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ABSTRACT 

This paper proposes and studies particular nonlinear dispersive biharmonic equation, whose related equations 

appear in various physical phenomena such as wave propagation in nonlinear media and plasma physics. We 

chose the power kind of nonlinearity as it is common in these areas. We show that the linear version exhibits 

strong dispersive behaviour while the nonlinear version reveals possible emergence of singularities for higher 

degree nonlinearity exponent 𝑝. Both versions of the equation, linear and nonlinear, were solved analytically 

where for the latter we use perturbation approach and Fourier transform for the former. A glimpse towards the 

symmetry analysis of the underlying equations is provided and somewhat insights into the behaviour of the 

solution is discussed.  
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INTRODUCTION 

Nonlinear dispersive equations play a fundamental role in 

theoretical and applied mathematical physics, particularly in 

modelling wave propagation phenomena where both 

nonlinear and dispersive effects are significant. Some of the 

prominent dispersive equations are Airy equation (Airy, 1838 

& Stokes, 1847), Korteweg de Vries equation (Korteweg and 

de Vries 1895), Nonlinear Schrodinger (NLS) equations 

(Zakharov and Shabat, 1972), Klein-Gordan equation (Klein 

1926), Sine-Gordon equation (Lamb 1980), and the likes. 

These equations possess special properties uniquely defined 

for their dispersive nature such as local smoothing, regularity, 

local and global existence.   

In our case, we are concern with the equation 

𝑢𝑡𝑡  +  𝛽𝑢𝑥𝑥𝑥𝑥  +  𝛼𝑢𝑝𝑢𝑥𝑥  =  0,     𝑢: ℝ+ × ℝ →
ℂ,      𝛼, 𝛽 ∈ ℝ         𝑝 ≥ 1    (1) 

  This equation is a complex-valued so that its solution 

𝑢(𝑡, 𝑥)  describes certain electromagnetic wave.  It is of 

interest due to its combination of higher-order dispersion 

(through the 𝑢𝑥𝑥𝑥𝑥 term) and nonlinearity (through 𝑢𝑝𝑢𝑥𝑥), 

leading to rich and complex dynamics. This equation could 

share important characteristics with the other well-known 

equations of mathematical physics. It is similar to the 

equations: Boussinesq 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + (𝑢2)𝑥𝑥 = 0 which studies 

the propagation of the long waves in shallow water bodies 

(Boussinesq, 1872), KdV equation 𝑢𝑡 + 𝛼 𝑢𝑥𝑥𝑥 + 𝛽 𝑢𝑢𝑥 = 0 

describing the evolution of waves on surface of shallow water 

which can be solitons for some  𝛼 and 𝛽 (Korteweg and de 

Vries, 1985). Other closely related work is that of Whitham 

(1974) for Korteweg-de Vries-Burgers (KdV-Burgers) which 

merges the KdV equation's dispersive features with Burgers' 

equation's dissipative characteristics, thereby studying the 

interplay between the nonlinearity, dispersion and dissipation 

properties of the equation. 

In essence, our equation captures the evolution of dispersive 

waves in the presence of higher nonlinearities, in a way 

similar to the NLS equations with power nonlinearity, see 

Sulem and Sulem (1999) and singularity in the solutions of 

Zakharov equations (Papanicolaou, 1991).     

 

Dispersive Nature of the Equation 

The idea of dispersion is to explain how 𝑢(𝑡, 𝑥) spreads 

through space, whereas dispersive equations are characterized 

by the fact that waves of different wavelengths propagate at 

different speeds. This behaviour is typically encoded in the 

dispersion relation of the equation. In our case, for the 

linearized equation  

𝑢𝑡𝑡 + 𝛽𝑢𝑥𝑥𝑥𝑥  =  0,        (2) 

we perform a Fourier transform to obtain the dispersion 

relation. This is attained by assuming a plane-wave solution 

of the kind  

𝑢(𝑥, 𝑡)  =  𝑒𝑖(𝑘𝑥−𝜔𝑡), 

substitution into the linearized equation (2) gives the 

dispersion relation  

𝜔2  =  𝛽𝑘4. 

