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ABSTRACT 

There is growing need to improve the quality of education through an effective service delivery from educators. 

Also, educational institutions are searching for ways to reduce student failure rate. The rapid growth in size 

and availability of student data and robust algorithms to generate machine learning models, more accurate 

predictions and tailored learning interventions can be factored. The research investigates the prediction 

accuracy of machine learning algorithms, including Logistic Regression, Random Forest (RF), Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes, XGBoost, and Gradient Boosting, applied to 

student learning attributes and course assessment. The aim is to evaluate the effectiveness of these algorithms 

in predicting student performance on various metrics. A dataset encompassing student learning attributes and 

assessment modes were analyzed. Each algorithm's predictive capabilities was assessed using accuracy, 

precision, recall and F1-score metrics. Logistic regression had the highest accuracy score of 0.93, SVM and 

XGBoost both achieved an accuracy 0f 0.90 while Random Forest, KNN and Naive Bayes achieved same 

accuracy score of 0.88 while Gradient Boosting achieved an accuracy score of 0.85 each which was the lowest. 

RF, SVM, KNN got the same F-score, recall and precision of 0.93, 0.97 and 0.90 respectively while Naive 

Bayes, XGBoost, and Gradient Boosting achieved the same recall of 0.94 while KNN had a recall of 0.97. 

Gradient Boosting had a precision of 0.89, and an F-score of 0.92, the F-score of Naïve Bayes was 0.93. This 

research underscores the potential of advanced machine learning techniques in enhancing educational 

outcomes.  

 

Keywords: Prediction Accuracy, Machine Learning Algorithms, Student Performance, Course Assessment,  

Educational Data Mining 

 

INTRODUCTION 

The introduction of machine learning (ML) into the 

educational sector has provided new avenues for 

understanding and strengthening student learning output (Xie 

and Yanxin, 2024; Liang et al., 2014). With the large volume 

of data generated by educational institutions, leveraging 

predictive analytics can assist educators identify significant 

factors that influence student performance and inform 

intervention techniques (Al-Shabandar et al., 2017). This 

research focuses on the prediction accuracy of several 

prominent machine learning algorithms—Logistic 

Regression, Random Forest, Support Vector Machine (SVM), 

K-Nearest Neighbors (KNN), Naive Bayes, XGBoost, and 

Gradient Boosting—when applied to student learning 

attributes and course assessment data. The comparison of 

these classifiers in these research aim to determine which 

classifier yields the most accurate predictions, which in turn 

supports data-driven decision-making in educational domain. 

As educational institutions mostly depend on data to tailor 

learning experiences, the need for efficient predictive models 

becomes a necessity. Understanding how different ML 

algorithms perform in this domain can assist educators in 

selecting the most appropriate tools for analyzing student data 

and improving academic output. This research will contribute 

to the area of educational data mining by holistically 

evaluating how effective these ML algorithms are in the 

prediction of student success relying on different student 

learning characteristics. Yang et al., 2024) employed deep 

learning technique to effectively identify course 

characteristics from reviews, assesses learners’ satisfaction, 

attention, and cost of improvement, and consequently 

formulated a prioritized list of course attributes for 

improvement.  

The use of machine learning algorithms a tool in solving 

myriad of challenges in the education sector has been the 

focus of many researches, each delving into different areas of 

student performance prediction. (Chen et al, 2021; Chen et al. 

2019) converted student dropout task into the learning 

behaviour and classification model using logical regression, 

support vector machine and decision tree. The model was 

used to track the registration characteristics and learning 

behaviour characteristics.  Zihan et al. (2023) built the 

dropout prediction model by using enhanced decision tree, so 

as to predict the dropout probability of learners, and then 

compute the ratio in various degrees in order to derive varied 

intervention measures. Logistic Regression has been used 

mostly in researches because it is easy to implement and in all 

its simplicity and less difficulty in result interpretation, most 

profoundly in binary classification tasks which pertains to 

student success (Tang et al., 2018). In contrast, Random 

Forest, with its ensemble technique, has demonstrated robust 

performance in dealing with complex datasets, reducing 

overfitting, thereby guaranteeing an improve prediction 

accuracy (Xia and Qi, 2024; Xia and Qi, 2023). Support 

Vector Machines (SVM) are also prevalent in educational 

data mining due to their effectiveness in high-dimensional 
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spaces, making them suitable for datasets with numerous 

learning attributes. K-Nearest Neighbors (KNN), while 

straightforward, offers a unique perspective on local data 

structure and can be effective for identifying patterns based 

on proximity (Liang et al., 2014). Naive Bayes classifiers 

which are probabilistic in solving problems in research have 

been deployed successfully in different educational contexts, 

especially in areas involving object type data (Chao, 2024). 

