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ABSTRACT 

Multicollinearity arises when two or more regressors are correlated in multiple linear regression model 

(MLRM) and in most cases, one regressor variable can be predicted from another. Multicollinearity majorly 

results in inefficient regression model estimates and poor performance of the regression model. However, 

multicollinearity problem can easily be handled using various methods such as ridge regression, lasso 

regression, principal components regression, etc. This study compared the effectiveness of two estimators in 

handling multicollinearity problem in a given dataset. The estimators being compared are ridge estimator (RE) 

and principal components estimator (PCE). This research uses secondary data obtained from World Bank 

database, International Monetary Fund (IMF) database, and the Nigerian Debt Management Office to compare 

the two approaches of handling multicollinearity problem in MLRM. The presence of multicollinearity in the 

dataset was established using the correlation matrix of predictors and the Variance Inflation Factors (VIF's). 

Then ridge regression and principal components regression methods were used to fit models to the dataset 

respectively and their mean squared errors (MSE) were obtained. The MSE was used as performance 

evaluation measure for the regression models. Both methods addressed the problem multicollinearity in the 

datasets but the ridge estimator performed better than PCE by having the smallest mean squared error.  
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INTRODUCTION 

Regression analysis is a method for investigating the 

functional relationship among variables. It is used to 

determine the relationship between two or more variable so 

that one can gain information about one of them through 

knowing values of the other(s).  

Arum et al. (2023) defined “regression” as a generic term that 

refers to a method or an approach that is used to fit model to 

data in order to account for the relationship that exist between 

two or more variables. The application of regression analysis 

is numerous and occur in almost every field, including 

engineering, physical and social sciences to mention but a 

few. 

Linear regression model (LRM) helps to show the relationship 

between a response variable (y), and one or more explanatory 

variable(s). The coefficients of the linear regression model are 

usually estimated using least squares estimator. The least 

square estimator according to Gauss-Markov theorem is the 

best linear unbiased estimator (BLUE).  

One of the assumptions of LRM is that the explanatory 

variable should be linearly independent, however, this rarely 

happens because most econometric/financial data do correlate 

together, leading to linear dependency among the regressor, a 

situation known as multicollinearity. 

Multicollinearity occurs when two or more regressors are 

highly correlated. It affects the performance of regression 

models because does not allow for stable estimates that are 

capable of absorbing changes in model re-specification. When 

there are linear dependencies among the regressors, the 

problem of multicollinearity occurs (Kibria and Lukman, 

2020). There are various sources of multicollinearity in a 

dataset; some of them are as follows, the methods of data 

collection employed by the researcher during the process of 

data gathering, constraints which may have been defined in 

the model or in the population from which samples are being 

drawn, poor specification of models and over defined models. 

Whatever the source of multicollinearity may be, the effects 

of multicollinearity are very pronounced. Multicollinearity 

leads to an increase in the variance of the estimated 

coefficients, and also, increases the odds of obtaining 

estimates of the coefficient with high values and also exhibits 

wrong signs. Multicollinearity causes coefficient of estimates 

to become very sensitive to changes in model specification, 

this happens when a researcher tries adding or dropping 

variables in a model (re-specifying the model). Also, due to 

the presence of multicollinearity, the parameter estimates are 

changes drastically showing that the results obtained are not 

robust. The presence of multicollinearity in a model or dataset 

can be detected through the following:  

i. Pairwise correlation of predictor variables: Checking 

the correlation matrix of the regressors with each other. 

Significant correlations of 0.5 and above signal a 

multicollinearity issue (Montgomery et al., 2012). 

ii. The Variance inflation factor (VIF): The VIF is the most 

frequently used indicator for detecting multicollinearity 

as it shows how the variance of the estimator is inflected 

by the presence of multicollinearity. VIFs exceeding 10 

indicates severe multicollinearity (Montgomery et al., 

2012). 

iii. Eigenvalues of the predictor variables: The eigenvalues 

of the matrix of predictor variables can be used in 

detecting multicollinearity in the data. Small 

eigenvalues which are close to zero or small in relation 

to other eigenvalues are indicators of the presence of 

multicollinearity (Montgomery et al., 2012). 

iv. Condition numbers (CN): This is the ratio of the highest 

to the lowest eigenvalues. When the CN is less than 100, 

there is no multicollinearity problem. However, CN that 

lies within 100 and 1000 signifies moderate to strong 

multicollinearity, and CN exceeds 1000, it signifies 

severe multicollinearity (Montgomery et al., 2012). 

