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ABSTRACT 

This paper investigates various epidemiological aspects of HIV/AIDS through a fractional-order mathematical 

model, emphasizing the role of treatment in the disease's transmission dynamics. Given the ongoing global 

impact of HIV/AIDS, with millions of people affected and significant mortality rates, understanding the 

complexities of its transmission and control is crucial for effective public health strategies. We establish 

conditions for the existence and uniqueness of the model’s solutions within the fractional framework and 

perform a stability analysis of the endemic equilibrium using the Lyapunov function method. Numerical 

simulations, executed via the fractional Adams–Bashforth–Moulton method, demonstrate the effects of model 

parameters and fractional-order values on HIV/AIDS dynamics and control. Additional simulations employing 

surface and contour plots reveal that higher contact rates and reduced treatment efficacy correlate with 

increased HIV/AIDS prevalence. Our findings suggest that optimizing treatment strategies can significantly 

lower the prevalence of HIV/AIDS within the population, ultimately contributing to enhanced health outcomes 

and resource allocation in combating this critical public health issue.  

 

Keywords: HIV/AIDS, Fractional calculus, Adams-Bashforth-Moulton method, Transmission dynamics,  

Control measures, Strategies 

 

INTRODUCTION 

The Human Immunodeficiency Virus (HIV), which leads to 

Acquired Immunodeficiency Syndrome (AIDS), primarily 

compromises the immune system by targeting CD4 (T) cells, 

thus diminishing the body's ability to combat infections 

(WHO, 2012). Since its discovery in 1981, AIDS has claimed 

over 25 million lives by 2006, with HIV affecting around 

0.6% of the global population (Overview of the Global AIDS 

Epidemic, 2006). By 2018, an estimated 37.9 million people 

were living with HIV/AIDS globally, resulting in 

approximately 1.2 million deaths, with about 62% of those 

infected receiving Antiretroviral Therapy (ART) (WHO, 

2019). The African continent bears the highest burden of 

HIV/AIDS. 

HIV transmission primarily occurs through three routes: 

sexual intercourse, exposure to contaminated blood through 

transfusions or shared needles, and from mother to child 

during pregnancy, childbirth, or breastfeeding. While 

homosexual transmission is a significant factor in the United 

States, heterosexual transmission remains the leading method 

of HIV spread worldwide (Kapila et al., 2016). 

The progression of HIV infection brings about varying 

symptoms. Individuals may be highly infectious in the early 

stages but frequently remain unaware of their condition until 

it worsens. Early symptoms can resemble flu-like signs such 

as fever, headache, rash, or sore throat. As the infection 

advances and the immune system weakens, additional 

symptoms may appear, including persistent fever, swollen 

lymph nodes, diarrhea, weight loss, and chronic cough. 

Without treatment, individuals face severe health threats, 

including tuberculosis, cryptococcal meningitis, and certain 

cancers (WHO, 2022). In sub-Saharan Africa, heterosexual 

and mother-to-child transmissions account for the majority of 

HIV cases, with the latter constituting 40% of infections 

(Adelman, 2001). Tragically, over 25 million children under 

the age of 15 in this region have died from AIDS, many 

contracting HIV during childbirth or breastfeeding. Overall, 

HIV/AIDS remains a critical challenge to global development 

initiatives. 

Recently, fractional calculus has garnered attention for 

modeling complex systems, including biological processes. 

Fractional-order models, incorporating Caputo and Riemann-

Liouville derivatives, provide more accurate representations 

of systems with memory effects. These models are 

increasingly applied to various diseases, such as Zika virus 

and Lassa fever, offering new insights into transmission 

dynamics and control strategies (Atokolo et al., 2022, 2024). 

evaluating the impact of treatment and vaccination using 

fractional derivatives. Yunus et al. (2022) used the Caputo 

fractional derivative to study COVID-19 spread in Nigeria, 

revealing higher recovery rates due to treatment and 

vaccination. Omede et al. (2024) created a fractional model to 

describe soil-transmitted helminth infections, showing that 

fractional-order models offer greater flexibility. Ahmed et al. 

(2022) proposed an ABC-fractional model for HIV and 

COVID-19 co-epidemic transmission. Omame et al. (2022) 

explored a fractional model for hepatitis B and COVID-19, 

emphasizing prevention as key to controlling both diseases.  

Amos et al (2024) presented a fractional mathematical model 

for the transmission dynamics and control of hepatitis C, 

using Adams-Bash-forth Moulton method, their findings 

showed that reducing the contact rate and increasing the 

treatment help to curb the disease from the population and the 

fractional order model offers greater flexibility than the 

classical model. 

Acheneje et al. (2024) formulated a model for COVID-19 and 

monkeypox co-infection, showing that increased treatment 

capacity reduces disease burden. Smith et al. (2023) reviewed 

co-infection modeling between hepatitis C and COVID-19, 

identifying key findings and research gaps. 

Atokolo et al. (2023) also studied the spread of vector-borne 

diseases, incorporating preventive strategies like Insecticide-

Treated Nets (ITNs), Indoor Residual Spraying (IRS), and 

condom use. Their model demonstrated that full intervention, 

combined with treatment, can significantly reduce disease 

spread. 

Fractional-order models offer distinct advantages over 

traditional models due to their increased flexibility and 
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capacity to incorporate non-locality and memory effects, 

which enhance their accuracy in approximating real-world 

phenomena. These characteristics make fractional models 

particularly suitable for complex systems. For example, Ullah 

et al. (2020) utilized fractional calculus in fuzzy Volterra 

integral equations, while Ali et al. (2017) explored boundary 

value problems and Ulam stability through non-linear 

fractional analysis, advancing the understanding of fuzzy 

dynamic equations. 

The primary objectives of this paper include: 

i. Defining conditions that ensure the existence and 

uniqueness of the model's solution within a fractional 

framework. 

ii. Performing a stability analysis of the endemic 

equilibrium by employing the Lyapunov function 

method. 

iii. Solving numerically using the fractional Adams–

Bashforth–Moulton technique. 

iv. Conducting simulations of the model for validation and 

analysis. 

A review of the existing literature on HIV/AIDS 

mathematical models shows that no prior studies have 

combined fractional calculus with the Adams–Bashforth–

Moulton method for examining HIV/AIDS transmission 

dynamics and control. This paper seeks to address that gap. 

The structure of the paper is as follows: Section 2 discusses 

the model formulation, Section 3 examines the model's 

stability, Section 4 presents the numerical findings, and 

Section 5 concludes with key insights. In addition, 

foundational concepts from fractional calculus, such as right 

and left Caputo derivatives, based on the work of Podlubny et 

al. (1998) and Bonyah et al. (2020), are also introduced. The 

manuscript highlights the broad applicability of fractional 

calculus in fields like physics, engineering, and 

biomathematics, emphasizing its relevance in solving real-

world problems. 

Definition 1: Let 𝑓 ∈ 𝛬∞(𝑅), then the left and right Caputo 

fractional derivative of the function 𝑓 is given by  

𝐷𝑐 𝑡
𝛾
𝑓(𝑡) = (𝑡0𝐷𝑡

−(𝑚−𝛾)
(
𝑑

𝑑𝑡
)
𝑚

𝑓(𝑡)) 

𝐷𝑐 𝑡
𝛾
𝑓(𝑡) =

1

𝛤(𝑚−𝛾)
∫ ((𝑡 − 𝜆)𝑚−𝛾−1𝑓𝑚(𝜆))𝑑𝜆

𝑡

0
 (1) 

The same way , 

𝐷𝑇
𝑐

𝑡
𝛾
𝑓(𝑡) = ( 𝐷𝑡 𝑇

−(𝑚−𝛾)
(
−𝑑

𝑑𝑡
)
𝑚

𝑓(𝑡)) 

𝐷𝑇
𝑐

𝑇
𝛾
𝑓(𝑡) =

(−1)𝑚

𝛤(𝑚 − 𝛾)
∫ ((𝜆 − 𝑡)𝑚−𝛾−1𝑓𝑚(𝜆))𝑑𝜆

𝑇

𝑡

 

Definition 2: The generalized Mittag-Leffler function 

𝐸𝛼,𝛽(𝑥) for 𝑥 ∈ 𝑅 is given by   

𝐸𝛼,𝛽(𝑥) = ∑
𝑥𝑚

𝛤(𝛼𝑚+𝛽)
∞
𝑚=0 , 𝛼, 𝛽 > 0  (2) 

Which can also be represented as  

𝐸𝛼,𝛽(𝑥) = 𝑥𝐸𝛼,𝛼+𝛽(𝑥) +
1

𝛤(𝛽)
   (3) 

𝐸𝛼,𝛽(𝑥) = 𝐿[𝑡𝛽−1𝐸𝛼,𝛽(±𝜓𝑡𝛼)] =
𝑆𝛼−𝛽

𝑆𝛼±𝜓
  (4) 

Proposition 1.1. 

