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ABSTRACT 

In this paper, the global convergence analysis of a modified conjugate gradient method for solving 

unconstrained optimization problems was considered. We proposed a modified conjugate gradient method for 

solving unconstrained optimization problems that incorporates an adaptive step size selection scheme. We 

analyze the method’s global convergence properties theoretically, demonstrating that it satisfies the sufficient 

descent and global convergence conditions under various assumptions. And we provide numerical experiments 

to illustrate its effectiveness and efficiency in solving unconstrained optimization problems. We also compare 

the numerical performance of the proposed method against three existing methods namely, FR, HS and PR 

using MATLAB simulations. The proposed method was found to perform better than FR and HS, and in 

competition with PR with respect to computation time, number of iteration and function evaluation.  
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INTRODUCTION 

The Conjugate Gradient (CG) methods are preferably used for 

solving optimization problems because they comprise a class 

of unconstrained optimization algorithms which are 

characterized by low memory requirements and strong local 

and global convergence properties. These properties make the 

CG methods attractive to mathematicians and engineers for 

solving large-scale optimization problems (Lu et al, 2015).  

Given the general formula for unconstrained optimization 

problem 

min 𝑓(𝑥), 𝑥 ∈  𝑹𝒏     (1) 

where  𝑓: 𝑹𝒏 → 𝑹 is continuously differentiable.  The 

iterative form of CG methods for solving (1) is given by 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘      (2) 

𝑑𝑘+1 = {
𝑔𝑘                       𝑖𝑓 𝑘=0

−𝑔𝑘+1 + 𝛽𝑘𝑑𝑘   𝑖𝑓 𝑘 ≥ 1
    (3) 

Where 𝑑𝑘 is the search direction defined by (3), its gradient 

𝑔𝑘 = ∇𝑓(𝑥𝑘), is a column vector and 𝛽𝑘 ∈ 𝑹 is a scalar called 

the CG parameter or coefficient and 𝛼𝑘 > 0 is a step size 

computed using the exact line search  

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) = 𝑚𝑖𝑛𝑘≥0𝑓(𝑥𝑘 + 𝛼𝑑𝑘). (4)  

Some classical formulas for CG methods are shown in Table 

1 

 

Table 1: The classical formulae for CG parameters 𝜷𝒌  

S/No Name Coefficient 

     1 Fletcher-Reeves (FR) 
𝛽𝑘

𝐹𝑅 =
‖𝑔𝑘+1‖2

‖𝑔𝑘‖2  

     2 Conjugate Descent (CD) 
𝛽𝑘

𝐶𝐷 =
‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑔𝑘

 

     3 Dai-Yuan (DY) 
𝛽𝑘

𝐷𝑌 =
‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

 

     4 Polak-Ribiere-Polyak (PRP) 
𝛽𝑘

𝑃𝑅𝑃 =
𝑔𝑘+1

𝑇 𝑦𝑘

‖𝑔𝑘‖2  

     5 Liu-Storey (LS) 
𝛽𝑘

𝐿𝑆 =
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘

 

     6 Hestenes-Stiefel (HS) 
𝛽𝑘

𝐻𝑆 =
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

 

 

Methods such as Fletcher-Reeves (FR), Conjugate Descent 

(CD) and Dai-Yuan (DY) methods are known for their strong 

global convergence properties. But they have weak numerical 

strength (Powell, 1984). Methods such as Polak-Ribiere-

Polyak (PRP), Liu-Storey (LS) and Hestenes-Stiefel (HS) 

methods may not always converge or slow to converge but 

have better numerical results than FR, CD and DY methods 

(Powell, 1984). 

‖. ‖ denotes the Euclidean norm. The methods in Table 1 

behave exactly the same for quadratic function problems 

when line search is exact. 

Research works have shown several modifications carried out 

using these classical methods. Among them are a modified 

PRP by (Wei et al, 2006a) and (Wei et al, 2006b), a modified 

LS by (Liu & Du, 2012), modifications of the denominators 

of PRP, HS and LS and modifications of both numerators and 

denominators of PRP, HS and LS by (Rivaie & Mamat, 2012).  
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A variant of LS method by (Lu et al, 2015) is also of great 

importance to study. 

Justin & Ohoriemu (2024), worked on solving complex 

optimization problems using hybrid strategy that integrate 

both mathematical modeling and evolutionary algorithms 

In this paper, the performance of the proposed coefficient 𝛽𝑘is 

compared with some classical CG methods. 