This fourth-order relationship between 𝜔 and 𝑘 indicates that 

higher frequency (shorter wavelength) components will 

propagate at different speeds, thus demonstrating the 

dispersive nature of the system. The inclusion of the nonlinear 

term 𝑢𝑝𝑢𝑥𝑥 further modifies the dispersion relation, leading 

to richer dynamics. Nonlinear effects can result in the 

formation of solitons or other localized structures, depending 

on the balance between the nonlinear and dispersive effects. 

The underlying biharmonic equation (1) poses a number of 

challenges as a result of the presence of both high order 

dispersive terms and nonlinearities. Due to its ubiquitous 

nature in application, such as waves in elastic rods or plasma 

waves, where both dispersion and nonlinearity must be 

accounted for, it is worth studying to address unanswered 

questions such as the possible existence of solitonic waves 

and singularities representing wave collapse or blow-up as 

can be found in the monograph of self-focusing and wave 

collapse by Sulem & Sulem (1999).  

Our primary objective is to derive exact and approximate 

solutions, compare them, and analyse the dynamics of the 

equation. We analytically study the dispersive nature of the 

equation (1) and determine its solutions via Fourier Transform 

and perturbation approaches. We further proceed determining 

the travelling wave forms of the equation and discuss the 

symmetry analysis for the behaviour of 𝑢(𝑡, 𝑥). 

 

Related Work 

Nonlinear dispersive equations, such as the Korteweg-de 

Vries (KdV) equation and the nonlinear Schrodinger 

equation, have been extensively studied due to their ability to 

model phenomena ranging from shallow water waves to 
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plasma physics. Early work on the KdV equation by Zabusky 

and Kruskal (1965), led to the discovery of solitons, which are 

stable, localized waves that result from a balance between 

dispersion and nonlinearity. Other works that provides 

intensive studies on equations like nonlinear Schrodinger 

equations and other dispersive partial differential equation 

(PDEs) include the work of Klein and Claude-Saut (2022).  

More recently, researchers have extended these classical 

models to higher-order dispersive terms, similar to those 

found in our equation of interest. For instance, the higher-

order nonlinear Schrodinger equation has been used to model 

ultra-short pulse propagation in optical fibres, Agrawal 

(2001). Studies by Ablowitz and Clarkson, (1991), have 

shown that exact solutions to nonlinear dispersive equations 

can often be found using symmetry methods or inverse 

scattering techniques... 

Other work, which of our central focus for future work is the 

traveling wave solutions, and have been widely used in 

understanding nonlinear wave phenomena. In particular, 

Whitham (2000, 1974 and 2011) in his series of publications 

on Linear and Nonlinear waves explored the role of traveling 

waves in dispersive media, highlighting their importance in 

capturing the balance between nonlinearity and dispersion. 

Regarding numerical approaches for dispersive equations, 

there are several existing techniques consisting of finite 

differences and other robust techniques like spectral one. In a 

study by Pan et al. (2023), developed a fourth-order compact 

finite difference schemes for solving biharmonic equations 

with Dirichlet boundary conditions. This method achieves 

high accuracy while maintaining computational efficiency for 

both two- and three-dimensional problems. 

Another recent work by Cheng Ma (2023), explored the 

solutions of biharmonic and mixed dispersion equations, 

particularly focusing on variational methods and Sobolev 

space embeddings. These studies addressed nonlinear effects 

in high-order dispersion systems, including their stability and 

energy dynamics. Other important literatures on the numerical 

approach for such dispersive equations using classical and 

spectral methods based on the existing symbol and numerical 

software are available in the following texts, Leveque (2007), 

Trefethen (2000). 

Important works on the geometric structure and advanced 

techniques for treatment of dispersive equations can be found, 

respectively, in Bluman and Kunei (1989), on the symmetries 

of differential equations, Bender and Orszag (1978). 

It has been examined that the role of biharmonic dispersive 

equations can be found in modelling phenomena such as fluid 

dynamics, elastic plates, and nonlinear optics. This work often 

incorporates constraints like energy minimization and 

examines specific boundary conditions. 