On the more advanced scale, XGBoost and Gradient Boosting 

have garnered traction for being able to handle huge datasets 

with different characteristics, which results in most cases 

outperforming conventional algorithms in terms of accuracy 

and computational efficiency (Burgos et al., 2018). 

Recent literature points out the significance of comparing 

these algorithms to identify the best solutions for specific 

educational datasets. Findings have shown that ensemble 

methods, such as XGBoost and Random Forest, most times 

yield more accurate and superior results compared to simpler 

models (LIU et al., 2017). In all these findings, there remains 

a need for comprehensive comparisons that involves different 

array of ML algorithms, particularly when considering 

student learning characteristics and course assessment 

dataset. 

This study aims to fill the research gap by providing a 

systematic evaluation of the prediction accuracy of these 

seven machine learning algorithms. The outcome of the 

research will not only strengthen the understanding of their 

applicability in educational parlance but also contribute to the 

wider area of educational data mining by discovering the most 

effective techniques for predicting student academic success 

(Alturki et al., 2022). 

 

MATERIALS AND METHODS 

Data Collection 

Data is collected from students of Air Force Institute of 

Technology Kaduna, Nigeria using a questionnaire designed 

from Google form.  The data collected includes student 

learning attributes which consists of attendance in classes, 

participation of students, student grades, and demographics 

like age and learning groups while the course assessment data 

comprises of assignment scores, examination results, total 

course grades and preferred assessment type. Student 

identification information (matriculation number and name) 

will not be used in the research in order to protect student 

privacy. 

 

Data Preprocessing 

Data preprocessing is a fundamental step in the preparation of 

data before it is inputted in the ML algorithm (Ortiz et al., 

2024). It involves cleaning and transforming the collected 

data to make it suitable for analysis. This step includes: 

Handling Missing Values with methods such as imputation 

using KNNimputer from sklearn library and the use of fillna 

function from pandas library. Also null values and incomplete 

records will be dropped using dropna function from pandas 

library. Secondly, encoding categorical variables using label 

encoding and python get_dummies function in order to 

facilitate numerical analysis. Then followed by feature 

scaling. This involves the standardization and normalization 

will be performed on numerical features to ensure uniformity 

across the dataset using standard scalar from Sklearn library 

particularly for algorithms sensitive to the scale of input data, 

such as KNN and SVM. Lastly, feature selection phase. 

Feature selection aims to identify the most relevant attributes 

for predicting student outcomes (Tri et al., 2024). The 

correlation analysis involving the use of heatmap and describe 

function all from pandas library will be employed to select a 

subset of features that do not have negative correlation so as 

to contribute significantly to model performance. This step 

helps to reduce dimensionality and also aid in the easy 

interpretability of the model (Kaur and Sarmadi, 2024). 

 

Model Training  

The dataset is divided into x-train, y-train, x-test and y-test 

set.  The x-train also known as the independent variable is a 

set of input features and y-train is the target variable or the 

dependent variable. Both x-training and y-train are used for 

training the model. The x-test is used to make predictions, the 

predicted values are the compared with the y-test data. The 

train-test-split function of sklearn is used to split the data 

randomly into training and testing sets using an 80-20 split. 

That is 80% for training and 20% for testing. Cross-validation 

will also be applied to ensure robustness and cut-off 

overfitting which might result in the model not being 

generative. 

 

Model Evaluation 

The performance of each model is evaluated based on the 

following metrics: accuracy, precision, recall, and F-score 

(Prakash and Kalaiarasan, 2024). After model evaluation, a 

comparative analysis is carried-out to identify which 

algorithm performs best in terms of prediction accuracy and 

other evaluation metrics. Confusion matrices will be used to 

present the results elaborately (Dobson, 2024).). The 

performance metrics can be measured using the following 

index (Swaminathan et al., 2024).   

True Positive (TP): It is the case when both actual class & 

predicted class of data point is 1. 

True Negative (TN): It is the case when both actual class & 

predicted class of data point is 0. 

False Positive (FP): It is the case when actual class of data 

point is 0 & predicted class of data point is 1.  

False Negative (FN): It is the case when actual class of data 

point is 1 & predicted class of data point is 0. 

