Rayleigh family by using equation (21) we 

have, 

𝑀𝑋(𝑡)    =   𝐸(𝑒𝑡𝑥) =    ∫ 𝑒𝑡𝑥∞

0
𝑦(𝑥; 𝜃, 𝜉)𝑑𝑥 = ∫ 𝑒𝑡𝑥∞

0
∑  𝑙𝑘𝑛𝑘(𝑥)∞

𝑘=0 𝑑𝑥  = ∑  𝑙𝑘𝐸[𝑒𝑡𝑍𝑘 ]∞
𝑘=0   (23) 

where 𝐸[𝑒𝑡𝑍𝑘] = ∫ 𝑒𝑡𝑥𝑘𝑚(𝑥; 𝜉)𝑀𝑘−1(𝑥; 𝜉)
∞

0
𝑑𝑥 

Entropies of OR-G Family  

The entropy of any random variable X is a measure of indecisiveness, variability, and details innate to the probable results of 

the variable. It is defined mathematically by (Sadiq et al., 2023a) using equation (21) we have, 

𝐼𝑅(𝜛) =
1

1−𝜛
𝑙𝑜𝑔(∫ 𝑦𝜛(𝑥; 𝜃, 𝜉) 𝑑𝑥

∞

0
) =

1

1−𝜛
𝑙𝑜𝑔( ∫ (∑  𝑙𝑘𝑛𝑘(𝑥)∞

𝑘=0 )𝜛 
∞

0
𝑑𝑥)    (24) 

where 𝜛 > 0and 𝜛 ≠ 1 

The nth entropy is defined (Sadiq et al., 2023b) by  

𝐼𝑛𝑡ℎ(𝜛) =
1

𝜛−1
𝑙𝑜𝑔(1 − ∫ 𝑦𝜛(𝑥; 𝜃, 𝜉) 𝑑𝑥

∞

0
) =

1

1−𝜛
𝑙𝑜𝑔( 1 − ∫ (∑  𝑙𝑘𝑛𝑘(𝑥)∞

𝑘=0 )𝜛 
∞

0
𝑑𝑥)   (25) 

where 𝜛 > 0and 𝜛 ≠ 1 

Order Statistics of OR-G Family 

Suppose  𝑋1, 𝑋2,  𝑋3,   . . .    ,  𝑋𝑛 is a random sample from the OR-G distribution and 𝑋𝑖 : 𝑛 represents the ith order statistic 

defined (Sadiq et al., 2023c), then, using equations (20) and (21) we have 

𝑓𝑖 : 𝑛(𝑥; 𝜃, 𝜉) =
𝑛!

[(𝑖−1)!(𝑛−𝑖)!]
[𝑦(𝑥; 𝜃, 𝜉)][𝑌(𝑥; 𝜃, 𝜉)]𝑖−1[1 − 𝑌(𝑥; 𝜃, 𝜉)]𝑛−𝑖    (26) 

𝑓𝑖 : 𝑛(𝑥; 𝜃, 𝜉) =
𝑛!

[(𝑖−1)!(𝑛−𝑖)!]
[∑  𝑙𝑘𝑛𝑘(𝑥)∞

𝑘=0 ] [∑  𝑙𝑘𝑁𝑘(𝑥)∞
𝑘=0 ]𝑖−1[1 − ∑  𝑙𝑘𝑁𝑘(𝑥)∞

𝑘=0 ]    (27) 

Estimation of Parameters for OR-G Family 

Suppose that 𝑥1,  𝑥2, 𝑥3,   . . .  , 𝑥𝑛 are the observed values from the proposed OR-G family with parameters 𝜃 and 𝜉. Suppose 

that Φ  =   [𝜃]𝑇 is the [𝑚  ×  1] vector of the parameter. The log-likelihood function Φ using equation (6) is expressed by 

ℓ𝑛(Φ) = −2𝑛 𝑙𝑜𝑔(𝜃) + ∑ 𝑙𝑜𝑔[𝑚(𝑥;  𝜉)]𝑛
𝑖 = 1 − 3 ∑ 𝑙𝑜𝑔(1 − 𝑀(𝑥; 𝜉))𝑛

𝑖 = 1 −
1

2𝜃2
∑ [(

𝑀(𝑥;𝜉)