Let 𝑓 ∈ 𝛬∞(𝑅) ∩ 𝐶(𝑅) and 𝛼 ∈ 𝑅,𝑚 − 1 < 𝛼 < 𝑚, 
Therefore, the conditions given below holds: 

1. 𝐷𝑡0

𝑐
𝑡
𝛾
𝐼𝛾𝑓(𝑡) = 𝑓(𝑡) 

2. 𝐼𝑡0

𝛾
𝐷𝑡

𝛾
𝑓(𝑡) = 𝑓(𝑡) − ∑

𝑡𝑘

𝑘!
𝑚−𝑘
𝑘=0 𝑓𝑘(𝑡𝑜).

 
 

MATERIALS AND METHODS 

Model Formulation 

In developing the integer-order model for HIV/AIDS, the 

population is divided into six specific categories: individuals 

who are susceptible. (𝑆) ,these are people who have not 

contracted the infection, as well as those who have been 

exposed to it.Individuals who are not yet infectious; 

asymptomatically   infected individuals (𝐼𝐴) Population of 

infected individuals who do not show clinical symptoms; 

symptomatic infected individuals.(𝐼𝑆)Population of infected 

individuals exhibiting clinical    symptoms; treated 

individuals. 𝑇𝐻 Population of individuals undergoing 

treatment but not yet fully recovered 𝑅𝐻  Recovered 

population. 

The recruitment rate of individuals into the susceptible 

population is denoted as 𝛬so that (𝛽𝐻)is the effective contact 

rate of susceptible and infected humans with HIV/AIDS 

respectively. We denote (𝜃𝐻)as the progression rates from 

exposed HIV/AIDS classes respectively. 𝜏𝐻1 is the 

progression rates from infected HIV class into been 

symptomatically infected with the virus. 𝜏𝐻2 is the rate at 

which the symptomatically infected humans progresses to 

become infected with HIV/AIDS. The rate at which the 

symptomatic and HIV/AIDs infected humans move to the 

treatment class is denoted as 𝜎𝐼𝑆, 𝜎𝐴respectively. The natural 

death rate of humans is denoted as𝜇. HIV/AIDs only classes 

is denoted respectively as (𝛿𝐻). 

 

 
Figure 1: Model Flow Chart 
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Model Equations 
𝑑𝑆

𝑑𝑡
= 𝛬𝐻 −

𝛽𝐻(𝐼𝐴 + 𝐼𝑆 + 𝐴)

𝑁
𝑆 − 𝜇𝑆, 

𝑑𝐸𝐻

𝑑𝑡
=

𝛽𝐻(𝐼𝐴 + 𝐼𝑆 + 𝐴)

𝑁
𝑆 − (𝜃𝐻 + 𝜇)𝐸𝐻 

𝑑𝐼𝐴
𝑑𝑡

= 𝜃𝐻𝐸𝐻 − (𝜏𝐻1 + 𝛿𝐻 + 𝜇)𝐼𝐴, 

𝑑𝐼𝑆
𝑑𝑡

= 𝜏𝐻1𝐼𝐴 − (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇)𝐼𝑆, 

𝑑𝐴

𝑑𝑡
= 𝜏𝐻2𝐼𝑆 − (𝜎𝐴 + 𝛿𝐻 + 𝜇)𝐴,    (5) 

𝑑𝑇𝐻

𝑑𝑡
= 𝜎𝐼𝑆𝐼𝑆 + 𝜎𝐴𝐴 − (𝛿𝐻 + 𝜇)𝑇𝐻. 

Where 

𝝀𝑯 =
𝜷𝑯(𝑰𝑨+𝑰𝑺+𝑨)

𝑵
Is the force of infection. 

 

Table 1: Model variables and parameters 

Variable Description 

𝑆(𝑡) Susceptible Humans 

𝐸𝐻(𝑡) Exposed humans to HIV only 

𝑰𝑯(𝒕) Infected humans with HIV only 

𝑰𝑺(𝒕) Symptomatically infected humans with HIV 

𝑨(𝒕) Humans with HIV/AIDS 

𝑻𝑯(𝒕) Treated humans due to HIV only 

Parameter Description 

𝜦 Recruitment rate of humans 

𝝁 Natural death rate of humans 

𝜷𝑯 Contact rate of susceptible and infected humans with HIV/AIDs 

𝝀𝑯 Force of infection of HIV/AIDS 

𝜹𝑯 HIV/AIDS disease induced death rate 

𝝉𝑯𝟏 Progression rate from infected HIV/AIDS humans to symptomatic humans with HIV 

𝝉𝑯𝟐 Progression rate from symptomatic HIV humans to AIDS humans class 

𝝈𝑰𝑺 Treatment rate of symptomatic HIV  infected humans 

𝝈𝑨 Treatment rate of HIV/AIDS humans 

 

Fractional HIV/AIDs mathematical model 

In this section, the HIV/AIDS integer model from Eq. (5) is 

modified by incorporating the Caputo fractional derivative 

operator. By doing so, the model gains enhanced flexibility 

compared to its classical integer-order counterpart. This 

flexibility arises from the fractional-order formulation, which 

allows for a wider range of outputs and system behaviors, 

providing more nuanced insights into the dynamics of 

HIV/AIDS. The resulting fractional-order HIV/AIDS model 

is formulated as follows:

 
𝐷𝐶

𝑡
𝛾
𝑆𝐻 = 𝛬𝐻 −

𝛽𝐻(𝐼𝐴 + 𝐼𝑆 + 𝐴)

𝑁
𝑆 − 𝐴1𝑆 

𝐷𝑐 𝑡
𝛾
𝐸𝐻 = 𝜆𝐻𝑆𝐻 − (𝜃𝐻 + 𝜇)𝐸𝐻 −𝐴2 𝐸𝐻, 

𝐷𝑐 𝑡
𝛾
𝐼𝐴 = 𝜃𝐻 𝐸𝐻 −(𝜏𝐻1 + 𝛿𝐻 + 𝜇) 𝐼𝐴 −𝐴3 𝐴, 

𝐷𝑐 𝑡
𝛾
𝐼𝑆 = 𝜏𝐻1𝐼𝐴 − (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇) 𝐼𝑆, (6) 

𝐷𝑐 𝑡
𝛾
𝐴 = 𝜏𝐻2𝐼𝑆 − (𝜎𝐴 + 𝛿𝐻 + 𝜇)𝐴,

 
𝐷𝑐 𝑡

𝛾
𝑇𝐻 = 𝜎𝐼𝑆𝐼𝑆 + 𝜎𝐴𝐴 − (𝛿𝐻 + 𝜇)𝑇𝐻.

 
Subject to positive initial conditions  

𝑆𝐻(0) = 𝑆𝐻0, 𝐸𝐻(0) = 𝐸𝐻0, 𝐼𝐴(0) = 𝐼𝐴0, 𝐼𝑆(0) = 𝐼𝑆0, 𝐴(0) 

= 𝐴0, 𝑇𝐻(0) = 𝑇𝐻0.        (7)
 

 

Positivity of model solution 

We ensured that the initial values remained non-negative 

throughout the analysis.𝑁(𝑡) ≤
𝛬

𝜇
 as 𝑡 → ∞ 

Secondly, 𝑖𝑓 𝑙𝑖𝑚𝑠𝑢𝑝 𝑁0 (𝑡) ≤
𝛬

𝜇
, thus, the feasible domain 

for our model is defined as: 

𝛺 = {(𝑆𝐻, 𝐸𝐻, 𝐼𝐴, 𝐼𝑆, 𝐴, 𝑇𝐻) ⊂ 𝑅+
6 : 𝑆 + 𝐸𝐻 + 𝐼𝐴 + 𝐼𝑆 + 𝐴 +

𝑇𝐻 ≤
𝛬

𝜇
, },  

so that 

𝛺 = 𝛺𝐻 ⊂ 𝑅+
6 ,

 
Hence  𝛺 is positively invariant. 

If 𝑆0, 𝐸𝐻0, 𝐼𝐴0, 𝐼𝑆0, 𝐴0 𝑇𝐻0. 
If the values are non-negative, then the solution to model (6) 

will remain non-negative for t>0t > 0t>0.  

By examining the first equation in Eq. (6), we find 

that 𝐷𝐶
𝑡
𝛾
𝑆𝐻 = −𝜆𝐻𝑆𝐻 − 𝐴1𝑆𝐻 

𝐷𝐶
𝑡
𝛾
𝑆𝐻 = 𝛬 − (𝜆𝐻 + 𝐴1)𝑆𝐻 

𝐷𝐶
𝑡
𝛾
𝑆𝐻 + (𝜆𝐻 + 𝐴1)𝑆𝐻 = 𝛬 

But𝛬 ≥ 0then 

𝐷𝐶
𝑡
𝛾
𝑆𝐻 + (𝜆𝐻 + 𝐴1)𝑆𝐻 ≥ 0. 