 

 

 

 

Dispersive nature, Derivation and Analytical Approaches 

Dispersive nature of the nonlinear equation 

Dispersion relation for dispersive equations plays important 

role towards the analysis of the such equations. It tells more 

about the nature of the underlying unknown functions 

regarding how it spreads into space as it evolves in time.  

To address the dispersive nature of the equation, let us 

consider the linear part of an equation 

𝑢𝑡𝑡  +  𝛽𝑢𝑥𝑥𝑥𝑥  +  𝛼𝑢𝑝𝑢𝑥𝑥  =  0, 𝑢 ∶ ℝ ×  ℝ+  → ℂ, 𝑝 ≥  1  

     (3) 

which is 

𝑢𝑡𝑡  +  𝛽𝑢𝑥𝑥𝑥𝑥  =  0,           𝑢 ∶  ℝ ×  ℝ+  → ℂ,    (4) 

One assumes a plane wave solution 𝑢(𝑥, 𝑡)  ≡  𝑒𝑖(𝑘𝑥−𝜔𝑡) 

where ω is the plane-wave frequency and its wave number k. 

Upon substituting it into the linear equation, one gets the 

relation: 

𝜔 =  𝜔(𝑘) =  ±√𝛽𝑘2    (4a) 

This clearly satisfies the condition that  

𝑣𝑔 = ∇𝜔 =  ±2√𝛽𝑘 ≠
𝜔

𝑘
= ±√𝛽𝑘 = 𝑣𝑝. 

Hence, the underlying linear equation is dispersive with 

dispersive relation (4a). 

For the nonlinear equation (3), we need to take deeper analysis 

of the nonlinear term, for simplicity we will take 𝑝 = 1. The 

presence of the nonlinear term 𝛼𝑢𝑝𝑢𝑥𝑥 complicates the 

derivation of the dispersion relation. However, we can still 

attempt to derive a relation for small perturbations around a 

“ground state” or the so-called base, commonly referred to as 

linearizing the equation about a steady state. 

We assume that the solution 𝑢(𝑥, 𝑡) consists of a small 

perturbation �̃�(𝑥, 𝑡) around a constant background  

𝑢0:    𝑢(𝑥, 𝑡) =  𝑢0  +  �̃�(𝑥, 𝑡),    where    |�̃�(𝑥, 𝑡)| ≪  𝑢0.   
     (5) 

Substituting (5) into the nonlinear equation (3): 
(𝑢0  +  �̃�)𝑡𝑡  +  𝛽(𝑢0  +  �̃�)𝑥𝑥𝑥𝑥  +  𝛼(𝑢0  +  �̃�)(𝑢0  +
 �̃�)𝑥𝑥  =  0,      (6) 

and expanding this (6) to first-order terms in  �̃� (neglecting 

higher-order nonlinear terms), we get: 

�̃�𝑡𝑡  +  𝛽�̃�𝑥𝑥𝑥𝑥  +  𝛼𝑢0�̃�𝑥𝑥  =  0.     

This is now a linear equation for the perturbation �̃�, which can 

be analysed to find a dispersion relation. We, furthermore, 

assume a plane wave solution for �̃�(𝑥, 𝑡) of the form: 

 �̃�(𝑥, 𝑡) =  𝑒𝑖(𝑘𝑥−𝜔𝑡),              𝑘, 𝜔 ∈ ℝ     (7) 

where 𝑘 is the wave number and 𝜔 is the angular frequency. 

Substituting this (7) into the linearized equation (4): 

−𝜔2𝑒𝑖(𝑘𝑥−𝜔𝑡)  +  𝛽𝑘4𝑒𝑖(𝑘𝑥−𝜔𝑡)  +  𝛼𝑢0𝑘2𝑒𝑖 (𝑘𝑥−𝜔𝑡)  =  0,  
     (8) 

Simplify (8), we get the dispersion relation: 

−𝜔2  +  𝛽𝑘4  +  𝛼𝑢0𝑘2  =  0          ⇒           𝜔2  =  𝛽𝑘4  +
 𝛼𝑢0𝑘2. 