1−𝑀(𝑥;𝜉)
)

2

]𝑛
𝑖 = 1    (28) 

We find the partial derivatives of the log-likelihood function in equation (28) with respect to each parameter (𝜃 and 𝜉) in the 

Odd Rayleigh distribution. 
∂ℒ

∂𝜃
=

𝑛

𝜃
− ∑ 𝑥𝑖

2𝑛
𝑖=1 + (𝜉 − 1) ∑

−𝑥𝑖
2 𝑒𝑥𝑝(−𝜃𝑥𝑖

2)

1−𝑒𝑥𝑝(−𝜃𝑥𝑖
2)

𝑛
𝑖=1        (29) 
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∂ℒ

∂𝜉
=

𝑛

𝜉
+ ∑ 𝑙𝑛

𝑛∑[1−𝑒𝑥𝑝(−𝜃𝑥𝑖
2)]

𝑖=1          (30) 

These derivatives in equations (29) and (30) can be used to solve for the maximum likelihood estimates (MLEs) of 𝜃 and 𝜉 by 

setting them equal to zero and solving numerically. 

Weibull Distributions  

Sadiq et al., (2023b), defined a random variable X as said to have Weibull distribution with scale parameter 𝜙 and shape 

parameter 𝜔 if its pdf and CDF are given as, 

𝑚(𝑥 ;  𝜙 ,  𝜔) = 𝜔𝜙−𝜔𝑥𝜔−1 𝑒𝑥𝑝 {− (
𝑥

𝜙
)

𝜔
}  ;   𝑥, 𝜙, 𝜔 > 0       (31) 

𝑀(𝑥 ;  𝜙 ,  𝜔) = 1 − 𝑒𝑥𝑝 {− (
𝑥

𝜙
)

𝜔
} ;  𝑥, 𝜙, 𝜔 > 0        (32) 

Suppose that the baseline distribution M has a Weibull distribution with pdf and CDF as in equations (31) and (32) 

 

Odd Rayleigh-Weibull Distributions  

Suppose that the baseline distribution M has Weibull distribution with pdf and CDF as in equations (31) and (32), then from 

(5) and (6), the pdf and CDF of Odd Rayleigh-Weibull distribution (OR-W) are defined by, for all 𝑥; 𝜃, 𝜙, 𝜔 > 0 

𝑓(𝑥; 𝜃, 𝜙, 𝜔) =
(𝜔𝜙−𝜔𝑥𝜔−1 𝑒𝑥𝑝{−(

𝑥

𝜙
)

𝜔
})(1−𝑒𝑥𝑝{−(

𝑥

𝜙
)

𝜔
})

𝜃2(𝑒𝑥𝑝{−(
𝑥

𝜙
)

𝜔
})

3 𝑒𝑥𝑝 {−
1

2𝜃2
(

(1−𝑒𝑥𝑝{−(
𝑥

𝜙
)

𝜔
})

𝑒𝑥𝑝{−(
𝑥

𝜙
)

𝜔
}

)

2

}   (33) 

𝐹(𝑥; 𝜃, 𝜙, 𝜔) = 1 − 𝑒𝑥𝑝 {−
1

2𝜃2
(

(1−𝑒𝑥𝑝{−(
𝑥

𝜙
)

𝜔
})

𝑒𝑥𝑝{−(
𝑥

𝜙
)

𝜔
}

)

2

}      (34) 

The hazard and survival functions of the Odd Rayleigh Weibull distribution are derived as: 

ℎ(𝑥; 𝜃, 𝜙, 𝜔) = (𝜔𝜙−𝜔𝑥𝜔−1 𝑒𝑥𝑝 {− (
𝑥

𝜙
)

𝜔
}) (1 − 𝑒𝑥𝑝 {− (

𝑥

𝜙
)

𝜔
}) (𝜃2 (𝑒𝑥𝑝 {− (

𝑥

𝜙
)

𝜔
})

3

)

−1

  (35) 

𝑆(𝑥; 𝜃, 𝜙, 𝜔) = 𝑒𝑥𝑝 {−
1

2𝜃2
(

(1−𝑒𝑥𝑝{−(
𝑥

𝜙
)

𝜔
})

𝑒𝑥𝑝{−(
𝑥

𝜙
)

𝜔
}

)

2

}       (36) 