In this study, correlation matrix of the predictors and VIFs 

was used to detect multicollinearity in the dataset. In handling 
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the problem of multicollinearity, ridge estimator (RE) and 

principal components estimator (PCE) can be used.  

Multicollinearity over time has been a problem in LRM and 

as a result, the ordinary least squares estimator (OLSE) 

performs poorly in the estimation of the model parameters. 

Fortunately, RE and PCE have been developed by researchers 

to tackle multicollinearity problem in a multiple linear 

regression model. In this work, compares the two approaches 

RE and PCE in addressing multicollinearity problems using 

finincial datasets via MSE criterion. 

The intent of the researcher in this work is to check which 

approach to handling the problem of multicollinearity 

performs better between ridge regression and PCR. Hence, 

when faced with multicollinear problems, a researcher need 

not become discouraged or desert the work entirely but can go 

on to apply any of these approaches as is deemed fit in order 

to overcome the multicollinear problem. Some research works 

have been done on various approaches to handling 

multicollinearity, developing new estimators which are more 

robust in dealing with the problem of multicollinearity, 

combining different estimators to come up with better ones 

and comparing the efficiency of different estimators to handle 

multicollinearity. Some of these research works as well as 

their findings are presented below. 

El-Dereny and Rashwan (2011) introduced different methods 

of ridge regression to solve multicollinearity problems were 

introduced by. These methods include ordinary ridge 

regression (ORR), generalized ridge regression (GRR), 

directed ridge regression (DRR). The authors discussed 

properties of ridge regression estimators and methods of 

selecting biased estimators. Simulated data was used to make 

comparison between the ridge regression methods and OLS 

method. From the results of this study, it was discovered that 

all the methods of ridge regression are better than the OLS 

method when multicollinearity exists.  

Zhang and Ibrahim (2020) conducted a simulation study using 

SPSS for Ridge and OLS regression procedures for 

multicollinear data was carried out. The authors discovered 

that the performance of the evaluated ridge estimator as well 

as the performance of any ridge-type estimator, depends on 

the variance of the random error, the correlations among the 

explanatory variables and the unknown coefficient vector. 

Their study indicates that, while ridge regression may be 

effective when multicollinearity is not serious, it is not 

effective when the explanatory variables are highly 

correlated. 

Lukman et al. (2020) introduced new approach to estimating 

the model parameters using principal components. This 

approach requires using the PCs as regressors to predict the 

dependent variable and further utilizing the predicted variable 

as a dependent variable on the original explanatory variables 

in an ordinary least square regression. The authors found that 

the result of the parameter estimates is the same with the 

principal components regression estimator. Also, the 

sampling properties of the new estimators were proved to be 

same as the existing ones. The approach was applied to real-

life data and it was concluded that the principal component 

regression estimator is more efficient than the OLS estimator 

in tackling multicollinearity in the regression model. 

To further address the issue of multicollinearity, Ayinde et al. 

(2021) reviewed various known methods and estimators that 

address the multicollinearity problem in a multiple linear 

regression model (MLRM), such as ridge regression, partial 

least squares (PLS), principal component regression 

estimator, and combined estimators’ approach. Ayinde et al. 

(2021) recommended that estimators should be developed for 

solving multicollinear problems through principal 

components and partial least squares techniques employing 

partitioning and extraction of predictor variables, which is to 

be tested on many linear regression models with varying 

degrees of multicollinearity using simulated data.  

A new estimator called the robust r-k estimator which 

circumvents the challenge of multicollinearity and outliers in 

a multiple linear regression model was developed by Arum 

and Ugwuowo (2022). The authors combined the following 

estimators, M-estimator, principal component and ridge 

estimators to form the robust r-k estimator that contains 

properties of PCE, Ridge estimator and M-estimators. 

Simulated and real-life data were used and the new estimator 

performed better than the other estimators compared with it 

by having the smallest MSE. 