Accuracy is the ratio of correct predictions among the total 

predictions   

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (1) 

Precision is defined as the ratio of true positive predictions to 

the total predicted positives, indicating the accuracy of 

positive prediction. It is computed using the formula: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
     (2) 

Recall is the proportion of true positive predictions among to 

the total predicted positives, indicating the accuracy of 

positive predictions. It is calculated using the formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (3) 

F1 Score is the harmonic mean of precision and recall, 

providing a balance between the two metrics (Sharma et al., 

2023). It is calculated using the formula: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
    (4) 
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Figure 1a: Program Flowchart (Otu et al., 2023) 
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Figure 1b: Program Flowchart (Otu et al., 2023) 

 

RESULTS AND DISCUSSION 

Logistic Regression 

Logistic Regression serves as a fundamental baseline for 

binary classification problems. In the analysis, it 

demonstrated a high level of accuracy but often struggled with 

complex relationships in the data. While it is interpretable and 

computationally efficient, its performance is generally lower 

than more complex models (Lalitha et al., 2021). This aligns 

with existing literature indicating that Logistic Regression 

may not capture nonlinear patterns effectively (Elvira et al., 

2024). Table 1 shows the classification report for the logistic 

regression model. 

 

Table 1: Showing the result from the logistic regression algorithm 

Accuracy: 0.93 precision Recall  F1-score  Support  

0 0.92 1.00 0.96 36 

1 1.00 0.25 0.40 4 

Accuracy    0.93  40 

Macro avg 0.96 0.62 0.68 40 

Weighted avg 0.93 0.93 0.90 40 

 

The classification report for Table 1 is generated from model evaluation metrics using equation 1, 2, 3 and 4 as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

36+1

36+1+0+3
  =  

37

40
    =  0.925 ≃ 0.93    

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
=  

36

36+3
=  

36 

39
= 0.92  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  =  

36

36+0
=  

36

36
 =   1.00           

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 =  

2∗0.93∗1.00

0.93+1.00 
= 0.96   
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Figure 2: Confusion matrix showing predicted result using 

logistic regression algorithm 

 

The confusion matrix depicts that the logistic regression 

algorithm was able to correctly predict 37 items and predicted 

3 items incorrectly. The zero in the upper right corner of the 

matrix which stands for false positive (FP) occurs when actual 

class of data point is 0 and predicted class of data point is 1. 

While the lower left corner which designates false negative 

(FN) shows 3 items incorrectly predicted by the algorithm 

occurs in a case when actual class of data point is 1 and 

predicted class of data point is 0.  

 

 

 

Random Forest 

The Random Forest algorithm exhibited superior 

performance due to its ensemble (combination of a family of 

classifier algorithms) nature, which solves the problem of 

overfitting by averaging many decision trees (Balakrishnan 

and Coetzee, 2013).  The use of the model produced a high 

accuracy, displaying its robustness against noise and its 

ability to handle huge datasets with many attributes. 

Attributes significance analysis showed that certain learning 

attributes were particularly influential, validating educational 

theories about student success factors. Table 2 shows the 

classification report of random forest model. 

 

Table 2: Showing the result from the random forest algorithm 

Accuracy: 0.88 precision Recall  F1-score  Support  

0 0.90 0.97 0.93 36 

1 0.00 0.00 0.00 4 

Accuracy    0.88  40 

Macro avg 0.45 0.49 0.47 40 

Weighted avg 0.81 0.88 0.84 40 

 

The classification report for Table 2 is generated from model evaluation metrics using equation 1, 2, 3 and 4 as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

35+0

35+0+1+4
  =  

35

40
    =  0.875 ≃ 0.88    

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
=  

35

35+4
=  

35 

36
≃ 0.90  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  =  

35

35+1
=  

35

36
  ≃   0.97    

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 =  

2∗0.90∗0.97

0.90+0.97 
= 0.93    

 
Figure 3: Confusion matrix showing predicted result using 

random forest algorithm 
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The confusion matrix shows that the random forest algorithm 

was able to correctly predict 35 items and predicted 4 items 

incorrectly. The 1 in the upper right corner of the matrix 

which stands for false positive (FP) occurs when actual class 

of data point is 0 and predicted class of data point is 1. While 

the lower left corner which designates false negative (FN) 

shows 4 items incorrectly predicted by the algorithm occurs 

in a case when actual class of data point is 1 and predicted 

class of data point is 0.  

 

Support Vector Machine (SVM) 

SVM displayed promising results, especially when making 

use of the kernel functions to capture nonlinear relationships. 

Its accuracy was competitive, but training time was notably 

higher, especially with large datasets (Hadyaoui and Cheniti-

Belcadhi, 2023). The choice of kernel most importantly 

affected the results, prioritizing the significance of parameter 

tuning in SVM applications. Table 3 shows the classification 

report of support vector machine model. 