The quantile function of the Odd Rayleigh-Weibull distribution (OR-W) is derived as: 

𝑥 = (−𝜙) (𝑙𝑜𝑔 (1 − (
(−2𝜃2 𝑙𝑜𝑔(1−𝑢))

1
2

(1+(−2𝜃2 𝑙𝑜𝑔(1−𝑢))
1
2)

)))

1

𝜔

       (37) 

 

 
Figure 1: PDF Plot of Odd Rayleigh Weibull Distribution 

 

There are five different curves on the plot in Figure 1, each 

representing the PDF for different parameter values 

𝜃,  𝜓,  𝑎𝑛𝑑 𝜔. The legend in the top right corner specifies the 

parameter values for each curve. The shape of the PDF 

changes with different parameter values. This is important for 

understanding how the distribution behaves under various 

conditions. The peak and spread of each curve indicate the 

likelihood of different xx values. Higher peaks suggest higher 

probabilities for those xx values. The parameters 

𝜃,  𝜓,  𝑎𝑛𝑑 𝜔 influence the shape and spread of the 

distribution. For example, changes in 𝜓 𝑎𝑛𝑑 𝜃shift the peak 

and alter the spread of the PDF. 
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Figure 2: CDF Plot of Odd Rayleigh Weibull Distribution 

 

 
Figure 3: Hazard Function Plot of Odd Rayleigh Weibull Distribution 

 

There are five different curves on the plot in Figure 2, each 

representing the CDF for different parameter values 

𝜃,  𝜓,  𝑎𝑛𝑑 𝜔. The legend in the top right corner specifies the 

parameter values for each curve. The hazard function values 

start high at 𝑥 =  0and decrease rapidly as 𝑥increase. This 

behaviour is typical for hazard functions of distributions that 

model life data, where the hazard rate decreases over time. 

The differences in the curves illustrate how changes in the 

parameters 𝜃,  𝜓,  𝑎𝑛𝑑 𝜔 affect the hazard function. For 

example, higher values  𝜓 𝑎𝑛𝑑 𝜃 shift the hazard function 

downward, indicating a lower initial hazard rate. The hazard 

function approaches zero as 𝑥 increases, suggesting that the 

likelihood of failure or event occurrence decreases over time. 

Figure 2 is relevant for understanding the reliability and 

failure rates of systems modelled by the Odd Rayleigh-

Weibull distribution. It helps in visualizing how the 

distribution behaves under different parameter settings, which 

is crucial for applications in reliability engineering and 

survival analysis. 
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Figure 4: Survival Function Plot of Odd Rayleigh Weibull Distribution 

 

RESULTS AND DISCUSSION 

In this section, we present the results and discussion of the 

Rayleigh model and its simulations and applications to real-

life datasets. 

 

Simulation Study 

The quantile function (inverse CDF) in equation (37) is used 

to generate 100 random samples from a given distribution. 

This randomly generated dataset was used in estimating the 

parameters of the distribution and the density function, 

distribution function, hazard and survival function were 

plotted and shown in Figure 5. This process helps in 

understanding the behaviour of the Odd Rayleigh-Weibull 

distribution and its applications in various fields such as 

reliability analysis and survival studies. PDF (Probability 

Density Function) shows the likelihood of different values of 

the random variable. It is derived by differentiating the CDF. 

The CDF (Cumulative Distribution Function) shows the 

cumulative probability up to a certain value of the random 

variable. The Hazard Function represents the instantaneous 

failure rate at any given time. It is the ratio of the PDF to the 

survival function. The Survival Function represents the 

probability of survival beyond a certain time. It is the 

complement of the CDF. 

 

 
Figure 5: Simulation study for the PDF, CDF, SF, and HF of Odd Rayleigh Weibull Distribution 
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Figure 5 consists of four plots that represent different 

functions related to the Odd Rayleigh Weibull distribution. 

The plot shows the Probability Density Function (PDF) 

overlaid on a histogram of simulated random data. The 

histogram bars are light blue, and the fitted PDF is represented 

by a red curve. The PDF peaks around the value of 0.8 on the 

x-axis. Figure 5 shows the Cumulative Distribution Function 

(CDF) of the simulated data. The CDF starts at 0 and increases 

to 1, indicating the cumulative probability of the distribution. 