 

MATERIALS AND METHODS  

We propose a new 𝛽𝑘defined by: 

𝛽𝑘
𝐸𝐴 =  

‖𝑔𝑘‖2−
‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘

𝑇𝑔𝑘−1

‖𝑑𝑘−1‖2−𝛼𝑔𝑘
𝑇𝑑𝑘−1

       𝛼 = 0.5    (5) 

We will now describe the CG algorithm and show that our 

proposed formula possesses the descent properties. 

Algorithm 1 

1. Initialization. Select 𝑥° ∈  𝑹𝒏, 𝜀 > 0 𝑠𝑒𝑡 𝑘 = 0 

2. Compute 𝜷𝒌
𝑬𝑨 using (5) 

3. Generate 𝑑𝑘  𝑏𝑦 (3). If 𝑔𝑘 = 0, then stop. 

4. Compute 𝜶𝒌 based on (4) 

5.  Variable update, 𝑥𝑘+1 = 𝑥𝑘 +
𝛼𝑘𝑑𝑘 . 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑓(𝑥𝑘+1), 𝑔(𝑘+1) 

6.  Test for convergence ans stopping criterion. If 
‖𝑔𝑘‖ ≤ 𝜀, 𝑡ℎ𝑒𝑛 𝑠𝑡𝑜𝑝.  
Otherwise, set k = k+1 and go to step 2. 

Now, we will study the global convergence of 𝛽𝑘
𝐸𝐴 beginning 

with the sufficient descent condition.   

The sufficient descent condition is given by 

  𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2     ∀ 𝑘 ≥ 0, 𝑐 > 0      (6) 

Using exact line search in (4) we will use the lemma below to 

show that (5) satisfies the descent condition in (6) 

Lemma1; let the sequences {𝑥𝑘} 𝑎𝑛𝑑 {𝑑𝑘} generated by the 

methods of (2) and (3), be determined by exact line search in 

(4), then 𝑔𝑘
𝑇𝑑𝑘 ≤ −‖𝑔𝑘‖2 holds true. 

Proof; using the principle of mathematical induction to obtain 

the conclusion, if 𝑘 = 1, 𝑔1
𝑇𝑑1 = −𝑐‖𝑔1‖2. Hence, (6) holds 

true. Next, we show that it holds true for 𝑘 ≥ 1  

  Multiply (3) by 𝑔𝑘+1 to get 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = 𝑔𝑘+1(−𝑔𝑘+1 + 𝛽𝑘

𝐸𝐴𝑑𝑘
𝑇) 

= −‖𝑔𝑘+1‖2 + 𝛽𝑘
𝐸𝐴𝑑𝑘

𝑇𝑔𝑘+1     (7) 

= −‖𝑔𝑘+1‖2 +

‖𝑔𝑘‖2 −
‖𝑔𝑘‖

‖𝑔𝑘−1‖ 𝑔𝑘
𝑇𝑔𝑘−1

‖𝑑𝑘−1‖2 − 𝑔𝑘
𝑇𝑑𝑘−1

𝑔𝑘+1
𝑇 𝑑𝑘 

= −‖𝑔𝑘+1‖2

+

‖𝑔𝑘‖2 −
‖𝑔𝑘‖2‖𝑔𝑘−1‖

‖𝑔𝑘−1‖

‖𝑑𝑘−1‖2 − 𝛼𝑔𝑘
𝑇𝑑𝑘−1

𝑔𝑘+1
𝑇 𝑑𝑘           𝑤ℎ𝑒𝑟𝑒 𝛼=0.5 

= −‖𝑔𝑘+1‖2 +
‖𝑔𝑘‖2−‖𝑔𝑘‖2

‖𝑑𝑘−1‖2−0.5𝑔𝑘
𝑇𝑑𝑘−1

𝑔𝑘+1
𝑇 𝑑𝑘   (8) 

For exact line search, we have 𝑔𝑘+1
𝑇 𝑑𝑘+1 = 0, 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 

that into (8) to have 

 𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2       (9) 

And this shows that the condition holds true for 𝑘 + 1. 
We make the following assumptions in order to prove and 

establish the global convergence of our proposed formula 

 

Assumption A 

(𝔦) The level set M = {𝑥 ∈ 𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded. 