Applying the Laplace transform we obtained; 

𝐿 [ 𝐷𝐶
𝑡
𝛾
𝑆𝐻] + 𝐿[(𝜆𝐻 + 𝐴1)𝑆𝐻] ≥ 0 

𝑆𝐻
𝛾
𝑆𝐻(𝑠𝐻) − 𝑆𝐻

𝛾−1
𝑆𝐻(0) + (𝜔𝐻 + 𝜇)𝑆𝐻(𝑠𝐻) ≥ 0, 

𝑆𝐻(𝑠𝐻) ≥
𝑆𝐻

𝛾−1

𝑆𝐻
𝛾

+ (𝜔𝐻 + 𝜇)
𝑆𝐻(0). 

By taking the inverse Laplace transform, we obtained ; 

𝑆𝐻(𝑡) ≥ 𝐸𝐻𝑟,1(−(𝜆𝐻 + 𝜇)𝑡𝛾) 𝑆𝐻0. . ..  (8) 

Now since the term on the right hand side of Eq. (8) is 

positive, we conclude that 𝑆𝐻 ≥ 0for 𝑡 ≥ 0. In the same way, 

we also have that 𝐸𝐻 ≥ 0, 𝐼𝐴 ≥ 0, 𝐼𝑆 ≥ 0,𝐴 ≥ 0, 𝑇𝐻 ≥ 0,to be 

positive, therefore, the solution will remain in 𝑅+
6  for all  𝑡 ≥

0 with positive initial conditions. 

 

Boundedness of fractional model solution. 

The total population of individuals from our model is given 

by ; 

𝑁(𝑡) = 𝑆𝐻(𝑡) + 𝐸𝐻(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝑆(𝑡) + 𝐴(𝑡) + 𝑇𝐻(𝑡).
 

So from our fractional model (6), we now obtain  

𝑐𝐷𝑡
𝛾
𝑁(𝑡) =𝑐 𝐷𝑡

𝛾
𝑆𝐻(𝑡)+𝑐𝐷𝑡

𝛾
𝐸𝐻(𝑡)+𝑐𝐷𝑡

𝛾
𝐼𝐴(𝑡)+𝑐𝐷𝑡

𝛾
𝐼𝑆(𝑡) 

+𝑐𝐷𝑡
𝛾
𝐴(𝑡)+𝑐𝐷𝑡

𝛾
𝑇𝐻(𝑡),

 
𝑐𝐷𝑡

𝛾
𝑁(𝑡) = 𝛬 − 𝜇𝑁(𝑡)   (9)

 
Taking the Laplace transformation of (10) we obtained; 

𝐿[𝑐𝐷𝑡
𝛾
𝑁(𝑡)] = 𝐿[𝛬 − 𝜇𝑁(𝑡)]

 

𝑆𝐻
𝛾
𝑁(𝑠𝐻) − 𝑆𝐻

𝛾−1
𝑁(0) + 𝜇𝑁(𝑠) ≤

𝛬

𝜇
,
 

𝑁(𝑠𝐻) ≤
𝑆𝐻

𝛾−1

(𝑆𝛾+𝜇)
𝑁(0) +

𝛬

𝑆𝐻(𝑆𝐻
𝛾
+𝜇)  (10) 

By taking the inverse Laplace transform of Eq. (10) we 

obtained ; 



FRACTIONAL MATHEMATICAL MODEL…      James et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December, 2024, pp 264 –276 267 

𝑁(𝑡) ≤ 𝐸𝐻𝑟,1(−𝜇𝑡𝛾)𝑁(0) + 𝛬𝐸𝐻𝑟,𝑟 +1(−𝜇𝑡𝛾) (11) 

At 𝑡 → ∞, the limit of Eq. (11) becomes 

𝑙𝑖𝑚
𝑡→∞

𝑆𝑢𝑝𝑁(𝑡) =
𝛬

𝜇
.     (12) 

 

This means that, if 𝑁0 ≤
𝛬

𝜇
 then 𝑁(𝑡) ≤

𝛬

𝜇
 which implies 

that,𝑁(𝑡) is bounded. 

We now conclude that, this region 𝛺 = 𝛺𝐻, is well posed and 

equally feasible epidemiologically. 

 

Existence and uniqueness of our model solution 

Let the real non-negative be P, we consider 𝑊 = [0, 𝐾[]] 
The set of all continuous function that is defined on M is represented by 𝑁𝑒

0(𝑊) with norm as; 
‖𝑋‖ = 𝑆𝑢𝑝{|𝐾(𝑡)|, 𝑡 ∈𝑊}. 
Considering model (6) with initial conditions presented in (7) which can be denoted as an initial value problem (IVP) in (12). 

𝐷𝑐 𝑡
𝛾(𝑡) = 𝑍(𝑡, 𝑋(𝑡)), 0 < 𝑡 < 𝑃 < ∞, 

𝑋(0) = 𝑋0. 

Where 𝑌(𝑡) = (𝑆𝐻(𝑡), 𝐸𝐻(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆(𝑡), 𝐴(𝑡), 𝑇𝐻(𝑡)).represents  the classes and Z be a continuous function defined as 

follows; 

𝑍(𝑡, 𝑋(𝑡)) =

(

 
 
 
 

𝑍1(𝑡, 𝑆𝐻(𝑡))

𝑍2(𝑡, 𝐸𝐻(𝑡))

𝑍3(𝑡, 𝐼𝐴(𝑡))

𝑍4(𝑡, 𝐼𝑆(𝑡))

𝑍5(𝑡, 𝐴(𝑡))

𝑍6(𝑡, 𝑇𝐻(𝑡)))

 
 
 
 

=

(

 
 
 
 
 

𝛬 − (
𝛽𝐻(𝐼𝐻+𝐼𝑆+𝐴)

𝑁
+ 𝜇)𝑆𝐻.

(
𝛽𝐻(𝐼𝐴+𝐼𝑆+𝐴)

𝑁
+ 𝜇) 𝑆𝐻 − (𝜃𝐻 + 𝜇)𝐸𝐻.

𝜃𝐻𝐸𝐻 − (𝜏𝐻1 + 𝛿𝐻 + 𝜇)𝐼𝐴
𝜏𝐻1𝐼𝐻 − (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇)𝐼𝑆

𝜏𝐻2𝐼𝑆 − (𝜎𝐴 + 𝛿𝐻 + 𝜇)𝐴

𝜎𝐼𝑆𝐼𝑆 + 𝜎𝐴𝐴 − (𝛿𝐻 + 𝜇)𝑇𝐻 )

 
 
 
 
 

    (13) 

Using proposition (2.1), we have that,  

𝑆𝐻(𝑡) = 𝑆𝐻0 + 𝐼𝑡
𝛾
[𝛬 − (

𝛽𝐻(𝐼𝐻 + 𝐼𝑆 + 𝐴)

𝑁
+ 𝜇) 𝑆𝐻. ], 

𝐸𝐻(𝑡) = 𝐸𝐻0 + 𝐼𝑡
𝛾
[(

𝛽𝐻(𝐼𝐴+𝐼𝑆+𝐴)

𝑁
+ 𝜇)𝑆𝐻 − (𝜃𝐻 + 𝜇)𝐸𝐻 ],     (14) 

𝐼𝐴(𝑡) = 𝐼𝐴0 + 𝐼𝑡
𝛾[𝜃𝐻𝐸𝐻 − (𝜏𝐻1 + 𝛿𝐻 + 𝜇)𝐼𝐴], 

𝐼𝑆(𝑡) = 𝐼𝑆0 + 𝐼𝑡
𝛾[𝜏𝐻1𝐼𝐻 − (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇)𝐼𝑆], 

𝐴(𝑡) = 𝐴0 + 𝐼𝑡
𝛾[𝜏𝐻2𝐼𝑆 − (𝜎𝐴 + 𝛿𝐻 + 𝜇)𝐴], 

𝑇𝐻(𝑡) = 𝑇𝐻0 + 𝐼𝑡
𝛾[𝜎𝐼𝑆𝐼𝑆 + 𝜎𝐴𝐴 − (𝛿𝐻 + 𝜇)𝑇𝐻]. 

We obtain the Picard iteration of (12) as follows; 

𝑆𝐻𝑛(𝑡) = 𝑆𝐻0 +
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍1

𝑡

0

(𝜆𝐻, 𝑆𝐻𝑛−1(𝜆𝐻)) 𝑑 𝜆𝐻, 

𝐸𝐻𝑛(𝑡) = 𝐸𝐻0 +
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍2

𝑡

0

(𝜆𝐻, 𝐸𝐻(𝑛−1)(𝜆𝐻)) 𝑑 𝜆𝐻, 

( )
( )

( ) ( )( )
1

0 3 ( 1)
0

1
, d ,

t

An A H H A n H HI t I t Z I


   


−

−= + −
 

 

𝐼𝑆𝑛(𝑡) = 𝐼𝑆0 +
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍4

𝑡

0

(𝜆𝐻, 𝐼𝑆(𝑛−1)
(𝜆𝐻)) 𝑑 𝜆𝐻, 

𝐴(𝑡) = 𝐴0 +
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍5

𝑡

0
(𝜆𝐻, 𝐴(𝑛−1)(𝜆𝐻)) 𝑑 𝜆𝐻.       (15) 

𝑇𝐻𝑛(𝑡) = 𝑇𝐻0 +
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍6

𝑡

0

(𝜆𝐻, 𝑇𝐻(𝑛−1)
(𝜆𝐻)) 𝑑 𝜆𝐻, 

Lemma 2. The initial value problem (6), (7) in Eq. (15 exists and will have a unique solution 

𝑋(𝑡) ∈ 𝐴𝑐
0(𝑓).