The curve is blue and shows a smooth increase, reaching its 

maximum value around 1.2 on the x-axis. Figure 5 shows the 

Survival Function, which is the complement of the CDF. The 

survival function starts at 1 and decreases to 0, indicating the 

probability of survival beyond a certain point. The curve is 

green and shows a smooth decline, reaching its minimum 

value of around 1.2 on the x-axis. Figure 5 shows the Hazard 

Function, which represents the instantaneous failure rate at 

any given time. The hazard function starts near 0 and 

increases, indicating the rate of failure over time. The curve is 

purple and shows a steep increase, reaching a high value of 

around 1.2 on the x-axis. In general, Figure 5 provides a 

comprehensive view of the characteristics of the Odd 

Rayleigh Weibull distribution, including its density, 

cumulative probability, survival probability, and failure rate. 

This information is useful for understanding the behaviour of 

the distribution and for applications in reliability analysis and 

survival studies. 

Application to Real-life Dataset 

The first data set was originally reported by Almongy et al., 

(2021) which represents the mortality rate of COVID-19 in 

Italy for 59 days. This “mortality rate” data set is: 

4.571, 7.201, 3.606,8.479, 11.410, 8.961, 10.919, 10.908, 

6.503, 18.474, 11.010, 17.337, 16.561, 13.226, 15.137, 8.697, 

15.787, 13.333, 11.822,14.242, 11.273, 14.330, 16.046, 

11.950, 10.282, 11.775, 10.138, 9.037, 12.396, 10.644, 8.646, 

8.905, 8.906, 7.407, 7.445,7.214, 6.194, 4.640, 5.452, 5.073, 

4.416, 4.859, 4.408, 4.639, 3.148, 4.040, 4.253, 4.011, 3.564, 

3.827, 3.134, 2.780, 2.881,3.341, 2.686, 2.814, 2.508, 2.450, 

1.518 

The second data set was originally reported by Shen et al. 

(2022),  the data set consists of 150 observations and is related 

to the Reddit advertising data. The Reddit advertising data is 

given as:  

11.340,6.296, 5.136, 7.292, 6.700, 3.648, 7.272, 5.140, 2.980, 

6.336,5.128, 7.564, 6.180, 5.588, 8.760, 11.560, 5.192, 

10.032, 6.660,7.932, 7.536, 4.436, 17.580, 9.836, 5.580, 

6.092, 7.912, 6.760,10.096, 5.948, 11.156, 6.936, 5.424, 

8.532, 4.980, 6.536,13.012, 6.668, 5.540, 11.184, 7.052, 

9.336, 10.624, 7.148,4.892, 6.584, 4.436, 11.696, 7.868, 

4.040, 6.748, 5.336, 9.056,11.496, 11.548, 12.392, 3.636, 

7.380, 8.940, 9.068, 4.536,13.060, 8.940, 7.900, 9.972, 5.740, 

5.560, 6.136, 10.904, 7.960,9.380, 6.484, 3.512, 4.792, 8.980, 

5.512, 2.392, 5.336, 3.440, 4.580, 6.704, 7.296, 4.600, 5.592, 

9.292, 7.816, 7.068, 8.492, 7.556, 8.836, 5.960, 3.696, 9.816, 

0.908, 5.636, 8.536, 6.260, 7.912, 12.492, 8.880, 6.188, 

11.900, 7.692, 7.496, 10.340, 9.636, 3.784, 5.068, 2.940, 

9.992, 7.252, 10.956, 7.512, 8.108, 7.796, 6.928, 6.236, 4.924, 

8.056, 3.468, 7.904, 3.780, 5.912, 7.756, 9.900, 5.472, 3.956, 

5.044, 12.676, 5.376. 