( 𝔦𝔦 ) In some neighborhood N of M, the function is 

continuously differentiable and its gradient is Lipschitz 

continuous, that is, there exist a constant 𝐿 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 ‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 𝑦 ∈ 𝑁   (10) 

(𝔦𝔦𝔦) Suppose k is sufficiently large,  

then 0 < 𝑔𝑘+1
𝑇 𝑔𝑘 ≤ 2𝑔𝑘+1

𝑇 𝑔𝑘+1      (11) 

Note (𝔦) Suppose {𝑓(𝑥𝑘)} is decreasing, then we are sure that 

the sequence {𝑥𝑘} generated by our algorithm is located in a 

bounded region (assumption 1(𝔦)). As a result, assumption 

1(𝔦𝔦) shows that there exist a constant 𝛾 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 ‖∇𝑓(𝑥)‖ ≤ 𝛾  ∀ 𝑥 ∈ 𝑀      (12) 

Thus, the sequence is bounded. 

Note (𝔦𝔦) The first inequality of (11) requires that the angle 

between 𝑔𝑘+1 𝑎𝑛𝑑 𝑔𝑘 should be acute for k sufficiently large. 

Recall that 𝑔𝑘+1 is an approximation of 𝑔𝑘, then it is trivial 

for the inequality to hold true. Also, in the second inequality 

from (11), it follows that 

𝑔𝑘+1
𝑇 𝑔𝑘 ≤ 2𝑔𝑘+1

𝑇 𝑔𝑘+1  is equivalent to 

 ‖𝑔𝑘+1‖ ≥
1

2
‖𝑔𝑘‖ cos 𝜃   (13) 

Where 𝜃 is the angle between 𝑔𝑘+1 𝑎𝑛𝑑 𝑔𝑘.  

Now, if k is large enough, 

‖𝑔𝑘+1‖ ∈ (
1

2
‖𝑔𝑘‖, ‖𝑔𝑘‖), then (13) holds true.  

Furthermore, if 
𝜋

2
> 𝜃 ≥

𝜋

3
 and 

 ‖𝑔𝑘+1‖ ∈ (
1

4
‖𝑔𝑘‖, ‖𝑔𝑘‖) , then assumption 1(𝔦𝔦𝔦) holds true. 

 

Lemma 2: Suppose the sequences {𝑥𝑘} 𝑎𝑛𝑑 {𝑑𝑘} are generated by the algorithm and for 𝛽𝑘
𝐸𝐴 in (5), then, 𝛽𝑘

𝐸𝐴 ≥ 0. 

Proof; we show that 𝛽𝑘
𝐸𝐴 is always not negative. 

We can simplify 𝛽𝑘
𝐸𝐴 using (11) to have 

  𝛽𝑘
𝐸𝐴 =

‖𝑔𝑘‖2−
‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘

𝑇𝑔𝑘−1

‖𝑑𝑘−1‖2−𝑔𝑘
𝑇𝑑𝑘−1

≤ 2
‖𝑔𝑘+1‖2−

‖𝑔𝑘+1‖
2

𝑔𝑘−1
𝑇

‖𝑔𝑘−1‖

‖𝑑𝑘−1‖2−𝑔𝑘
𝑇𝑑𝑘−1

≤  
2(‖𝑔𝑘+1‖2+

‖𝑔𝑘+1‖
2

‖𝑔𝑘−1‖

‖𝑔𝑘−1‖
)

‖𝑑𝑘−1‖2−𝑔𝑘
𝑇𝑑𝑘−1

≤
2‖𝑔𝑘+1‖2+2‖𝑔𝑘+1‖2

‖𝑑𝑘−1‖2−𝑔𝑘
𝑇𝑑𝑘−1

≤
4‖𝑔𝑘+1‖2

‖𝑑𝑘−1‖2−𝑔𝑘
𝑇𝑑𝑘−1

     

           (14) 

Therefore, 𝛽𝑘
𝐸𝐴 ≥ 0 

Lemma 3; Supposed assumption 1 holds and {𝑥𝑘} is generated by the algorithm where {𝑑𝑘} satisfies (7) and 𝛼𝑘 satisfies (4), 

then,  

∑
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖2 <  +∞𝑘≥1            (15) 

From Lemma 3, we can have the following theorem 

Theorem 1. Suppose assumption 1 holds true, let {𝑥𝑘 } and {𝑑𝑘} be generated by (2) and (3), and the algorithm with 𝛽𝑘
𝐸𝐴,