Table 3: Showing the result from the support vector machine algorithm 

Accuracy: 0.90 precision Recall  F1-score  Support  

0 0.90 1.00 0.95 36 

1 0.00 0.00 0.00 4 

Accuracy    0.90  40 

Macro avg 0.45 0.50 0.47 40 

Weighted avg 0.81 0.90 0.85 40 

 

The classification report for Table 3 is generated from model evaluation metrics using equation 1, 2, 3 and 4 as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

36+0

36+0+0+4
  =  

36

40
    =  0.9 ≃ 0.90     

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
=  

36

36+4
=  

36 

40
= 0.90  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  =  

36

36+0
=  

36

36
  ≃   1.00    

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 =  

2∗0.90∗1.00

0.90+1.00 
= 0.947   ≃ 0.95    

 

 
Figure 4: Confusion matrix showing predicted result using support 

vector machine algorithm 

 

The confusion matrix shows that the support vector machine 

(SVC) algorithm was able to correctly predict 36 items and 

predicted 4 items incorrectly. The 0 in the upper right corner 

of the matrix which stands for false positive (FP) occurs when 

actual class of data point is 0 and predicted class of data point 

is 1. While the lower left corner which designates false 

negative (FN) shows 4 items incorrectly predicted by the 

algorithm occurs in a case when actual class of data point is 1 

and predicted class of data point is 0.  

 

K-Nearest Neighbors (KNN) 

KNN's output variable, is a function of the choice of distance 

metric and the number of neighbors (k). Although it was easy 

to implement, KNN manage to perform with high-

dimensional data due to the curse of dimensionality, resulting 

in a decreased accuracy compared to ensemble techniques. Its 

sensitivity to irrelevant attributes also highlighted the 

relevance of proper feature selection (Kloft et al., 2014). 

Table 4 shows the classification report of K-Nearest 

Neighbors (KNN) model. 

 

Table 4: Showing the result from the K-Nearest Neighbors (KNN) algorithm 

Accuracy: 0.88 precision Recall  F1-score  Support  

0 0.90 0.97 0.93 36 

1 0.00 0.00 0.00 4 

Accuracy    0.88 40 

Macro avg 0.45 0.49 0.47 40 

Weighted avg 0.81 0.88 0.84 40 
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The classification report for table 4 is generated from model evaluation metrics using equation 1, 2, 3 and 4 as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

35+0

35+0+1+4
  =  

35

40
    =  0.875 ≃ 0.88       

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
=  

35

35+4
=  

35 

39
= 0.90  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  =  

35

35+1
=  

35

36
  ≃   0.97   

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 =  

2∗0.92∗0.97

0.92+0.97 
= 0.93   

 

 
Figure 5: Confusion matrix showing predicted result using K-

Nearest Neighbors (KNN) algorithm 

 

The confusion matrix shows that the K-Nearest Neighbors 

(KNN) algorithm was able to correctly predict 35 items and 

predicted 5 items incorrectly. The 1 in the upper right corner 

of the matrix which stands for false positive (FP) occurs when 

actual class of data point is 0 and predicted class of data point 

is 1. While the lower left corner which designates false 

negative (FN) shows 4 items incorrectly predicted by the 

algorithm occurs in a case when actual class of data point is 1 

and predicted class of data point is 0.  

 

Naive Bayes 

Naive Bayes produced a surprisingly effective performance 

given its simplicity (Qiu et al., 2016). This model is 

particularly useful for object (string, date) data and 

demonstrated resilience against attribute independence 

assumptions. While it did not achieve the highest accuracy, it 

performed very well in terms of speed and efficiency, making 

it a valuable choice for real-time applications. Table 5 shows 

the classification report of Naïve Bayes model. 

Table 5: Showing the result from the Naïve Bayes algorithm 

Accuracy: 0.88 precision Recall  F1-score  Support  

0 0.92 0.94 0.93 36 

1 0.33 0.25 0.29 4 

Accuracy    0.93  40 

Macro avg 0.96 0.62 0.68 40 

Weighted avg 0.93 0.93 0.90 40 

 

The classification report for Table 5 is generated from model evaluation metrics using equation 1, 2, 3 and 4 as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

34+1

34+1+2+3
  =  

35

40
    =  0.875 ≃ 0.88     

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
=  

34

34+3
=  

34 

37
= 0.92  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  =  

34

34+2
=  

34

36
  ≃   0.94    

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 =  

2∗0.92∗0.94

0.92+0.94 
= 0.93   

 

 



PREDICTION ACCURACY ANALYSIS OF…            Otu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 288 - 298 295 

 
Figure 6: Confusion matrix showing predicted result using Naïve 

Bayes algorithm 

 

The confusion matrix shows that naïve Bayes algorithm was 

able to correctly predict 35 items and predicted 5 items 

incorrectly. The 2 in the upper right corner of the matrix 

which stands for false positive (FP) occurs when actual class 

of data point is 0 and predicted class of data point is 1. While 

the lower left corner which designates false negative (FN) 

shows 3 items incorrectly predicted by the algorithm occurs 

in a case when actual class of data point is 1 and predicted 

class of data point is 0.  