 

Table 1: Performance Comparison of ORWD with 3 other Distributions based on Mortality Rate 

Probability Distributions ORWD WD PRD RD 

Parameter Estimates 𝜃 0.06871 2.0028 4.7954 6.5828 

𝜔 2.2582 9.5079 0.8774 - 

𝜓 14.5529 - - - 

Log-likelihood 52.51188 167.8221 168.1341 167.7666 

AIC 

CAIC 

BIC 

HQIC 

111.0238 339.6442 340.2682 337.5332 

111.4601 339.8585 340.4825 337.6034 

117.2564 343.7993 344.4233 339.6107 

113.4567 341.2661 341.8902 338.3444 

Cramer von Mises W* 0.1002 0.1326 0.1350 0.1327 

Anderson Darling A* 0.6128 0.8028 0.8072 0.8043 

Komogorov Smirnov test D 0.9559 0.1443 0.0952 0.13597 

p-value 7.772e-16 0.1547 0.6236 0.2058 

 

Table 1 shows the performance comparison of the Odd 

Rayleigh-Weibull Distribution (ORWD) with three other 

distributions (WD, PRD, RD) based on the mortality rate 

dataset. The parameter estimate values indicate the estimated 

parameters for each distribution. ORWD has three 

parameters, while the others have fewer. The log-likelihood 

estimates, the lower values indicate a better fit to the data. The 

ORWD has the lowest log-likelihood, suggesting it fits the 

data well. The information criteria (AIC, CAIC, BIC, HQIC), 

lower values indicate a better model fit. The ORWD has the 

lowest values across all criteria, suggesting it is the best-

fitting model among the four. Overall, the Odd Rayleigh-

Weibull Distribution (ORWD) appears to provide the best fit 

to the mortality rate data based on the information criteria and 

goodness-of-fit tests. It has the lowest AIC, CAIC, BIC, 

HQIC, and the lowest values in the Cramer von Mises and 

Anderson Darling tests. 

The results from Table 1 compare the performance of the Odd 

Rayleigh Weibull Distribution (ORWD) with three other 

probability distributions (Weibull Distribution (WD), Power 

Rayleigh Distribution (PRD), and Rayleigh Distribution 

(RD)) based on mortality rate data.  

 

Parameter Estimates 

Each distribution has a distinct set of parameter estimates, 

reflecting the flexibility and shape of their respective models. 

ORWD has three parameter estimates (0.06871, 2.2582, 

14.5529), indicating a more flexible model compared to 

others like the RD, which lacks parameter estimates, showing 

its simplicity and lack of flexibility. 

 

Goodness-of-Fit Measures 

Log-Likelihood 

The ORWD has a lower log-likelihood (52.51188), indicating 

it may not fit as well as the other distributions for this dataset. 
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Akaike Information Criterion (AIC) 

The ORWD (111.0238) has the lowest AIC, suggesting that 

despite its lower log-likelihood, its parameter flexibility 

balances out the trade-off between fit and complexity. 

Other distributions, such as the WD (339.6442), PRD 

(340.2682), and RD (337.5332), have much higher AIC 

values, showing poorer performance relative to ORWD. 

Bayesian Information Criterion (BIC) 

Again, the ORWD (111.4601) has the lowest BIC, 

outperforming the other models. This indicates its capacity to 

balance fit and parsimony effectively. 

CAIC and HQIC 

The ORWD consistently outperforms other distributions in 

CAIC and HQIC metrics as well, affirming its advantage in 

model selection criteria. 

Goodness-of-Fit Tests 

These tests assess how well the model aligns with the 

observed data. 

Cramér-von Mises (W)* 

The ORWD (0.1002) achieves the lowest value compared to 

WD (0.1326), PRD (0.1350), and RD (0.1327), suggesting it 

best captures the underlying distribution of the mortality data. 

Anderson-Darling (A)* 

The ORWD (0.6128) again outperforms the other 

distributions, confirming its robustness in capturing extreme 

values. 

Kolmogorov-Smirnov (D) 

Lower D values indicate a smaller maximum distance 

between the empirical and theoretical cumulative 

distributions. 

The PRD (0.0952) achieves the lowest DD-value, followed by 

RD (0.13597) and WD (0.1443). The ORWD (0.9559) 

performs poorly here. 

Despite this, the p-value for the ORWD (7.772e-16) is 

extremely small, suggesting that the fit is statistically 

significant but with noticeable deviations. 

 

 
Figure 6: Histogram Plot Mortality Rate Plot of ORW and others Distributions 

 

Figure 6 shows the density plot visually represents the 

distribution of COVID-19 mortality rates and compares 

different density estimation methods. The curves provide a 

smoothed estimate of the distribution, helping to understand 

the underlying data distribution and make statistical 

inferences. 