 Using Picard-Lindelof  and fixed point theory, we consider the solution of  

𝑋(𝑡) = 𝑆𝐻(𝑋(𝑡)),
 where S is defined as the Picard operator expressed as ; 

𝑆𝐻: 𝐴𝑐
0(𝑓, 𝑅+

6) → 𝐴𝑐
0(𝑓, 𝑅+

6).
 Therefore, 

𝑆𝐻(𝑋(𝑡)) = 𝑋(0) +
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍

𝑡

0
(𝜆𝐻, 𝑋(𝜆𝐻)) 𝑑 𝜆𝐻.              

 
which becomes  
‖𝑆𝐻(𝑋1(𝑡)) − 𝑆𝐻(𝑋2(𝑡))‖

 
= ‖

1

𝛤(𝛾)
[∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍(𝜆𝐻, 𝑋1(𝜆𝐻)) − 𝑍(𝜆𝐻, 𝑋2(𝜆𝐻)) 𝑑 𝜆𝐻

𝑡

0

]‖
 

≤
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1

𝑡

0

‖𝑍(𝜆𝐻, 𝑋1(𝜆𝐻)) − 𝑍(𝜆𝐻, 𝑋2(𝜆𝐻)) 𝑑 𝜆𝐻‖.
 

≤
𝜓

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1

𝑡

0

‖𝑋1 −𝑋2 ‖𝑑𝜆𝐻.
 

‖𝑆𝐻(𝑋1(𝑡)) − 𝑆𝐻(𝑋2(𝑡))‖ ≤
𝜓

𝛤(𝛾 + 1)𝑆𝐻
.
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When 

𝜓

𝛤(𝛾+1)
𝑆𝐻 ≤ 1

,  

The application of the Picard operator leads to a contradiction, which confirms that the solutions to Eq. (5) and Eq. (6) are 

indeed unique. 

We now transformed the initial value problem of Eq. (13) to obtain ; 

𝑋(𝑡) = 𝑋(0) +
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍

𝑡

0
(𝜆𝐻, 𝑋(𝜆𝐻)) 𝑑 𝜆𝐻.      (16) 

Lemma 1, The Lipchitz condition described from Eq. (13) is satisfied by vector 𝑍(𝑡, 𝑋 (𝑡)) on a set [0,𝑊[]+
6 ] with the Lipchitz 

constant given as; 

𝜓 = 𝑚𝑎𝑥 ((𝛽𝐻1
∗ + 𝛽𝐻2

∗ + 𝛽𝐻3
∗ + 𝜇), (𝜃𝐻 + 𝜇), (𝜏𝐻1 + 𝛿𝐻 + 𝜇), (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇), (𝜎𝐴 + 𝛿𝐻 + 𝜇), (𝛿𝐻 + 𝜇)). 

Proof. 
‖𝑍1(𝑡, 𝑆𝐻) − 𝑍1(𝑡, 𝑆𝐻1)‖

 
= ‖𝛬 − (

𝛽𝐻(𝐼𝐻 + 𝐼𝑆 + 𝐴)

𝑁
+ 𝜇) 𝑆𝐻 − 𝛬 − (

𝛽𝐻(𝐼𝐻 + 𝐼𝑆 + 𝐴)

𝑁
+ 𝜇)𝑆𝐻1‖ 

= ‖−𝛬 − (
𝛽𝐻(𝐼𝐻 + 𝐼𝑆 + 𝐴)

𝑁
+ 𝜇) (𝑆𝐻 − 𝑆𝐻1) + 𝜇(𝑆𝐻 − 𝑆𝐻1)‖ 

≤ (𝛽𝐻1
∗ + 𝛽𝐻2

∗ + 𝛽𝐻3
∗)‖𝑆𝐻 − 𝑆𝐻1‖ + 𝜇‖𝑆𝐻 − 𝑆𝐻1‖ 

∴ ‖𝑍1(𝑡, 𝑆𝐻) − 𝑍1(𝑡, 𝑆𝐻1)‖ ≤ (𝛽𝐻1
∗ + 𝛽𝐻2

∗ + 𝛽𝐻3
∗ + 𝜇)‖𝑆𝐻 − 𝑆𝐻1‖

 Similarly we obtained the following; 

( ) ( ) ( )2 2 1 1,E ,E E E ,H H H H HZ t Z t  −  + −

 ( ) ( ) ( )3 3 1 1 1, I , I I I ,A A H H A AZ t Z t   −  + + −

 ( ) ( ) ( )4 4 1 2 1, I , I I IS S H IS H S SZ t Z t    −  + + + −

 ‖𝑍5(𝑡, 𝐴) − 𝑍5(𝑡, 𝐴1)‖ ≤ (𝛿𝐻 + 𝜇)‖𝐴 − 𝐴1‖,       (17)
 ( ) ( ) ( )6 6 1 1,T ,T T T .H H A H H HZ t Z t   −  + + −

 Where we obtained  
‖𝑍(𝑡, 𝑋1(𝑡)) − 𝑍(𝑡, 𝑋2(𝑡))‖ ≤ 𝜓‖𝑋1 −𝑋2 ‖,

 𝜓 = 𝑚𝑎𝑥 ((𝛽𝐻1
∗ + 𝛽𝐻2

∗ + 𝛽𝐻3
∗ + 𝜇), (𝜃𝐻 + 𝜇), (𝜏𝐻1 + 𝛿𝐻 + 𝜇), (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇), (𝜎𝐴 + 𝛿𝐻 + 𝜇), (𝛿𝐻 + 𝜇)). (18)

 
Lemma 2. The initial value problem (5), (6) in Eq. (18) exists and will have a unique solution 

𝑋(𝑡) ∈ 𝐴𝑐
0(𝑓).

 Using Picard-Lindelof  and fixed point theory, we consider the solution of  

𝑋(𝑡) = 𝑆𝐻(𝑋(𝑡)),
 where S is defined as the Picard operator expressed as ; 

𝑆𝐻: 𝐴𝑐
0(𝑓, 𝑅+

6) → 𝐴𝑐
0(𝑓, 𝑅+

6).
 Therefore, 

𝑆𝐻(𝑋(𝑡)) = 𝑋(0) +
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍

𝑡

0

(𝜆𝐻, 𝑋(𝜆𝐻)) 𝑑 𝜆𝐻.
 

which becomes  
‖𝑆𝐻(𝑋1(𝑡)) − 𝑆𝐻(𝑋2(𝑡))‖

 
= ‖

1

𝛤(𝛾)
[∫ (𝑡 − 𝜆𝐻)𝛾−1𝑍(𝜆𝐻, 𝑋1(𝜆𝐻)) − 𝑍(𝜆𝐻, 𝑋2(𝜆𝐻)) 𝑑 𝜆𝐻

𝑡

0

]‖
 

≤
1

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1

𝑡

0

‖𝑍(𝜆𝐻, 𝑋1(𝜆𝐻)) − 𝑍(𝜆𝐻, 𝑋2(𝜆𝐻)) 𝑑 𝜆𝐻‖.
 

≤
𝜓

𝛤(𝛾)
∫ (𝑡 − 𝜆𝐻)𝛾−1

𝑡

0

‖𝑋1 −𝑋2 ‖𝑑𝜆𝐻.
 

‖𝑆𝐻(𝑋1(𝑡)) − 𝑆𝐻(𝑋2(𝑡))‖ ≤
𝜓

𝛤(𝛾 + 1)𝑆𝐻
.
 

When 

𝜓

𝛤(𝛾+1)
𝑆𝐻 ≤ 1

, then the Picard operator gives a contradiction ,  so Eq.(5) , (6) solution is unique. 