Thus, the dispersion relation for the nonlinear version of the 

equation is: 

𝜔 = ±√𝛽𝑘4  +  𝛼𝑢0𝑘2 = ±𝑘√𝛽𝑘2  +  𝛼𝑢0 
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Figure 1: The dispersions relations of (top) the linear-equation (4) and (b) nonlinear-equation (3) 

 

Thus, we will classify the dispersion relation for large and 

small wave-numbers 𝑘. For large wave numbers 𝑘, the 𝛽𝑘4 

term dominates, and the equation behaves like a purely 

dispersive equation, similar to the linear dispersive wave 

equation (4). For smaller wave numbers, the nonlinear term 

𝛼𝑢0𝑘2 contributes, introducing a modification to the 

frequency 𝜔. This is evident from Fig.1. 

This shows how nonlinearity affects the wave dispersion, 

particularly for lower 𝑘. The presence of the nonlinear term 

adds a quadratic component to the dispersion relation, altering 

the wave dynamics in comparison to the purely linear case. 

 

Analytical Approaches 

Linear problem 

Solving the linear problem (2) requires the use of initial data 

so that it is a potential well-posed problem. This equation is 

solved via Fourier Transform as suggested by the dispersion 

relation. 

 Let us assume 𝑢(𝑡, 𝑥) has the Fourier transform: 

�̂�(𝑡, 𝑘) = ∫ 𝑢(𝑡, 𝑥)

∞

−∞

𝑒−𝑖𝑘𝑥𝑑𝑥 

where 𝑘 is the wave number. 

   Taking the Fourier transform of the linear PDE (3) and the 

Schwartz kind of initial data 𝑢0(𝑥) = 𝑒−𝑥2
: 

ℱ[𝑢𝑡𝑡] + 𝛽ℱ[𝑢𝑥𝑥𝑥𝑥] = 0,      ℱ[𝑢0] = ℱ[𝑒−𝑥2
] = √𝜋 𝑒−

𝑘2

4  .   

 Since the Fourier transform of the derivative yields 

ℱ[𝑢𝑡𝑡] = 𝜕𝑡𝑡�̂�(𝑡, 𝑘),         ℱ[𝑢𝑥𝑥𝑥𝑥] = (−𝑖𝑘)4 �̂�(𝑡, 𝑘)   
where  �̂� denotes the Fourier transform of 𝑢(𝑡, 𝑥). 

Substituting these, we get 

𝜕2

𝜕𝑡2 �̂� + 𝛽 𝑘4 �̂� = 0. 

This is a second order equation whose solution is  

�̂�(𝑡, 𝑘) = 𝐴(𝑘) 𝑒𝑖𝜔𝑡 + 𝐵(𝑘)𝑒−𝑖𝜔𝑡 

where 𝜔 = √𝛽 |𝑘|2 is the associated dispersion relation as 

noticed earlier. 

To retrieve 𝑢(𝑡, 𝑥) take the inverse Fourier transform: 

𝑢(𝑡, 𝑥) =  ∫ �̂�(𝑡, 𝑘)𝑒𝑖𝑘𝑥𝑑𝑘

∞

−∞

. 

Substituting �̂�(𝑡, 𝑘) we get 

𝑢(𝑡, 𝑥) = ∫ [𝐴(𝑘) 𝑒𝑖𝜔𝑡 + 𝐵(𝑘)𝑒−𝑖𝜔𝑡] 𝑒𝑖𝑘𝑥

∞

−∞

𝑑𝑘. 
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This leads to the final form 

𝑢(𝑡, 𝑥) =  ∫ [𝐴(𝑘)𝑒𝑖(𝑘𝑥+√𝛽𝑘2𝑡) + 𝐵(𝑘)𝑒𝑖(𝑘𝑥−√𝛽𝑘2𝑡)]

∞

−∞

𝑑𝑘 

The energy functionals for linear and nonlinear problem involving both kinetic and potential contributions: 

𝐸linear(𝑡) =
1

2
∫ [𝑢𝑡

2 − 𝛽𝑢𝑥𝑥
2 ] 

∞

−∞

𝑑𝑥;  𝐸nonl(𝑡) =
1

2
∫ [𝑢𝑡

2 − 𝛽𝑢𝑥𝑥
2 −

2𝛼

(𝑝 + 1)
𝑢𝑝+1𝑢𝑥𝑥] 

∞

−∞

𝑑𝑥  

   And the mass functional is: 

𝑀(𝑡) =  ∫ 𝑢(𝑡, 𝑥)

∞

−∞

𝑑𝑥. 