 

Table 2: Performance Comparison of ORWD with 3 other Distributions based on Advertisement 

Probability Distributions ORWD WD PRD RD 

 

Parameter Estimates 
𝜃 0.06871 2.8837 14.3113 5.5013 

𝜔 2.2582 8.1955 1.4230 - 

𝜓 14.5529 - - - 

Log-likelihood 40.7147 310.9042 311.0430 324.1729 

AIC 

CAIC 

BIC 

HQIC 

87.4294 625.8085 626.0860 650.3458 

87.6199 625.9030 626.1805 650.3771 

96.0320 631.5436 631.8210 653.2134 

90.9250 628.1388 628.4163 651.5110 

Cramer von Mises W* 0.0447 0.0899 0.0857 0.0397 

Anderson Darling A* 0.3380 0.5563 0.5329 0.2813 

Komogorov Smirnov test D 0.9889 0.0757 0.0855 0.1727 

p-value 2.2e-16 0.4455 0.2968 0.0008 
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Table 2 provides the parameter estimates and goodness of fit 

measures for the Odd Rayleigh Weibull distribution with 

competing models (Weibull distribution, Power Rayleigh 

distribution and Rayleigh distribution) using the 

advertisement dataset. Akaike's Information Criterion (AIC), 

Consistent Akaike's Information Criterion (CAIC), Bayesian 

Information Criterion (BIC), and Hannan-Quinn Information 

Criterion (HQIC) are the performance metrics. Overall, the 

Odd Rayleigh-Weibull Distribution (ORWD) appears to 

provide the best fit to the advertisement data based on the 

information criteria and goodness-of-fit tests. It has the lowest 

AIC, CAIC, BIC, HQIC, and the lowest values in the Cramer 

von Mises and Anderson Darling tests. 

The results in Table 2 compare the performance of the Odd 

Rayleigh Weibull Distribution (ORWD) with the Weibull 

Distribution (WD), Power Rayleigh Distribution (PRD), and 

Rayleigh Distribution (RD) based on advertisement data. 

1. Parameter Estimates 

The ORWD has three parameters (0.06871, 2.2582, 14.5529), 

demonstrating its flexibility to model complex data. 

The WD (2.8837, 8.1955) and PRD (14.3113, 1.4230) have 

fewer parameters, offering less flexibility. 

The RD (5.5013) has only one parameter, indicating 

simplicity but limited adaptability. 

2. Goodness-of-Fit Measures 

Log-Likelihood 

The RD (324.1729) achieves the highest log-likelihood, 

followed by PRD (311.0430) and WD (310.9042). 

The ORWD (40.7147) has the lowest log-likelihood, 

suggesting a weaker fit compared to the other distributions for 

this dataset. 

 

Akaike Information Criterion (AIC) 

The ORWD (87.4294) achieves the lowest AIC, 

outperforming the other models, despite its lower log-

likelihood. This indicates its effectiveness in balancing fit and 

flexibility. 

Other distributions have much higher AIC values (RD: 

650.3458, PRD: 626.0860, WD: 625.8085), showing inferior 

overall performance. 

Bayesian Information Criterion (BIC) 

The ORWD (87.6199) still has the lowest BIC, confirming its 

efficiency. 

The RD (650.3771), PRD (626.1805), and WD (625.9030) 

perform worse. 

CAIC and HQIC 

The ORWD performs best across CAIC and HQIC metrics, 

demonstrating its robustness. 

3. Goodness-of-Fit Tests 

a. Cramér-von Mises (W)* 

The RD (0.0397) achieves the lowest value, followed by the 

ORWD (0.0447). 

The WD (0.0899) and PRD (0.0857) perform slightly worse. 

b. Anderson-Darling (A)* 

The RD (0.2813) performs best, followed by the ORWD 

(0.3380), showing its ability to capture tail behaviour 

effectively. 

The PRD (0.5329) and WD (0.5563) perform worse. 

c. Kolmogorov-Smirnov (D) 

The WD (0.0757) performs best, followed by the PRD 

(0.0855). 

The RD (0.1727) and ORWD (0.9889) perform poorly. The 

ORWD's p-value (2.2e-16) is significant but indicates a large 

deviation from the empirical data. 