 

The basic reproduction number (R0) and model equilibrium points: 

The disease-free equilibrium (DFE) point in a mathematical model represents a steady state where no infection persists in the 

population, meaning that the number of infected individuals is zero. In epidemiological models, this equilibrium occurs when 

the disease is either eradicated or prevented from spreading within a population
 The disease free equilibrium point  of the model (5) is expressed as: 

(HDFEP) = ((𝑆∗, 𝐸𝐻
∗ , 𝐼𝐴

∗, 𝐼𝑆
∗, 𝐴∗, 𝑇𝐻

∗ , 𝑅𝐻
∗ ) = (

𝛬

𝜇
, 0,0,0, ,0,0))     (19)

 
𝐿𝑒𝑡𝑛 = (𝐸𝐻, 𝐼𝐴, 𝐼𝑆 , 𝑇𝐻)

 
𝑆𝑜𝑡ℎ𝑎𝑡

𝑑𝑛

𝑑𝑡
= 𝐹 − 𝑉.
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𝐹𝐻 =

[
 
 
 
 
0 𝛽𝐻1 𝛽𝐻2 𝛽𝐻3 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 

  , 

𝑉𝐻 =

[
 
 
 
 

𝑃1 0 0 0 0
−𝜃𝐻 𝑃2 0 0 0
0 −𝜏𝐻1 𝑃3 0 0
0 0 −𝜏𝐻2 𝑃4 0
0 0 −𝜎𝐼𝑆 −𝜎𝐴 𝑃5]

 
 
 
 

 

Where 𝑃1 = (𝜃𝐻 + 𝜇), 𝑃2 = (𝜏𝐻1 + 𝛿𝐻 + 𝜇),𝑃3 = (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇),𝑃4 = (𝜎𝐴 + 𝛿𝐻 + 𝜇),𝑃5 = (𝛿𝐻 + 𝜇)
 In mathematical terms, the basic reproduction number is calculated as𝑅0 = 𝜌(𝐹𝑉−1) where 𝜌 is the dominant Eigen value of 

the system (𝐹𝑉−1). Where 𝑅0
𝐻 is the basic reproduction number associated with the individuals in the population. 

 

𝑅0
𝐻 =

𝛽𝐻𝜃𝐻((𝑃3 + 𝜏𝐻1)𝑃4 + 𝜏𝐻2𝜏𝐻1)

𝑃3𝑃2𝑃1𝑃4
 

𝑅0
𝐻 =

𝛽𝐻𝜃𝐻(((𝜏𝐻2+𝜎𝐼𝑆+𝛿𝐻+𝜇)+𝜏𝐻1)(𝜎𝐴+𝛿𝐻+𝜇)+𝜏𝐻2𝜏𝐻1)

(𝜏𝐻2+𝜎𝐼𝑆+𝛿𝐻+𝜇)(𝜏𝐻1+𝛿𝐻+𝜇)(𝜃𝐻+𝜇)(𝜎𝐴+𝛿𝐻+𝜇)
        (20)

 

 

Endemic equilibrium point 

We explored the possibility of an endemic equilibrium point, which represents a positive steady state where HIV/AIDS 

continues to exist within the population. At this equilibrium, all model variables reach constant values, indicating that the 

disease maintains a consistent presence rather than disappearing. This analysis is crucial for understanding how the disease 

can sustain itself over time and the factors influencing its persistence in a given population 

non-zero.(𝑆𝐻
∗ ≠ 0,𝐸𝐻

∗ ≠ 0, 𝐼𝐴
∗ ≠ 0, 𝐼𝑆

∗ ≠ 0, 𝐴∗ ≠0𝑎𝑛𝑑 𝑇𝐻
∗ ≠ 0). 

To analyze the endemic equilibrium point, the model equations are examined in relation to the force of infection affecting 

human populations. In the context of the fractional HIV/AIDS model (6), the endemic equilibrium state is characterized by the 

specific values of the model variables that indicate a sustained presence of the disease within the population: 𝐸∗∗ =
(𝑆𝐻

∗∗, 𝐸𝐻
∗∗, 𝐼𝐴

∗∗, 𝐼𝑆
∗∗, 𝐴∗∗𝑇𝐻

∗∗, ), 
Defined as; 

**

**

H

S
 


=

+
 

** **
**

** **

1( )( ) ( )

H H
H

H H H

E
P

 

     

 
= =

+ + +
 

𝐼𝐴
∗∗ =

𝛬𝜆𝐻
∗∗𝜃𝐻

(𝜆𝐻
∗∗ + 𝜇)𝑃1𝑃2

 **
** 1

**

1 2 3( )

H H H
S

H

I
PP P

  

 


=

+
            (21) 

**
** 2 1

**

1 2 3 4( )

H H H H

H

A
PP P P

   

 


=

+
 

( )**

1 2**

**

1 2 3 4( )

H H IS H A H

H

H

T
PP P P

     

 

 +
=

+
 

Where𝑃1 = (𝜃𝐻 + 𝜇),  

𝑃2 = (𝜏𝐻1 + 𝛿𝐻 + 𝜇),𝑃3 = (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇),𝑃4 = (𝜎𝐴 + 𝛿𝐻 + 𝜇),𝑃5 = (𝛿𝐻 + 𝜇)
 

Substituting into the force of infection 
𝜆𝐻 =

𝛽𝐻(𝐼𝐴+𝐼𝑆+𝐴)

𝑁
 

( )( )
( ) ( )( ) ( )( ) ( )

1 2 3 5 4 0**

2 2 4 5 3 1 4 5 2 3 5 4

1H

A H

H

H H A H H S H A H

PP P P P R

P P P P P P P P P

 


        

− −
=
 − + + + + + + −       (22)

 

0 1 0HR − 
 

Which implies that , the endemic equilibrium point of model (5) is stable. 

 

Global stability analysis at endemic equilibrium state  

The global stability of the equilibrium point is assessed using the direct Lyapunov method. The endemic equilibrium point is 

considered globally stable when the basic reproduction number exceeds one, indicating that the disease will disseminate 

through the population, irrespective of the initial conditions. This analysis applies to the fractional model (6), providing insights 

into the conditions under which the disease maintains its presence within the population. 

Where 𝑁 ≤
𝛬

𝜇
𝑎𝑠𝑡 → ∞, and  

then𝜆𝐻 = 𝛽𝐻1𝐼𝐴 + 𝛽𝐻2𝐼𝑆 + 𝛽𝐻3𝑇𝐻
 

 

our fractional model now becomes 

𝐷𝐶
𝑡
𝛾
𝑆𝐻 = 𝛬𝐻 −

𝛽𝐻(𝐼𝐴 + 𝐼𝑆 + 𝐴)

𝑁
𝑆 − 𝐴1𝑆 

𝐷𝑐 𝑡
𝛾
𝐸𝐻 = 𝜆𝐻𝑆𝐻 − (𝜃𝐻 + 𝜇)𝐸𝐻 −𝐴2 𝐸𝐻, 

𝐷𝑐 𝑡
𝛾
𝐼𝐴 = 𝜃𝐻 𝐸𝐻 −(𝜏𝐻1 + 𝛿𝐻 + 𝜇) 𝐼𝐴 −𝐴3 𝐴, 
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𝐷𝑐 𝑡
𝛾
𝐼𝑆 = 𝜏𝐻1𝐼𝐴 − (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇) 𝐼𝑆, 

𝐷𝑐 𝑡
𝛾
𝐴 = 𝜏𝐻2𝐼𝑆 − (𝜎𝐴 + 𝛿𝐻 + 𝜇)𝐴,

 
𝐷𝑐 𝑡

𝛾
𝑇𝐻 = 𝜎𝐼𝑆𝐼𝑆 + 𝜎𝐴𝐴 − (𝛿𝐻 + 𝜇)𝑇𝐻.,        (23) 

. 

At equilibrium point Eq. (23) has the following results 

𝛬 = 𝜆𝐻1
∗ 𝑆𝐻

∗ + 𝜇𝑆𝐻
∗ ,

* * *

2 1 ,H HA E S= 𝐴3𝐼𝐴
∗ = 𝜃𝐻𝐸𝐻

∗ ,
* *

4 1 ,S H AA I I= 𝐴5𝐴
∗ = 𝜏𝐻2𝐼𝑆

∗,
 

𝐴6𝐴
∗ = 𝜎𝐼𝑆𝐼𝑆

∗ + 𝜎𝐴𝐴∗. 
 

Theorem 1 

Model (20) is globally asymptotically stable if 𝑅0 > 

whenever 

(6 −
𝑆𝐻

∗

𝑆𝐻
+

𝜆𝐻1

𝜆𝐻1
∗∗ (1 −

𝑆𝐻𝐸𝐻
∗

𝑆𝐻
∗ 𝐸𝐻

) −
𝐼𝐴
∗𝐸𝐻

𝐼𝐴𝐸𝐻
∗ −

𝐼𝑆
∗𝐸𝐻

𝐼𝑆𝐸𝐻
∗ −

𝐴∗𝐸𝐻

𝐴𝐸𝐻
∗ −

𝑇𝐻

𝑇𝐻
∗ −

𝑇𝐻
∗𝐼𝐴𝐼𝑆𝐴

𝑇𝐻𝐼𝐴
∗𝐼𝑆

∗𝐴∗
) ≤ 0.