𝛼𝑘  is obtained by (4), then,  

lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0             (16) 

Proof, (by contradiction) 

Suppose theorem 1 is not true, then there exist a constant 

𝑚 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝑔𝑘‖ ≥ 𝑚 ∀ 𝑘 ≥ 0    (17) 

From (3),      we have that (𝛽𝑘
𝐸𝐴𝑑𝑘)

2
= (𝑑𝑘+1 + 𝑔𝑘+1)2          (18) 

  (𝛽𝑘
𝐸𝐴)

2
‖𝑑𝑘‖2 = ‖𝑑𝑘+1‖2 + ‖𝑔𝑘+1‖2 + 2𝑑𝑘+1

𝑇 𝑔𝑘+1        (19) 
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‖𝑑𝑘+1‖2 = (𝛽𝑘
𝐸𝐴)

2
‖𝑑𝑘‖2 − 2𝑑𝑘+1

𝑇 𝑔𝑘+1 − ‖𝑔𝑘+1‖2         (20) 

From (14) and (20), we have 

  ‖𝑑𝑘+1‖2 = (
4‖𝑔𝑘+1‖2

‖𝑑𝑘−1‖2−𝑔𝑘
𝑇𝑑𝑘−1

)
2

‖dk‖2 − 2dk+1
T gk+1 − ‖gk+1‖2       (21) 

As earlier proved, sufficient descent condition holds true, then from (6) and (21), we have 

  
16‖𝑔𝑘+1‖4

‖𝑑𝑘−1‖4−2𝑔𝑘
𝑇𝑑𝑘−1‖𝑑‖2+‖𝑔𝑘‖2‖𝑑𝑘−1‖2

 ‖𝑑𝑘‖2 + 2𝑐‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖2        

  =
16‖𝑔𝑘+1‖4

‖𝑑𝑘−1‖4−2𝑔𝑘
𝑇𝑑𝑘−1‖𝑑𝑘−1‖2+‖𝑔𝑘‖2‖𝑑𝑘−1‖2

‖𝑑𝑘‖2 + (2𝑐 − 1)‖𝑔𝑘+1‖2           (22) 

Multiply both sides of (21) by 
‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2
 to have 

  ‖𝑑𝑘+1‖2 ‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2
=

‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2
(

16‖𝑔𝑘+1‖4

‖𝑑𝑘−1‖4−2𝑔𝑘
𝑇𝑑𝑘−1‖𝑔𝑘‖2+‖𝑔𝑘‖2‖𝑑𝑘−1‖2

) ‖𝑑𝑘‖2 +
‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2
(2𝑐 − 1)‖𝑔𝑘+1‖2 

  ‖𝑑𝑘+1‖2 ‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2 =
‖𝑔𝑘+1‖4

‖𝑑𝑘+1‖2 (
16‖𝑔𝑘+1‖2

‖𝑑𝑘−1‖4−2𝑔𝑘
𝑇𝑑𝑘−1‖𝑔𝑘‖2+‖𝑔𝑘‖2‖𝑑𝑘−1‖2

‖𝑑𝑘‖2 + (2𝑐 − 1)) 

‖𝑔𝑘+1‖2 ≤
‖𝑔𝑘+1‖4

‖𝑑𝑘+1‖2           (23) 

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4
≤

1

‖𝑔𝑘+1‖2
             (24) 

Hence,   
‖𝑑𝑘+1‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2 ≤ ∑
1

‖𝑔𝔦‖
2 ≤

𝑘

𝑚2
𝑘
𝔦=1  . 

Furthermore, 
(𝑔𝑘+1

𝑇 𝑑𝑘+1)
2

‖𝑑𝑘+1‖2 ≥ 𝑚2 ∑
1

𝑘
= +∞𝑘≥0  

This contradicts the Zoutendijk condition (Zoutendijk, 1970) in (15). Thus, proof is completed. 

The proof of this theorem shows that our proposed coefficient in (5) converges globally. 

 

RESULTS AND DISCUSSION 

The presentation of the simulation results on the test problems for our proposed method where 𝛽𝑘 = 𝛽𝑘
𝐸𝐴 against some existing 

methods in the literature are done here. We consider some test problems from (Andrei, 2004) to validate the numerical strength 

of our proposed method versus some existing methods, using exact line search conditions in (4) as shown in Table 2. 