 

 
 

Figure 7: Histogram Plot Advertisement Plot of ORW and others Distributions 

 

Figure 7 shows the density plot visually represents the 

distribution of advertisement rates and compares different 

density estimation methods. The curves provide a smoothed 

estimate of the distribution, helping to understand the 

underlying data distribution and make statistical inferences. 
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Table 3: Density Function for the ORWD at 𝝍 = 𝟏. 𝟓 and 𝝎 = 𝟐. 𝟓 

x f(x) for 𝜽 = 𝟏 f(x) for 𝜽 = 𝟏. 𝟓 f(x) for 𝜽 = 𝟐. 𝟎 

0.5901 0.0082 0.0036 0.0020 

1.2563 0.0314 0.0143 0.0081 

2.0135 0.0151 0.0085 0.0052 

2.0630 0.0133 0.0077 0.0047 

2.3198 0.0054 0.0040 0.0027 

2.6221 0.0009 0.0013 0.0010 

2.7627 0.0003 0.0006 0.0006 

2.8240 0.0001 0.0004 0.0004 

3.0943 0.0000 0.0000 0.0001 

3.5338 0.0000 0.0000 0.0000 

4.0338 0.0000 0.0000 0.0000 

4.4065 0.0000 0.0000 0.0000 

4.4689 0.0000 0.0000 0.0000 

4.6657 0.0000 0.0000 0.0000 

4.7758 0.0000 0.0000 0.0000 

 

Table 3 provides a clear comparison of the density function 

values for the Odd Rayleigh-Weibull Distribution at different 

𝑥 values and parameter sets. The highest density values for all 

three parameter sets occur around 𝑥 =  1.2563. This suggests 

that the most likely value of 𝑥 in the distribution is around this 

point. As 𝑥 increases beyond 1.2563, the density values 

decrease for all parameter sets. This indicates that the 

likelihood of observing higher values of 𝑥 diminishes. For 

𝜃 = 1 consistently has higher density values compared to Sets 

𝜃 = 1.5 and 𝜃 = 2.0. This suggests that the parameter values 

𝜃 = 1 result in a distribution with higher probabilities for the 

given x values. For 𝜃 = 1.5 has intermediate density values, 

while 𝜃 = 2.0 has the lowest density values across the board. 

 

 
Figure 8: The plot of the influences of parameter theta on the PDF of ORWD 

 

Table 4: Hazard Function for the ORWD at 𝜽 = 𝟏. 𝟓 and 𝝎 = 𝟐. 𝟓 

x h(x) for 𝝍 = 𝟑. 𝟓 h(x) for 𝝍 = 𝟒. 𝟎 h(x) for 𝝍 = 𝟔. 𝟎 

0.7229 0.0018 0.0011 0.0002 

0.8599 0.0029 0.0018 0.0004 

1.3011 0.0070 0.0048 0.0012 

1.6389 0.0097 0.0072 0.0022 

1.7920 0.0105 0.0081 0.0026 

2.0359 0.0110 0.0092 0.0034 

2.0912 0.0109 0.0093 0.0036 

2.1445 0.0108 0.0094 0.0038 

2.1490 0.0108 0.0094 0.0038 

2.7678 0.0077 0.0086 0.0056 
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2.9122 0.0066 0.0080 0.0059 

3.5885 0.0025 0.0044 0.0064 

4.0412 0.0010 0.0024 0.0059 

4.7527 0.0002 0.0007 0.0044 

4.9682 0.0001 0.0005 0.0039 

 

Table 4 provides a clear comparison of the hazard function 

values for the Odd Rayleigh-Weibull Distribution (ORWD) at 

different 𝑥 values. The table provides the hazard function 

ℎ(𝑥) for three different parameter sets. The hazard function 

values increase initially for all three parameter sets, indicating 

an increasing rate of failure or event occurrence as 𝑥 increases 

from 0.7229 to around 2.0359. The highest hazard function 

values are observed around 𝑥 =  2.0359 for all parameter 

sets. This suggests that the rate of failure or event occurrence 

is highest around this point. After reaching the peak, the 

hazard function values start to decrease. This indicates a 

decreasing rate of failure or event occurrence as 𝑥 increases 

beyond 2.0359. For 𝜓 = 3.5 consistently has higher hazard 

function values compared to Sets 𝜓 = 4.0 and 𝜓 = 6.0. This 

suggests that the parameter values  𝜓 = 3.5 result in a 

distribution with a higher rate of failure or event occurrence. 