 

𝐿𝑒𝑡𝐿(𝑡) = 𝐿𝐻(𝑡)
 be a non-linear Lyaponov function as presented in (21) below:

 
𝐿(𝑡) = 𝐿1 (𝑆𝐻 − 𝑆𝐻

∗ − 𝑆𝐻
∗ 𝑙𝑛

𝑆𝐻

𝑆𝐻
∗ ) + 𝐿2 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝐿3 (𝐼𝐴 − 𝐼𝐴

∗ − 𝐼𝐴
∗ 𝑙𝑛

𝐼𝐴
𝐼𝐴
∗)

 

+𝐿4 (𝐼𝑆 − 𝐼𝑆
∗ − 𝐼𝑆

∗ 𝑙𝑛
𝐼𝑆

𝐼𝑆
∗) + 𝐿5 (𝐴 − 𝐴∗ − 𝐴∗ 𝑙𝑛

𝐴

𝐴∗
) + 𝐿6 (𝑇𝐻 − 𝑇𝐻

∗ − 𝑇𝐻
∗ 𝑙𝑛

𝑇𝐻

𝑇𝐻
∗).    (24) 

Taking the Caputo Fractional order derivative of Eq. (25), we have 

𝐷𝑐 𝑡
𝛾
𝐿(𝑡) = 𝐷𝑐 𝑡

𝛾
𝐿𝐻(𝑡) ≤ 𝐿1 (1 −

𝑆𝐻
∗

𝑆𝐻
) 𝐷𝑐 𝑡

𝛾
𝑆𝐻(𝑡) + 𝐿2 (1 −

𝐸𝐻
∗

𝐸𝐻
) 𝐷𝑐 𝑡

𝛾
𝐸𝐻(𝑡) + 𝐿3 (1 −

𝐼𝐴
∗∗

𝐼𝐴
) 𝐷𝑐 𝑡

𝛾
𝐼𝐴(𝑡) 

+𝐿4 (1 −
𝐼𝑆
∗

𝐼𝑆
) 𝐷𝑐 𝑡

𝛾
𝐼𝑆(𝑡) + 𝐿5 (1 −

𝐴∗

𝐴
) 𝐷𝑐 𝑡

𝛾
𝐴(𝑡) + 𝐿6 (1 −

𝑇𝐻
∗

𝑇𝐻
) 𝐷𝑐 𝑡

𝛾
𝑇𝐻(𝑡),

 

= 𝜆𝐻1
∗ 𝑆𝐻

∗

(

 
 

(1 −
𝑆𝐻

∗

𝑆
) 𝐷𝑐 𝑡

𝛾
𝑆𝐻(𝑡) + (1 −

𝐸𝐻
∗

𝐸𝐻
) 𝐷𝑐 𝑡

𝛾
𝐸𝐻(𝑡) + (1 −

𝐼𝐴
∗

𝐼𝐴𝐻
) 𝐷𝑐 𝑡

𝛾
𝐼𝐴(𝑡)

+(1 −
𝐼𝑆
∗

𝐼𝑆
) 𝐷𝑐 𝑡

𝛾
𝐼𝑆(𝑡) + (1 −

𝐴∗

𝐴
) 𝐷𝑐 𝑡

𝛾
𝐴(𝑡) (1 −

𝑇𝐻
∗

𝑇𝐻
) 𝐷𝑐 𝑡

𝛾
𝑇𝐻(𝑡),

)

 
 

.
 

(1 −
𝑆𝐻

∗

𝑆𝐻
) 𝐷𝑐 𝑡

𝛾
𝑆𝐻 = (1 −

𝑆𝐻
∗

𝑆𝐻
) (𝜆𝐻1

∗ 𝑆𝐻
∗ + 𝜇𝑆𝐻

∗ − 𝜆𝐻1𝑆𝐻 − 𝜇𝑆𝐻),
 

= 𝜆𝐻1
∗ 𝑆𝐻

∗ (1 −
𝑆𝐻𝜆𝐻1

𝜆𝐻1
∗ 𝑆𝐻

∗ −
𝑆𝐻

∗

𝑆𝐻
+

𝜆𝐻1

𝜆𝐻1
∗ ) + 𝜇𝑆𝐻

∗ (2 −
𝑆𝐻

𝑆𝐻
∗ −

𝑆𝐻
∗

𝑆𝐻
),

 

(1 −
𝐸𝐻

∗

𝐸𝐻
) 𝐷𝑐 𝑡

𝛾
𝐸𝐻 = (1 −

𝐸𝐻
∗

𝐸𝐻
) (𝜆𝐻1

∗ 𝑆𝐻 − 𝜆𝐻1
∗ 𝑆𝐻

∗
𝐸𝐻

𝐸𝐻
∗ ),

 

= 𝜆𝐻1
∗ 𝑆𝐻

∗ (1 −
𝑆𝐻𝜆𝐻1

∗

𝜆𝐻1
∗ 𝑆𝐻

∗

𝐸𝐻
∗

𝐸𝐻
−

𝐸𝐻
∗

𝐸𝐻
+

𝑆𝐻
∗ 𝜆𝐻1

𝜆𝐻1
∗ 𝑆𝐻

∗ ),
 

𝐴2

𝜃𝐻
(1 −

𝐼𝐴
∗

𝐼𝐴
) 𝐷𝑐 𝑡

𝛾
𝐼𝐴 =

𝐴2

𝜃𝐻
(1 −

𝐼𝐴
∗

𝐼𝐴
) (𝜃𝐻𝐸𝐻 − 𝐴3

𝐼𝐴
𝐼𝐴
∗ 𝐼𝐴

∗),
 

= 𝜆𝐻1
∗ 𝑆𝐻

∗ (1 +
𝐸𝐻

𝐸𝐻
∗ −

𝐼𝐴
𝐼𝐴
∗ −

𝐸𝐻𝐼𝐴
∗

𝐸𝐻
∗ 𝐼𝐴

),
 

𝐴2𝐴3

𝜏𝐻1𝜃𝐻
(1 −

𝐼𝑆
∗

𝐼𝑆
) 𝐷𝑐 𝑡

𝛾
𝐼𝑆 =

𝐴2𝐴3

𝜏𝐻1𝜃𝐻
(1 −

𝐼𝑆
∗

𝐼𝑆
) (𝜏𝐻1𝐸𝐻 − 𝐴4

𝐼𝑆

𝐼𝑆
∗ 𝐼𝑆

∗),        (25)

 
= 𝜆𝐻1

∗ 𝑆𝐻
∗ (1 −

𝐼𝑆
∗

𝐼𝑆
−

𝐼𝐴𝐼𝑆
∗

𝐼𝑆
∗𝐼𝑆

+
𝐼𝐴
𝐼𝐴
∗),

 𝐴1

𝜏𝐻2
(1 −

𝐴∗

𝐴
) 𝐷𝑐 𝑡

𝛾
𝐴 =

𝐴1

𝜏𝐻2
(1 −

𝐴∗

𝐴
) (𝜏𝐻2𝐸𝐻 − 𝐴5

𝐴

𝐴∗ 𝐴∗),

 
= 𝜆𝐻1

∗ 𝑆𝐻
∗ (1 −

𝐸𝐻

𝐸𝐻
∗ −

𝐴

𝐴∗
+

𝐸𝐻𝐴∗

𝐸𝐻
∗ 𝐴

).

 𝐴6

𝜎𝐴
(1 −

𝑇𝐻
∗

𝑇𝐻
) 𝐷𝑐 𝑡

𝛾
𝑇𝑆 =

𝐴6

𝜎𝐴
(1 −

𝑇𝐻
∗

𝑇𝐻
) (𝜎𝐴𝐸𝐻 − 𝐴6

𝑇𝐻

𝑇𝐻
∗ 𝑇𝐻

∗),

 
= 𝜆𝐻1

∗ 𝑆𝐻
∗ (1 +

𝐸𝐻

𝐸𝐻
∗ −

𝑇𝐻

𝑇𝐻
∗ −

𝐸𝐻𝑇𝐻
∗

𝐸𝐻
∗ 𝑇𝐻

).

 
Hence, Eq. (26) now becomes; 

𝐷𝑐 𝑡
𝛾
𝐿(𝑡) ≤ 𝜆𝐻1

∗ 𝑆𝐻
∗

 (6 −
𝑆𝐻

∗

𝑆𝐻
+

𝜆𝐻1

𝜆𝐻1
∗∗ (1 −

𝑆𝐻𝐸𝐻
∗

𝑆𝐻
∗ 𝐸𝐻

) −
𝐼𝐴
∗𝐸𝐻

𝐼𝐴𝐸𝐻
∗ −

𝐼𝑆
∗𝐸𝐻

𝐼𝑆𝐸𝐻
∗ −

𝐴∗𝐸𝐻

𝐴𝐸𝐻
∗ −

𝑇𝐻

𝑇𝐻
∗ −

𝑇𝐻
∗𝐼𝐴𝐼𝑆𝐴

𝑇𝐻𝐼𝐴
∗𝐼𝑆

∗𝐴∗) ≤ 0.