Since principal component estimator of Massy (1965) and 

ridge estimators of Hoerl and Kennard (1970) mitigates the 

problem of multicollinearity in LRM. It is of interest to 

determine which of this regression estimator will be more 

efficient in addressing the problem of multicollinearity in a 

financial dataset.  

Furthermore, this research is significant because regression 

plays a crucial role in the world of model building and as such, 

the occurrence of multicollinearity should not be a surprise to 

a researcher since the researcher can apply any of the methods 

described in this work in order to deal with it. It cuts across 

various sectors where collinear data may surface such as in 

health, economics and finance, agriculture, biological and 

even in the academia. This study aimed at comparing the 

methods of ridge regression and principal component 

regression approaches in addressing multicollinearity 

problem in a secondary dataset using the mean squared error 

(MSE) as performance evaluation criterion. This will be 

achieved through the following objectives; to compare the 

two methods in other to select the suitable estimator with 

minimum MSE, that will be used to fit the appropriate model 

to the dataset. To obtain parameter estimates for the identified 

regression model in (i) above for prediction.  

 

MATERIALS AND METHODS 

Situations may arise where two more regressors can 

concurrently affect the response variable, thereby leading to a 

multiple linear regression model (LRM) given in equation (1) 

below as,  

𝑌 = 𝑋𝛽 + 𝜀    (1) 

𝑌 presents an 𝑛 × 1 vector of response variable, 𝑋 is 𝑛 × 𝑝 

matrix of regressors, 𝛽 is a 𝑝 × 1 vector of unknown 

coefficients in the LRM, and  𝜀 is an 𝑛 × 1 vector of random 

errors such that 𝐸(𝜀) = 0 and 𝑉𝑎𝑟(𝜀) = 𝜎2𝐼𝑛, 𝐼𝑛 is an 𝑛 × 𝑛 

identity matrix. The unknown coefficients 𝛽 is usually 

estimated using least squares estimator (LSE). LSE of 𝛽 in (1) 

is given as, 

�̂� = (𝑋′𝑋)
−1
𝑋′𝑌,    (2) 

where (𝑋′𝑋) the matrix of the regressors. The least squares 

estimator suffer setback when the explanatory variables are 

affected by multicollinearity. Based on this, ridge and 

principal component regression estimation methods were 

developed to address this shortcoming of LSE in the presence 

of multicollinear explanatory variables.  

This research work compares the ridge and principal 

component regression estimation method in analyzing 

financial data  

 

Data Collection, Method and Analysis 

The datasets used in in this research are secondary data 

collected from various online sources which are the World 
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Bank database, International Monetary Fund (IMF) database 

and the Nigerian debt management office. The data was 

collected over a period of 51 years i.e., from 1972 – 2022. 

Since ridge regression and principal components regression 

require that the data be standardized, the raw data collected 

online was compiled and standardized (standardization is a 

process in which the average is removed from each predictor 

variable and result is divided by its standard deviation 

(scaling)) to ensure that all predictors are on the same scale to 

avoid pulling the mean to values with higher magnitude since 

the mean tends to be affected by bigger values and outliers.  

The analysis in this research was carried out using two 

statistical software which are Statistical Package for Social 

Sciences (SPSS) and the R programming language. The SPSS 

is a statistical package owned and managed by IBM 

corporation used for data management, multivariate analysis, 

advanced analytics etc. SPSS is used in this work to perform 

principal component regression (PCR). R is an open-source 

programming language used by data miners and statisticians 

for data analysis and to develop statistical software. R is used 

in this work to perform the Ridge Regression analysis. 