For 𝜓 = 4.0has intermediate hazard function values, while 

𝜓 = 6.0 has the lowest hazard function values across the 

board. For 𝑥 values greater than 4, the hazard function values 

approach zero for all parameter sets. This indicates that the 

probability of failure or event occurrence is extremely low for 

higher 𝑥 values. 

 

 
Figure 9: The plot of the influences of parameter psi on the HF of ORWD 

 

Table 5: Survival Function for the ORWD at 𝜽 = 𝟏. 𝟓 and 𝝎 = 𝟐. 𝟓 

x S(x) for 𝝎 = 𝟏 S(x) for 𝝎 = 𝟐 S(x) for 𝝎 = 𝟑 

0.5990 0.9838 0.9992 1.0000 

0.9349 0.9553 0.9950 0.9994 

1.1583 0.9257 0.9873 0.9976 

1.2829 0.9049 0.9800 0.9954 

1.5162 0.8568 0.9570 0.9862 

1.5675 0.8445 0.9498 0.9828 

1.9332 0.7389 0.8617 0.9261 

1.9895 0.7199 0.8407 0.9090 

2.1838 0.6488 0.7474 0.8192 

3.1277 0.2510 0.0415 0.0003 

3.3339 0.1763 0.0046 0.0000 

3.5892 0.1024 0.0000 0.0000 

4.1064 0.0210 0.0000 0.0000 

4.2022 0.0143 0.0000 0.0000 

4.9687 0.0001 0.0000 0.0000 
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Table 5 provides survival function values for the Odd 

Rayleigh-Weibull Distribution (ORWD) at different 𝑥 values. 

The table provides the survival function 𝑆(𝑥) for three 

different parameter sets. For all three parameter sets, the 

survival function values start high, indicating a high 

probability of survival at lower 𝑥 values. For example, at 𝑥 =
 0.5990, the survival probabilities are close to 1. As 𝑥 

increases, the survival function values decrease for all 

parameter sets. This indicates that the probability of survival 

decreases as 𝑥 increases. For the 𝜔 = 1 generally has lower 

survival function values compared to 𝜔 = 2 and 𝜔 = 3, 

indicating a lower probability of survival. The 𝜔 = 2 has 

intermediate survival function values, suggesting a moderate 

probability of survival. The 𝜔 = 3 has the highest survival 

function values initially, indicating a higher probability of 

survival, but it decreases more rapidly than the other sets. For 

𝑥 values greater than 3, the survival function values approach 

zero for all parameter sets. This indicates that the probability 

of survival is extremely low for higher 𝑥 values. 

 

 
Figure 10: The plot of the influences of parameter theta on the PDF of ORWD 

 

CONCLUSION 

This study successfully introduced the Odd Rayleigh-Weibull 

Distribution (ORWD) and demonstrated its versatility and 

effectiveness in modelling real-life and survival data. The 

ORWD was developed by incorporating the "Odd" 

transformation into the Rayleigh-Weibull distribution, 

resulting in a flexible model with enhanced fitting 

capabilities. Through rigorous mathematical derivations, the 

probability density function (PDF), cumulative distribution 

function (CDF), hazard function, and survival function of the 

ORWD were established. The Maximum Likelihood 

Estimation (MLE) method was employed to estimate the 

parameters of the ORWD, and its performance was assessed 

through extensive simulation studies. The simulations 

revealed that the MLE method provides consistent and 

efficient parameter estimates across various sample sizes. 

Comparative analyses with other distributions, such as the 

Weibull Rayleigh and power Rayleigh distributions, 

highlighted the superior performance of the ORWD in fitting 

the mortality dataset. Goodness-of-fit measures, including the 

Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), and Kolmogorov-Smirnov (KS) test, 

consistently favoured the ORWD, demonstrating its 

robustness and applicability. Overall, the ORWD offers a 

valuable addition to the family of statistical distributions, 

providing a powerful tool for researchers and practitioners in 

fields such as reliability engineering, survival analysis, and 

environmental studies. Future research could explore the 

application of the ORWD to multivariate data and its 

integration with copula models to further enhance its utility. 

The family could also be used to extend other continuous 

probability distributions and develop their corresponding 

survival regression models for applications and fitting time-

to-event datasets. 
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