 

XGBoost 

XGBoost outperformed many other algorithms, showcasing 

its strength in handling structured data and its ability to model 

intricate interactions. Its gradient boosting framework and 

built-in regularization led to high accuracy and robustness, 

inferring its status as a good choice in many prediction tasks 

(Song, 2022). The application of cross-validation also 

strengthened its reliability. Table 6 shows the classification 

report of XGBoost model. 

Table 6: Showing the result from the XGBoost algorithm 

Accuracy: 0.90 precision Recall  F1-score  Support  

0 0.90 1.00 0.95 36 

1 0.00 0.00 0.00 4 

Accuracy    0.90  40 

Macro avg 0.45 0.50 0.47 40 

Weighted avg 0.81 0.90 0.85 40 

 

The classification report for Table 6 is generated from model evaluation metrics using equation 1, 2, 3 and 4 as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

36+0

36+0+0+4
  =  

36

40
    =  0.90     

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
=  

36

36+4
=  

36 

40
= 0.90  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  =  

36

36+0
=  

36

36
  ≃   1.00       

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 =  

2∗0.90∗1.00

0.90+1,00 
= 0.947   ≃ 0.95    

 

 
Figure 7: Confusion matrix showing predicted result using 

XGBoost algorithm 
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The confusion matrix shows that the XGBoost algorithm was 

able to correctly predict 36 items and predicted 4 items 

incorrectly. The 0 in the upper right corner of the matrix 

which stands for false positive (FP) occurs when actual class 

of data point is 0 and predicted class of data point is 1. While 

the lower left corner which designates false negative (FN) 

shows 4 items incorrectly predicted by the algorithm occurs 

in a case when actual class of data point is 1 and predicted 

class of data point is 0.  

Gradient Boosting 

Similar to XGBoost, the Gradient Boosting model showed a 

capable predictive power but was generally slower and more 

susceptible to overfitting without proper tuning. The loop 

nature of boosting allows for improved performance on 

various tasks, but it requires meticulous weight optimization 

(Wang et al., 2020). Table 7 shows the classification report of 

Gradient Boosting model. 

 

Table 7: Showing the result from the Gradient Boosting algorithm 

Accuracy: 0.85 precision Recall  F1-score  Support  

0 0.89 0.94 0.92 36 

1 0.00 0.00 0.00 4 

Accuracy    0.85 40 

Macro avg 0.45 0.47 0.46 40 

Weighted avg 0.81 0.85 0.83 40 

  

The classification report for table 7 is generated from model evaluation metrics using equation 1, 2, 3 and 4 as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

34+0

34+0+2+4
  =  

34

40
    =  0.85     

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
=  

34

34+4
=  

34 

38
= 0.89  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  =  

34

34+2
=  

34

36
 = 0.94          

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 =  

2∗0.90∗0.94

0.90+0.94 
= 0.9195 ≃ 0.92     

 

 
Figure 8: Confusion matrix showing predicted result using 

Gradient Boosting algorithm 

 

The confusion matrix shows that the Gradient Boosting 

algorithm was able to correctly predict 34 items and predicted 

6 items incorrectly. The 2 in the upper right corner of the 

matrix which stands for false positive (FP) occurs when actual 

class of data point is 0 and predicted class of data point is 1. 

While the lower left corner which designates false negative 

(FN) shows 4 items incorrectly predicted by the algorithm 

occurs in a case when actual class of data point is 1 and 

predicted class of data point is 0.  

 

CONCLUSION 

The comparative analysis of these machine learning 

algorithms showed important variations in their predictive 

accuracies concerning student learning characteristics and 

course assessment methods. Logistic Regression, support 

vector and XGBoost emerged as the most effective algorithms 

for this dataset, indicating their superiority in handling 

intricate educational data. Future research should explore 

hybrid models or ensemble technique which employs the 

combination of the strengths of these algorithms to further 

strengthen prediction accuracy. 
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