 𝑊ℎ𝑖𝑐ℎ𝑖𝑚𝑝𝑙𝑖𝑒𝑠𝑡ℎ𝑎𝑡, 𝐷𝑐 𝑡
𝛾
𝐿(𝑡) ≤ 𝜆𝐻1

∗ 𝑆𝐻
∗ 𝜓(𝑅0 − 1)𝜆𝐻𝑆𝐻

∗
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(6 −
𝑆𝐻

∗

𝑆𝐻
+

𝜆𝐻1

𝜆𝐻1
∗∗ (1 −

𝑆𝐻𝐸𝐻
∗

𝑆𝐻
∗ 𝐸𝐻

) −
𝐼𝐴
∗𝐸𝐻

𝐼𝐴𝐸𝐻
∗ −

𝐼𝑆
∗𝐸𝐻

𝐼𝑆𝐸𝐻
∗ −

𝐴∗𝐸𝐻

𝐴𝐸𝐻
∗ −

𝑇𝐻

𝑇𝐻
∗ −

𝑇𝐻
∗𝐼𝐴𝐼𝑆𝐴

𝑇𝐻𝐼𝐴
∗𝐼𝑆

∗𝐴∗).

 
−𝜓(𝑅0 − 1)𝜆𝐻𝑆𝐻

∗ [𝐴1𝑆𝐻
∗ (

𝑆𝐻
∗

𝑆𝐻
− 1 − 𝑙𝑛

𝑆𝐻
∗

𝑆𝐻
)] (29)

 
Therefore 𝐷𝑐 𝑡

𝛾
𝐿(𝑡) ≤ 0𝑓𝑜𝑟𝑅0 > 1.This implies that 𝐷𝑐 𝑡

𝛾
𝐿(𝑡) = 0. If 𝐸∗ = (𝑆∗, 𝐸𝐻

∗ , 𝐼𝐴
∗, 𝐼𝑆

∗, 𝐴∗, 𝑇𝐻
∗), is the endemic  equilibrium 

point. , then by LaSalle’s invariance principle, the endemic equilibrium point is globally asymptotically stable in 𝛺 whenever 

𝑅0 > 1.
 

 

Fractional order model numerical results  

We numerically solved the fractional-order HIV/AIDS model using the generalized fractional Adams-Bashforth–Moulton 

method described by Chan et al (2020).  The parameter values utilized in the model are detailed in Table 1, which also presents 

simulations that incorporate various fractional-order values. This approach allows for a comprehensive analysis of the model's 

behavior under different conditions and provides insights into the dynamics of HIV/AIDS transmission (γ). 

 

Implementation of the Fractional Adams–Bashforth–Moulton Method 

We utilized the approach outlined by Baskonus et al(2015)., Diethelm, as detailed in NCDC (2019), Diethelm (1999), 

Baskonus et al. (2015), and Liu et al. (2023) for this study. The solution to the fractional HIV/AIDS model presented in (6) 

was approximated using the fractional Adams–Bashforth–Moulton method. This fractional model (6) is expressed by Chan et 

al (2020). as follows: 

𝐷𝑐 𝑡
𝛾
𝑃(𝑡) = 𝑄(𝑡, 𝑞(𝑡)), 0 < 𝑡 < 𝛽,          (26) 

𝑃(𝑛)(0) = 𝑃0
(𝑛)

, 𝑛 = 1,0, . . . , 𝑞, 𝑞 = [𝛾].        (27) 

Where 𝑃 = (𝑆∗, 𝐸𝐻
∗ , 𝐼𝐴

∗, 𝐼𝑆
∗, 𝐴∗, 𝑇𝐻

∗) ∈ 𝑅+
6  and 𝑀(𝑡, 𝑞(𝑡)) is a real valued function that is continuous. 

Eq. (27) can be therefore be represented using the concept of fractional integral as follows; 

𝑃(𝑡) = ∑ 𝑃0
(𝑛)𝑚−1

𝑛=0
𝑡𝑛

𝑛!
+

1

𝛤(𝛾)
∫ (𝑡 − 𝑦)

𝑡

0

𝛾−1
𝑅(𝑦,𝑚(𝑦))𝑑𝑦.      (28) 

Using the method described by Baskonus et al. (2015), we let the step size 𝑔 =
𝛽

𝑁
, 𝑁 ∈ 𝛮 with a grid that is uniform on  [0, 𝛽]. 

Where 𝑡𝑐 = 𝑐𝑟, 𝑐 = 0,1,1, . . . 𝑁.  Therefore, the fractional order model of  HIV/AIDs model presented in (6) can be 

approximated as :  

𝑆𝐻𝑘+1(𝑡) = 𝑆𝐻0 +
𝑔𝛾

𝛤(𝛾 + 2)
{𝜆𝐻 − (𝛽𝐻1𝐼𝐴

𝑛 + 𝛽𝐻2𝐼𝑆
𝑛 + 𝛽𝐻3

𝑇𝐻
𝑛)

𝑆𝐻
𝑛

𝑁𝐻
𝑛 − 𝜇𝑆𝐻

𝑛} + 

𝑔𝛾

𝛤(𝛾 + 2)
∑ 𝑑𝑦, 𝑘 + 1 {𝜆𝐻 − (𝛽𝐻1𝐼𝐴

𝑛 + 𝛽𝐻2𝐼𝑆
𝑛 + 𝛽𝐻3

𝑇𝐻
𝑛)

𝑆𝑦

𝑁𝐻𝑦
− 𝜇𝑆𝑦}

𝑘

𝑦=0
 

𝐸𝐻𝑘+1
(𝑡) = 𝐸𝐻0

+
𝑔𝛾

𝛤(𝛾 + 2)
{(𝛽𝐻1𝐼𝐴

𝑛 + 𝛽𝐻2𝐼𝑆
𝑛 + 𝛽𝐻3

𝑇𝐻
𝑛)

𝑆𝑛

𝑁𝑛
− 𝐴2𝐸𝐻

𝑛} + 

𝑔𝛾

𝛤(𝛾+2)
∑ 𝑑𝑦, 𝑘 + 1 {(𝛽𝐻1𝐼𝐴

𝑛 + 𝛽𝐻2𝐼𝑆
𝑛 + 𝛽𝐻3

𝑇𝐻
𝑛)

𝑆𝑦

𝑁𝐻𝑦
− 𝐴2𝐸𝐻𝑦}𝑘

𝑦=0 ,
         

𝐼𝐴𝑘+1
(𝑡) = 𝐼𝐴𝐻0 +

𝑔𝛾

𝛤(𝛾 + 2)
{𝜃𝐻 𝐸𝐻

𝑛 −(𝜏𝐻1 + 𝛿𝐻 + 𝜇)𝐼𝐴
𝑛 − 𝐴3 𝐴𝑛 } + 

𝑔𝛾

𝛤(𝛾 + 2)
∑ 𝑑𝑦, 𝑘 + 1{𝜃𝐻 𝐸𝐻𝑦 −(𝜏𝐻1 + 𝛿𝐻𝑦 + 𝜇) 𝐼𝐴𝑦 −𝐴3 𝐴𝐴𝐻𝑦 }

𝑘

𝑦=0

, 

𝐼𝑆𝑘+1
(𝑡) = 𝐼𝑆0 +

𝑔𝛾

𝛤(𝛾 + 2)
{𝜏𝐻1𝐼𝐴

𝑛 − (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇) 𝐼𝑆
𝑛 } + 

𝑔𝛾

𝛤(𝛾 + 2)
∑ 𝑑𝑦, 𝑘 + 1{𝜏𝐻1𝐼𝐴𝑦 − (𝜏𝐻2 + 𝜎𝐼𝑆 + 𝛿𝐻 + 𝜇) 𝐼𝑆𝑦 }

𝑘

𝑦=0

, 

𝐴𝑘+1(𝑡) = 𝐴0 +
𝑔𝛾

𝛤(𝛾 + 2)
{𝜏𝐻2𝐼𝑆

𝑛 − (𝜎𝐴 + 𝛿𝐻 + 𝜇)𝐴𝑛} + 

𝑔𝛾

𝛤(𝛾+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜏𝐻2𝐼𝑆𝑦 − (𝜎𝐴 + 𝛿𝐻 + 𝜇)𝐴𝑦}𝑘

𝑦=0 ,      (29)
 

𝑇𝐻𝑘+1
(𝑡) = 𝑇𝐻0 +

𝑔𝛾

𝛤(𝛾+2)
{𝜎𝐼𝑆𝐼𝑆

𝑛 + 𝜎𝐴𝐴𝑛 − (𝛿𝐻 + 𝜇)𝑇𝐻
𝑛} +     

𝑔𝛾

𝛤(𝛾+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜎𝐼𝑆𝐼𝑆𝑦 + 𝜎𝐴𝑦𝐴 − (𝛿𝐻 + 𝜇)𝑇𝑦}𝑘

𝑦=0 ,                      
 

Where 

𝑆𝑘+1
𝑛 (𝑡) = 𝑆0 +

1

𝛤(𝛾)
∑ 𝑓𝑦,𝑘+1

𝑘

𝑦=0

{𝜆 − (𝛽𝐻1𝐼𝐴𝑦 + 𝛽𝐻1𝐼𝑆𝑦 + 𝐴𝑦)
𝑆𝑦

𝑁𝑦
− 𝜇𝑆𝑦},

 