 

Table 1: Descriptive Statistics of the dataset 
Variables N Range Min Max Mean Std. Dev. Variance 

Aggregate 
Investment 

51 137753500000 9246500000 147000000000 42640010386.3
9215000 

32360930285.3
98502 

104722980893
64221000 

Real GDP 51 3.2559 -.9148 2.3411 -.000004 .9999906 1.000 

Net export 51 4.1233 -.8383 3.2850 .000002 1.0000028 1.000 

Interest rate 51 5.9587 -4.7591 1.1996 -.178890 1.0000027 1.000 

Money supply 51 3.6181 -.5757 3.0424 -.000002 .9999951 1.000 

Inflation rate 51 4.4827 -.9521 3.5306 .000004 .9999978 1.000 

External 

reserve 

51 3.0367 -.8711 2.1656 -.000002 .9999930 1.000 

Exchange rate 51 3.5710 -.7701 2.8009 .000006 1.0000058 1.000 

Debt 51 3.8439 -1.5978 2.2461 .000000 .9999935 1.000 

 

The response variable (y) is aggregate investment while the 

remaining eight variables are the predictor variables. All 

predictor variables were standardized to be on the same scale. 

The response variable may or may not be standardized and it 

does not affect the regression results. Hence, the response 

variable is not standardized. 

Detecting multicollinearity in the data 

As stated earlier in this research, the correlation matrix of 

predictors and the VIF would be used for the detection of 

multicollinearity in the datasets. 

 

Table 2: Correlation matrix of predictor variables 

 Real_Gdp Net_exp Int_rate Money_sup Inf_rate Extl_Resv Exch_rate Debt 

Real_Gdp 1 0.8635 0.3548 0.8838 -0.3077 0.8872 0.8215 0.3725 

Net_exp 0.8635 1 0.3451 0.6332 -0.2869 0.8761 0.6199 0.2183 

Int_rate 0.3548 0.3451 1 0.3448 -0.4494 0.4021 0.3844 0.3074 

Money_sup 0.8838 0.6332 0.3448 1 -0.2259 0.7503 0.9317 0.4957 

Inf_rate -0.3077 -0.2869 -0.4494 -0.2259 1 -0.3361 -0.2472 0.151 

Extl_Resv 0.8872 0.8761 0.4021 0.7503 -0.3361 1 0.7767 0.2731 

Exch_rate 0.8215 0.6199 0.3844 0.9317 -0.2472 0.7767 1 0.6241 

Debt 0.3725 0.2183 0.3074 0.4957 0.151 0.2731 0.6241 1 

 

From the result of the correlation matrix in table two above, it 

can be seen that Real GDP has a high correlation of 0.8635 

with net export, 0.8838 with money supply, 0.8872 with 

external reserve, and 0.8215 with exchange rate. Net export 

has a high correlation of 0.8761with external reserve, 0.6332 

with money supply and 0.6199 with exchange rate. Money 

supply has a high correlation of 0.9317 with exchange rate, 

0.7503 with external reserve. Exchange rate has a high 

correlation of 0.7767 with external reserve. These high 

correlations are indicators of multicollinearity. 

 

Table 3: Variance inflation factors of predictor variables  

Predictor Variables VIF 

Real GDP 19.818 

Net export 7.355 

Interest rate 1.719 

Money supply 20.743 

Inflation rate 1.856 

External reserve 10.025 

Exchange rate 19.586 

Debt 3.339 
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From the table 3 above, real GDP, money supply, external 

reserve and exchange rate all indicate multicollinearity given 

that their VIF’s are greater than 10.   

The VIF values that ranges between 5 to 10 indicate mild 

multicollinearity while VIF values greater than 10 indicates 

the presence of severe multicollinearity see Lukman et al. 

(2020) and Jegede et al. (2022). Also, Net export with a VIF 

of 7.355 indicates a somewhat likely multicollinearity 

problem as it lies in the range of 5-10. Interest rate, Inflation 

rate are not affected by multicollinearity since their VIF’s lie 

between 1- 4.   

Hence, the results from the correlation matrix are in tandem 

with the results of the VIF table, it shows that variables like 

real GDP, money supply, external reserve, exchange rate and 

net export are affected by multicollinearity. In other to handle 

this issue of multicollinearity present in the data, the two 

methods that is considered in this work are ridge regression 

and principal components regression. First, we apply ridge 

regression on the dataset after which PCR will be applied on 

the dataset as well and the estimator with the least MSE 

among RE and PCE will be used to fit our ideal regression 

model to the dataset. 