 

Table 2: A list of test functions 

S/NO Function Dimensions Initial points 

  1 Extended Penalty 50, 100 9, 12 

  2 Diagonal 2 2 (20, 20, 20, 20) 

  3 Extended Tridiagonal 1 2, 200 2, 8 

  4 Generalized Tridiagonal 2 4, 12, 120 -1, -1, 10 

  5 Diagonal 4 2, 4, 200 1,1,..1, 7 

  6 Extended Cliff 2, 4, 12 0,2,…,6,3 

  7 Extended Hiebert 2 21 

  8 Extended Tridiagonal 2 4, 10, 200 1, 1, 1 

  9 TRIDIA 4, 8 4, 5 

 10 NONDQUAR 5 3 

 11 DQDRTICF 5, 10, 50, 500 1,2,…,3, 5, …1,2 

 12 DIXMAANA 4, 12, 32 13, 13, 13 

 13 DIXMAANB 12, 32 8, 13 

 14 DIXMAANC 4, 12, 32, 400 2, 2, 3, 8 

 15 DIXMAAND 12, 32, 400 3, 13, 13 

 16 DIXMAANL 4, 12, 32, 400 8, 3, 2, 8 

 17 Partial Perturbed Quadratic 4, 12, 120 0.5, 1.5, 0.5 

 18 Broyden Tridiagonal 4, 12, 400 -3, -3, 3 

 19 Almost Perturbed Quadratic 10, 20 0.5, 4.5 

 20 Tridiagonal Perturbed Quadratic 6, 12, 18 2.5, 6.5, 0.5 

 21 HIMMELBHA 4 (0,2,0,2) 

 22 STAIRCASE 4, 32 4, 1 

 23 Dixon 3DQ 4 1 

 24 DenschnB 400 4 

 25 BIGGSB 1 4, 32, 40, 400 3, 3, 3, 5 

 

The parameters such as number of iterations (it), number of 

function evaluations (nf) and CPU time (t) were considered to 

evaluate the computational capability of the proposed method 

𝛽𝑘
𝐸𝐴 as compared with FR, HS and PR. For each test problem, 

the stopping criterion is taken as ‖𝑔𝑘‖ ≤ 𝜀, where 𝜀 = 10−5. 

We implemented the method using MATLAB 

R2015b(8.6.0.267246 on CP computer. Tables 3, 4 and 5 

show the simulation results of the proposed method against 

some existing methods (FR, HS and PR). Where (-) implies 

failure in numerical computation. 
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Table 3: Numerical results of EA, PR, HS and FR for Problems 1-11 