𝐸𝐻𝑘+1
𝑛 (𝑡) = 𝐸𝐻0 +

1

𝛤(𝛾)
∑ 𝑓𝑦,𝑘+1

𝑘

𝑦=0

{(𝛽𝐻1𝐼𝐴𝑦 + 𝛽𝐻1𝐼𝑆𝑦 + 𝐴𝑦)
𝑆𝑦

𝑁𝐻𝑦
− 𝜇𝐸𝐻𝑦},

 

𝐼𝐴𝑘+1
𝑛 (𝑡) = 𝐼𝐴0 +

1

𝛤(𝛾)
∑ 𝑓𝑦,𝑘+1

𝑘
𝑦=0 {𝜌𝐸𝐻𝑦 − 𝐴2𝐼𝐴𝑦},

…(30) 
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𝐼𝑆𝑘+1
𝑛 (𝑡) = 𝐼𝑆0 +

1

𝛤(𝛾)
∑ 𝑓𝑦,𝑘+1

𝑘

𝑦=0

{𝜃𝐻𝐼𝐴𝑦 − 𝐴3𝐼𝑆𝑦},

 
𝑇𝐻𝑘+1

𝑛 (𝑡) = 𝑇𝐻0 +
1

𝛤(𝛾)
∑ 𝑓𝑦,𝑘+1

𝑘
𝑦=0 {𝜎𝐼𝑆𝐼𝑆

𝑛 + 𝜎𝐴𝐴𝑛 − (𝛿𝐻 + 𝜇)𝑇𝐻
𝑛}.       (30)

 

𝐴𝑘+1
𝑛 (𝑡) = 𝐴0 +

1

𝛤(𝛾)
∑ 𝑓𝑦,𝑘+1

𝑘

𝑦=0

{𝜏𝐻2𝐼𝑆
𝑛 − (𝜎𝐴 + 𝛿𝐻 + 𝜇)𝐴𝑛},

 

 

From (29) and (30) obtained; 

𝑑𝑦,𝐾+1 = 𝐾𝛾+1 − (𝑘 − 𝛾)(𝑘 + 𝛾)𝛾 , 𝑦 = 0
 (𝑘 − 𝑦 + 2)𝛾+1 + (𝑘 − 𝛾)𝛾+1 − 2(𝑘 − 𝑦 + 1)𝛾+1, 1 ≤ 𝑦 ≤ 𝑘

 
1, 𝑦 = 𝑘 + 1

 
and 

𝑓𝑦,𝑘+1 =
𝑔𝛾

𝛾
[(𝑘 − 𝑦 + 1)𝛾(𝑘 − 𝑦)𝛾], 0 ≤ 𝑦 ≤ 𝑘.

 
 

Table 2: Parameter values and sources
 

Parameter Description Value Source 

𝛬 Recruitment rate human 0.007 Ngungu et al. (2023) 

𝛽𝐻 Contact rate of susceptible and infected humans with HIV/AIDs 0.3425 Odiba et al. (2024) 

𝜆ℎ Force of infection of HIV/AIDS 0.05 Shah et al. (2022) 

𝜇 Natural death rate of humans 0.012 Ngungu et al. (2023) 

𝜃𝐻 Progression rate from exposed human to HIV/AIDS to infected 

human with HIV/AIDS 

0.4 Odiba et al. (2024) 

𝛿𝐻 HIV/AIDS disease induced death rate 0.01 Ngungu et al. (2023) 

𝜏𝐻2 Progression rate from symptomatic HIV humans to AIDS humans 

class 

0.07 Ayele et al. (2021) 

𝜎𝐼𝑆 Treatment rate of symptomatic HIV  infected humans 0.34 Assumed 

𝜎𝐴 Treatment rate of HIV/AIDS humans 0.41 Assumed 

𝝉𝑯𝟏 Progression rate from infected HIV/AIDS humans to 

symptomatic humans with HIV 

0.43 Assumed 

 

Numerical Simulation  

 

 
Figure 1(a): Simulation of susceptible Human to HIV/AIDS  Figure 1(b): Simulation of Exposed Human to HIV/AIDS 

 

Fig (1a ) depicts the simulation of the effect of the Contact 

rate (𝛽𝐻) on HIV/AIDs in Susceptible Human population. It 

is observed that, as the Contact   rate (𝛽𝐻) increases, the 

number of Susceptible Human population decreases. (1b) 

depicts the simulation of the effect of the Contact rate (𝛽𝐻) 

on HIV/AIDs in the Exposed Human population. It is 

observed that, as the Contact   rate (𝛽𝐻)  increases, the 

numberof Exposed individualsincreases.  
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Figure 1(c): Simulation Infected Asymptomatic Human 

with HIV/AIDS 

 
Figure 1(d): Simulation Infected Symptomatic Human with 

HIV/AIDS 

 

Fig (1c ) depicts the simulation of the effect of the Contact 

rate (𝛽𝐻)  on HIV/AIDs in Infected Asymptomatic Human 

population. It is observed that, as the Contact   rate (𝛽𝐻) 

increases, the number of Infected Asymptomatic Human 

population decreases. (1d) depicts the simulation of the effect 

of the Contact rate (𝛽𝐻)  on HIV/AIDs in the Infected 

Symptomatic Human population. It is observed that, as the 

Contact   rate (𝛽𝐻)  increases, the number of Infected 

Symptomatic increases.  

 

 
Figure 1(e): Simulation of Infected Human with AIDS only 

 
Figure 1(f): Simulation of Human on Treatment of AIDS 

 

Fig (1e) depicts the simulation of the effect of the Contact rate 
(𝛽𝐻)  on HIV/AIDs in Infected Human with AIDs only 

population. It is observed that, as the Contact   rate (𝛽𝐻) 

increases, the number of Infected Human with AIDs only  

population increases. (1f) depicts the simulation of the effect 

of the Contact rate (𝛽𝐻)  on HIV/AIDs in the Treatment 

population. It is observed that, as the Contact   rate (𝛽𝐻) 

increases, the Treatment population increases.  
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Figure 1(g): Cummulative New Cases of HIV/AIDS 

 
Figure 2(a): Surface plot showing the effect of 𝛽𝐻and 𝜎𝐻on 𝑅0

𝐻 

 

(1g) depicts the simulation of the effect of the Contact rate 
(𝛽𝐻)  on HIV/AIDs on the Cumulative new cases of 

HIV/AIDs . It is observed that, as the Contact   rate (𝛽𝐻) 

increases, the Cumulative new cases of HIV/AIDs increases. 

2(a), it can be observed that the basic reproduction number 

𝑅0
𝐻  reaches a peak below one (1) as the values of 

(𝛽𝐻)𝑎𝑛𝑑(𝜃𝐻) increase. This indicates that increasing these 

parameters will ultimately alleviate the impact of HIV/AIDs 

on the population. 

 

 
Figure 2(b): Contour plot showing the effect of 𝛽𝐻and 𝜃𝐻on 

𝑅0
𝐻 

 
Figure 2(c): Contour plot showing the effect of 𝛽𝐻and 𝜎𝐻on 

𝑅0
𝐻 

 

The graph depicted in Fig. (2b)  illustrates the contour plot of 

𝛽𝐻𝑎𝑛𝑑𝜃𝐻concerning 𝑅0
𝐻. Upon examination of the numerical 

streams within the graph, it is evident that the maximum value 

of 𝑅0
𝐻attained by varying these parameters is 0.6, indicating a 

value below unity (1). This observation suggests that 

augmenting these parameters would not trigger a significant 

outbreak of HIV/AIDs in the population. The graph depicted 

in Fig. (2c) illustrates the contour plot of 

𝛽𝐻𝑎𝑛𝑑𝜎𝐻concerning 𝑅0
𝐻. Upon examination of the numerical 

streams within the graph, it is evident that the maximum value 

of 𝑅0
𝐻attained by varying these parameters is 0.6, indicating a 

value below unity (1). This observation suggests that 

augmenting these parameters would not trigger a significant 

outbreak of HIV/AIDs in the population. 

 

CONCLUSION 

This paper presents a mathematical model for the 

transmission dynamics and control of HIV/AIDS utilizing the 

Caputo fractional derivative. Acknowledging the importance 

of fractional modeling, we begin with a comprehensive 

theoretical analysis of the fractional HIV/AIDS model, 

emphasizing the existence and uniqueness of solutions, as 

well as the stability of equilibrium points. To numerically 

solve the model, we employed the fractional Adams–

Bashforth–Moulton method. The simulations highlighted the 

impact of disease incidence, taking into account various 

model parameters and different fractional orders of the 

Caputo operator. We also explored the effects of varying 

parameters, such as the contact rates between infected and 

susceptible individuals. The results indicate that enhancing 
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treatment strategies could significantly mitigate the spread of 

HIV/AIDS within the population. Future research could focus 

on addressing non-linear partial differential equations using 

approaches similar to those suggested by Zhang et al. (2022), 

which offer a general symbolic computational framework for 

deriving analytic solutions 
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