 

Ridge Regression  

Ridge regression is a procedure for obtaining biased estimator 

of regression model originally proposed by Hoerl and 

Kennard (1970). The ridge regression introduces a small bias, 

k, so that the variance can be substantially reduced, which 

leads to a smaller MSE. Ridge regression is applied to 

centered and scaled predictor variables and the response may 

or may not be scaled but must be centered. The ridge estimator 

penalizes the estimates for being too large but in so doing 

introduces a bias in the model. The ridge estimator is given as  

β̂R = (𝑋′𝑋 + kI)
−1
𝑋′𝑌   (3) 

where, β̂R is a vector of the ridge regression estimates 

obtained after performing ridge regression on the set of 

regressors. Where X is the matrix of explanatory variables of 

the regression model, and k is the shrinkage parameter and I 

is a (p x p) identity matrix. When k = 0, ridge estimator 

collapses to the least squares estimator. The ridge estimator 

β̂R contains a shrinkage parameter k which controls the 

amount of regularization.  

According to Arum and Ugwuowo (2022), shrinkage is the 

reduction in the effects of sampling variation and a shrinkage 

estimator is an estimator that either implicitly or explicitly 

incorporates the ‘shrinkage’ effect. A shrinkage parameter 

can be selected either using a ridge trace which shows the 

ridge coefficients as a function of k. The shrinkage (biasing) 

parameter k, is chosen as the smallest value of k (that 

introduces the smallest bias) after which the regression 

coefficients when the model has stabilized, Hoerl and 

Kennard (1970).  

Another method which has become widely accepted as the 

method of choosing k is the cross validation (CV). The CV 

technique involves randomly dividing the set of observations 

into different groups or folds, of equal sizes. The first group 

is the validation set, and the method is fitted on the remaining 

n -1 folds. Then the MSE is computed on the observations in 

the held-out fold. The procedure is repeated n times and each 

time, a different group of observations is treated as a 

validation set. Cross validation is done using computer 

programs/software like R programming language. In this 

study, the n-fold cross validation will be used to select the 

shrinkage parameter. 

 

Principal components regression (PCR) 

Principal components (PC) regression is a dimension 

reduction technique that involves projecting each data point 

onto only the first few principal components to obtain lower 

dimensions of the data while preserving as much of the data’s 

variation as possible Massy (1965). In PC regression, instead 

of regressing the response variables on the regressors directly, 

the principal components of the regressors (explanatory 

variables) are used. A researcher normally uses only a subset 

of all the PC for the regression, making PC regression a kind 

of regularized method and also a type of shrinkage estimator 

which handle problem of multicollinearity in the dataset. The 

PC regression estimator introduced by Massy (1965) is given 

by,  

β̂pcr = (ZTZ)
−1
ZT𝑌      (4) 

where β̂pcr is the vector of the PC regression estimates 

obtained after performing PC regression on the set of 

standardized variables, Z is the matrix of standardized 

variables of the regression model, Y is the vector of values of 

the response variable. 

It is desired in PCR that the proportion of variation explained 

by regressors is maximum whilst the PC associated with the 

smallest eigenvalues are deleted.  The principal components 

to regress on are selected either by examining the scree plot 

or using the Kaiser-Guttmann criterion. The scree plot is a 

graph of the eigenvalues against the corresponding PC 

number. While examining the scree plot, we find a point at 

which the proportion of variance explained by each 

subsequent principal component drops off (where lesser 

variance is explained). Then we can select those PC’s that 

explain more variation than the rest. The scree plot can be 

obtained using statistical software like SPSS, R etc. 

According to the Kaiser rule, the only principal components 

to be retained are those whose eigenvalues are approximately 

1 and above. The idea behind the Kaiser rule is that any 

principal components with eigenvalues less than 1 has lesser 

information than one of the original variables and should not 

be retained. In this study, the Kaiser rule will be used in 

selecting the principal components to be regressed. Hence, in 

other to determine which principal components to retain and 

which ones to drop, the amount of variation which each 

component explains will be computed using their eigenvalues 

and those that are approximately one and above are selected 

according to the Kaiser rule. 