Prob. Dim. 
EA PR HS FR 

 it  nf   t  it  nf   t  it  nf   t  it  nf   t 

  1  50  2  3 0.05  2  3 0.06 - - -  2  3 0.06 

  1  100  2  3 0.05  2  3 0.08 - - -  2  3 0.06 

  2   2  2  4 0.05  2  4 0.03  2  4 0.05  2  4 0.08 

  3   2  10  17 0.28  10 22 0.22  10 22 0.17  24 43 0.59 

  3   200  2  3 0.11  2  3 0.11  2  3 0.13  2  3 0.11 

  4   4  14  15 0.37 15 16 0.33  15 16 0.36  15 16 0.34 

  4   12  23  24 0.47 24 25 0.56  24 25 0.61  23 24 0.56 

  4   120  17  18 0.55 19 20 0.48  18 19 0.52  18 19 0.55 

  5   2  2  3 0.03  2  3 0.02  2  3 0.03  2  3 0.05 

  5   4  2  3 0.03  2  3 0.03  2  3 0.06  2  3  0.06 

  5   200  2  3 0.02  2  3 0.05  2  3 0.05  2  3 0.06 

  6   2  3  18 0.08  3  18 0.09  3 18 0.09  3 18 0.11 

  6   4  3  18 0.09  3  18 0.08  3 18 0.06  3 18 0.14 

  6   12  3  18 0.09  3  18 0.13  3 18 0.09  3 18 0.09 

  7   2  55  62 1.25  50  56 1.09   45 53 1.05  69 71 1.41 

  8   4  3  5 0.03  5  7 0.08  5  7 0.11  3  5 0.06 

  8   10  3  5 0.09  3  5 0.09  3  5 0.09  3 5 0.09 

  8   200  3  5 0.06  3  5 0.14  3  5 0.16  3  5 0.16 

  9   4  4  5 0.06  4  5 0.05  4  5 0.03  4  5 0.09 

  9   8  8  9 0.13  8  9 0.13  8  9 0.13  8  9 0.13 

 10  5 53 89 1.20 52 75 1.17 41 60 0.91 53 114 1.17 

 11  5  5 6 0.11  5 6 0.03  5 6 0.06  5 6 0.08 

 11  10  5 6 0.11  5 6 0.09  5 6 0.08  5 6 0.09 

 11  50  5 6 0.08  5 6 0.14  5 6 0.11  5 6 0.11 

 11  500  5 6 0.03  5 6 0.06  5 6 0.09  5 6 0.13 

 

Table 4: Numerical results of EA, PR, HS and FR for Problems 12-19 

Prob. Dim. 
EA PR HS FR 

 it  nf   t  it  nf   t  it  nf   t  it  nf   t 

 12  4 11 12 0.30  8   9 0.20  8  9 0.16  6  7 0.13 

 12  12 11 12 0.28  8  9 0.19  8  9 0.19  7  8 0.16 

 12  32 11 12 0.33  8  9 0.23  8  9 0.28  7  8 0.22 

 13  12  8  9 0.13  7  8 0.22  7  8 0.16  9 10 0.19 

 13  32  9 10 0.30  9 10 0.31  9 10 0.28  9 10 0.22 

 14  4  5  6 0.14  5  6 0.13  5  6 0.19  5  6 0.14 

 14  12  6  7 0.14  6  7 0.17  6  7 0.16  6  7 0.16 

 14  32  7  8 0.22  7  8 0.28  7  8 0.22  8  9 0.23 

 14 400  12 13 0.97  12 13 1.05  12 13 1.05  21 22 1.34 

 15  12  8  9 0.20  8  9 0.27  8  9 0.22  7  8 0.19 

 15  32  14 15 0.44  13 14 0.42  13 14 0.39  11 12 0.38 

 15  400  22 23 2.05  22 23 2.02  22 23 2.05  27 28 2.22 

 16  4  13 14 0.34  12 13 0.38  12 13 0.28 - - - 

 16  12  8  9 0.22  7  8 0.19   7  8 0.19  7  8 0.19 

 16  32  6  7 0.14  5  6 0.16  5  6 0.20  9 10 0.23 

 16  400  13  14 1.04  13 14  1.19  13 14 1.27  23 24 1.91 

 17  4  4  5 0.06  4  5 0.09  4  5 0.09  4  5 0.09 

 17  12  12 13 0.23  12 13 0.25  12 13 0.22  12 13 0.25 

 17  120  40 41 1.00  40 41 1.05  40 41 1.13  40 41 1.02 

 18  4  17 18 0.33  15 16 0.36  15 16 0.31  17 18 0.36 

 18  12  26 27 0.56  26 27 0.61   26 27 0.59  21 22 0.42 

 18 400  23 24 0.72  23 23 0.75  23 24 0.67  26 27 0.83 

 19  10  10 11 0.16  10 11 0.25  10 11 0.20 - - - 

 19  20  20 21 0.45  20 21 0.45  20 21 0.42 - - - 
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Table 5: Numerical results of EA, PR, HS and FR for Problems 20-29 