For simplicity, assume Gaussian initial conditions, say 𝑒−𝑎⋅𝑥2
, with  𝐴(𝑘) = 𝐵(𝑘) = √

𝜋

𝑎
𝑒−

𝑘2

4𝑎 , the resulting exact solution in 

real space is: 

  𝑢(𝑡, 𝑥) =
1

√1+4𝑖𝛽 𝑡 
𝑒

−
𝑥2

1+4𝑖𝛽 𝑡 ,             (9) 

When this solution is substituted into the linear wave equation, it can be found that 𝑢(𝑡, 𝑥) is a solution if  

𝛽 = 1,      or    𝛽 =  (
1

4𝑡
+

1

6
(−3 ± 𝑥2√6 )) 𝑖. 

The exact solution (9) is indeed the solution for the linear problem (4) in these cases. 

The simulation of the solution for 𝑡 = 0 … 2 and 𝑥 ∈ [−4𝜋, 4 𝜋] with Gaussian initial data 𝑒−𝑥2
 is shown in Fig. 2. 

 

Variational Derivation of the Equation 

The equation nonlinear problem can be derived from the Lagrangian formulation 

  ℒ(𝑢, 𝑢𝑡, 𝑢𝑥𝑥) =
1

2
[𝑢𝑡

2 − 𝛽𝑢𝑥𝑥
2 −

2𝛼

(𝑝+1)
𝑢𝑝+1𝑢𝑥𝑥]       (10) 

so that the equation is derived from the Euler-Lagrange equation 

 
𝜕

𝜕𝑡
[

𝜕ℒ

𝜕𝑢𝑡
] −

𝜕2

𝜕𝑥2 [
𝜕ℒ

𝜕𝑢𝑥𝑥
] +

𝜕

𝜕𝑥
[

𝜕ℒ

𝜕𝑢𝑥
] −

𝜕ℒ

𝜕𝑢
= 0           (11) 

The Lagrangian (10) when plugged into the equation (11) indeed yields the main equation (3). 
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Figure 2: Exact solution to the linear biharmonic equation (2), 𝛽 = 1: (a) ℜ(𝑢(𝑡, 𝑥))  (b) ℑ(𝑢(𝑡, 𝑥)) 

 

Nonlinear Problem 

For the nonlinear problem  

𝑢𝑡𝑡 + 𝛽 𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑝𝑢𝑥𝑥 = 0 

one applies, again, the well-known Fourier transforms as in 

the linear case, which are particularly useful for dispersive 

equations. We decompose the solution 𝑢(𝑥, 𝑡) into its Fourier 

modes:  

𝑢(𝑥, 𝑡) = ∫ �̃�(𝑘, 𝑡)𝑒𝑖𝑘𝑥
∞

−∞

𝑑𝑘. 

Substituting this into the equation 𝑢𝑡𝑡 + 𝛽𝑢𝑥𝑥𝑥𝑥 +
𝛼𝑢𝑝𝑢𝑥𝑥  =  0, we obtain the following ordinary differential 

equation for the Fourier transform �̃�(𝑘, 𝑡): 

𝜕2�̃�(𝑘, 𝑡)

𝜕𝑡2 +  𝛽𝑘4�̃�(𝑘, 𝑡) +  𝛼ℱ(𝑢𝑝𝑢𝑥𝑥)(𝑘, 𝑡) =  0,      𝑝 ≥ 1 

where ℱ denotes the Fourier transform and the nonlinear part 

is treated in a special way. 

For time integration, we apply the fourth-order Runge-Kutta 

scheme, as described in the section on numerical method, to 

evolve the Fourier-transformed equation in time. The scheme 

proceeds by computing intermediate steps to approximate the 

solution at each time step, ensuring stability and accuracy for 

moderate to long-time simulations. This method is efficient, 

especially when combined with spectral techniques that 

handle the spatial derivatives in the Fourier domain. This is 

treated and properly implemented in the succeeding sections.  