 

Table 4: PCR Result of Explained Variations for the Independent Variables  

Variables Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 4.776 59.694 59.694 4.776 59.694 59.694 

2 1.294 16.178 75.872 1.294 16.178 75.872 

3 .955 11.940 87.811 .955 11.940 87.811 

4 .496 6.203 94.014    

5 .271 3.384 97.398    

6 .131 1.633 99.032    

7 .058 .727 99.759    

8 .019 .241 100.000    
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From Table 4, three out of eight variables (components) 

contributed to the regression model  

using PC regression approach. These three components 

accounted for 59.694%, 16.178%, 11.940% of the total 

variations respectively. Cumulatively, these components 

accounted for  

approximately 88% of the variations in the independent 

variables. The remaining components  

accounted variation of 12%. 

 

 

 

Component Matrix 

The elements of the component matrix represent the various 

correlations that exist between each of the original variables 

and the extracted components. Various rotation methods can 

be used to obtain the component matrix but the most common 

is the varimax rotation will be used. Varimax represents 

variable maximization and it redistribute factor loadings in a 

way that each variable measures strictly one factor 

(component); it will help in understanding our factors and the 

variables that measure them. Also, correlations of 0.3 and 

below were removed as they are considered insignificant (not 

related).  The rotated component matrix for our PC regression 

is given in table 5 below. 

 

Table 5: Rotated Component Matrix 

 Component 

1 2 3 

Real GDP .940   

Net export .897   

Interest rate  .374 .824 

Money supply .813 .431  

Inflation rate   -.829 

External reserve .918   

Exchange rate .764 .538  

Debt  .932  

 

Analyzing the component matrix in table 5 above, component 

one is measured by real GDP, net export, money supply, 

external reserve and exchange rate and will be termed as 

growth indices. Component two is measured by interest rate, 

money supply, exchange rate, debt and will be termed as 

Monetary policies. Component three is measured by interest 

rate and inflation rate and will be termed as rates.  

Using the 3 components extracted above, PC regression is 

performed and the estimate is obtained. The MSE of the PC 

estimator is obtained as 0.571. 

Having obtained the mean squared errors for both the ridge 

and PC estimators, it is easily seen that the ridge estimator 

performed better in handling problem of multicollinearity in 

the dataset by having the smallest mean squared error of 

0.3777 value. It should however be noted that both estimators 

performed well in addressing multicollinearity in the dataset 

but the ridge regressor outperformed the principal 

components regressor with respect to the dataset used.  

Thus, the ridge estimator will be used to fit an appropriate 

model to the dataset which will mitigate the effect of 

multicollinearity present in the data. The coefficients of the 

model fit by the ridge estimator is given in table 6 below. 

 

Table 6: Ridge Regression Estimates for the Variables 

S/no Variables Estimate 

1 Intercept -0.0748 

2 Real GDP 0.7084 

3 Net export -0.1454 

4 Interest rate -0.4180 

5 Money supply 0.1234 

6 Inflation rate -0.2569 

7 External Reserve 0.0330 

8 Exchange Rate -0.0361 

9 Debt 0.1031 

 

The appropriate regression model is the ridge regression model given as  

 𝑌𝑖 = −0.0747 + 0.7080𝑋1 − 0.1450𝑋2 − 0.4180𝑋3 + 0.1237𝑋4 − 0.2569𝑋5 + 0.0328𝑋6 − 0.0362 + 0.1030𝑋8  

 

CONCLUSION 

Multicollinearity is always a challenge to most researchers 

when dealing with econometric and financial data. When it is 

present in the data, the ordinary least squares estimators are 

affected because the matrix of predictors (XTX matrix) 

becomes ill-conditioned and suffers break down. The effects 

of multicollinearity, its indicators, types and possible 

solutions have been addressed in this research work. In this 

study, secondary data was collected online from World Bank 

database, International Monetary Fund (IMF) database and 

the Nigerian Debt Management Office. The data was 

compiled into one dataset and used for the analysis. The 

analysis was carried out using ridge regression and principal 

components regression methods which have been shown to 

address the issue of multicollinearity from previous research 

works. The major finding of this work is that the ridge 

estimator which was applied to the multicollinear data 

performed better than the principal component estimator 

(PCE) by having the smallest mean squared error (MSE) for 

the financial data used in this study. Though, both methods 
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that was used yielded the good results of handling 

multicollinearity in the data, but ridge estimator performed 

better than PCE from our judging criterion which is the MSE. 
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