Prob. Dim. 
EA PR HS FR 

 it  nf  t  it  nf  t  it  nf  t  it  nf  t 

 20  6  6  7 0.13  6  7 0.14  6  7 0.11  6  7 0.13 

 20  12  12 13 0.17  12 13 0.31  12 13 0.30  12 13 0.30 

 20  18  18 19 0.39  18 19 0.38  18 19 0.36  18 19 0.38 

 21  4  8 12 0.23  5 10 0.08  5 10 0.11  - - - 

 22  4  3  4 0.05  3  4 0.06  3  4 0.05  3  4 0.05 

 22  32  86 87 1.67  86 87 1.79  86 87 1.69  89 90 1.77 

 23  4  14 15 0.30  11 12 0.23  11 12 0.30  15 16 0.28 

 24  400  6 7  0.25  6 7 0.20  6 7 0.31  5 6 0.20 

 25  4  2  3 0.02  2  3 0.02  2  3 0.03  2  3 0.02 

 25  32  16  20 0.30  16   20 0.33  16  20 0.34  16  20 0.31 

 25  40  20  25 0.33  20  25 0.33  20  25 0.38  20  25 0.34 

 25  400 981 992 20.67 1221 1230 24.28 1448 1449 30.59 921 927 18.30 

 26  4  8  9 0.16  8  9 0.19  8  9 0.17  8  9 0.16 

 26  40  7  8 0.14  7  8 0.11  7  8 0.16  7  8 0.14 

 26  400  6  7 0.14  6  7 0.18  6  7 0.13  6  7 0.13 

 27  4  11 12 0.22  11 12 0.22  11 12 0.25  10 11 0.22 

 27  32  13 14 0.23  13 14 0.23  13 14 0.27  13 14 0.27 

 27  40  25 26 0.55  24 25 0.45  24 25 0.48  31 32 0.64 

 27  400  15 16 0.36  15 16 0.31  15 16 0.36  15 16 0.33 

 28  4 169 170 3.69 170 171 3.77 167 195 3.63 171 172 3.73 

 28  40  33 34 0.73  33 34 0.72  32 33 0.81  34 35 0.73 

 28  400 343 344 5.59 245 246 5.72 186 187 4.39 206 207 4.63 

 29  4  10 11 0.16  10 11 0.25  10 11 0.20  10 11 0.19 

 29  32 126 127 2.67 125 126 2.52 126 127 2.81 162 163 3.36 

 29  40 156 157 3.29 175 176 3.86 177 178 3.77 161 162 3.34 

 29  400 321 322 7.38 321 322 6.93 1154 1155 25.44 487 488 10.36 

 

Graphically, performance of the proposed algorithm versus 

PR, HS and FR methods are produced in Figures 1 to 3 based 

on the number of function evaluation (nf), number of 

iterations (it) and the computation time (t) using performance 

profile by (Dolan & More, 2002). 

 

 
Figure 1: performance profile based on function evaluation of EA Versus PR, HS and FR 
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Figure 2: Performance profile based on number of iteration (it) of EA versus PR, HS and FR 

 

 
Figure 3: performance profile base on CPU time (t) of EA versus PR, HS and FR     

 

From Tables 3, 4 and 5, experimentation of our proposed 

algorithm was done against some existing algorithms with 

respect to number of iteration (it), number of function 

evaluation (nf) and CPU time (t). The bold figures indicate 

that either our proposed algorithm EA converge faster against 

other CG coefficients under consideration or converge at the 

same time. The symbol (-) on the Tables 3, 4 and 5 means that 

numerical computation failed there. 

From Tables 3, 4 and 5, we can deduce that our coefficient 

converged in about 22 functions faster than the other 

algorithms and converged at the same time with them in about 

11 functions. 

Clearly, from these tables, we can see that in many places our 

proposed coefficient converges faster than the other 

algorithms. In problem 12, our algorithm solved more 

functions than the other algorithms. Also in problem 28 

(dimension 400), our algorithm solved more functions than 

the others. But in some cases, the other methods solved more 

number of functions than our algorithm. 

Also, at some points, our algorithm EA and the other methods 

located their minima at the same time or almost at the same 

time. 

In Fig.1, our proposed CG coefficient (on blue path) reached 

the minima only after PR with a probability of about a 100%. 

The other two coefficients HS and FR, are below 0.95 (94%). 

This clearly shows that our coefficient outperformed HS and 

FR with respect to number of function evaluation. And it is 

also in competition with PR. 

In Fig.2, the proposed method EA (on blue path), wins just 

like PR (on red path) with the probability of about 100% 

compared to HS and FR with about 96% in terms of number 

of iterations.. 

In Fig.3, our proposed CG coefficient outperformed HS and 

FR and in competition with PR to reach 1. With respect to 

CPU time (t), the probability that our CG coefficient EA and 

PR are the winner is about 100% as displayed by the 

performance profile as against 95% of HS and FR.  

 

CONCLUSION 

In this paper, we propose a new conjugate gradient coefficient 

𝛽𝐾
𝐸𝐴 that is a modification of HS for solving unconstrained 

optimization problems. This proposed coefficient possesses 

the descent properties with the exact line search condition. We 

established the global convergence of the method using the 

Zoutendijk condition in (Zoutendijk, 1970). We experiment 
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our formula on some test functions and results obtained 

showed that our algorithm EA is efficient and effective. 
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