 

Perturbation Approach 

In the regime where 𝜀 ≪ 1, the nonlinearity can be treated as 

a small perturbation. We expand the solution as a series in 

powers of 𝜀: 

𝑢 =  𝑢0  +  𝜀𝑢1  +  𝜀2𝑢2  + .  .  . 
Here we give complete scheme to be implemented 

For the nonlinear equation: 

𝑢𝑡𝑡 + 𝛽 𝑢𝑥𝑥𝑥𝑥 + 𝛼 𝑢𝑝𝑢𝑥𝑥 = 0 

expand 𝑢(𝑡, 𝑥) in a perturbative series: 
𝑢(𝑡, 𝑥) =  𝑢0(𝑡, 𝑥) +  𝜀𝑢1(𝑡, 𝑥) +  𝜀2𝑢2(𝑡, 𝑥) + 𝜀3𝑢3(𝑡, 𝑥)

+ .  .  . 

where 𝑢0(𝑡, 𝑥) is the solution of the linear equation (2): 

 

Zeroth-Order Equation 

𝑢0(𝑡, 𝑥):            𝑢0,𝑡𝑡 + 𝛽𝑢0,𝑥𝑥𝑥𝑥 = 0 

whose solution is 𝑢0(𝑡, 𝑥) =
1

√1+4𝑖𝛽
𝑒

−
𝑥2

1+4𝑖𝛽.  

First-Order Equation: Next we, substitute  

𝑢(𝑡, 𝑥) = 𝑢0(𝑡, 𝑥) + 𝜀𝑢1(𝑡, 𝑥) 

 into the original equation (1) and collect terms of  𝑂(𝜀) to get 

 𝑢1(𝑡, 𝑥):                        𝑢1,𝑡𝑡 + 𝛽𝑢1,𝑥𝑥𝑥𝑥 = −𝛼𝑢0
𝑝

𝑢0,𝑥𝑥    

where the term 𝑢0
𝑝

𝑢0,𝑥𝑥 is treated as forcing term. 

Second-Order Equation: Substituting again 

𝑢(𝑡, 𝑥) = 𝑢0(𝑡, 𝑥) + 𝜀𝑢1(𝑡, 𝑥) + 𝜀2𝑢2(𝑡, 𝑥) 

and collect terms of 𝑂(𝜀) we get: 

𝑢2(𝑡, 𝑥):       𝑢2,𝑡𝑡 + 𝛽𝑢2,𝑥𝑥𝑥𝑥 = −𝛼(𝑝𝑢0
𝑝−1

𝑢1𝑢0,𝑥𝑥 + 𝑢0
𝑝

𝑢1,𝑥𝑥), 

where higher order nonlinear interactions are included. 

 

Third-Order Equation: Similarly, we collect terms of order 

𝑂(𝜀3) to get: 
𝑢3(𝑡, 𝑥):      𝑢3,𝑡𝑡 + 𝛽𝑢3,𝑥𝑥𝑥𝑥

= −𝛼 (
𝑝(𝑝 − 1)

2
𝑢0

𝑝−1
𝑢1

2𝑢0,𝑥𝑥

+ 𝑝𝑢0
𝑝−1

𝑢2𝑢0,𝑥𝑥 + 𝑝𝑢0
𝑝−1

𝑢1𝑢1,𝑥𝑥 + 𝑢0
𝑝

𝑢2,𝑥𝑥), 

Integration: Finally, we solve for 𝑢1, 𝑢2, 𝑢3, … using 

techniques like Fourier transform or numerical methods. Each 

equation involves the same linear operator applied to different 

source terms, which are derived from lower-order terms. 

Higher order corrections can be computed iteratively, 

although the complexity increases at each step. This method 

provides an accurate approximation for weakly nonlinear 

regimes and offers insight into how the nonlinearity modifies 

the behaviour of the linear dispersive waves. 

Below, we present solutions 𝑢(𝑡, 𝑥) up to third order 

corrections with respect to the choice of nonlinearities and 

dispersion parameters.  
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Figure 3: Evolution (for the nonlinear equation (1)) of the real parts of 𝑢0, 𝑢1, 𝑢2, 𝑢3, �̃�(𝑡, 𝑥) for 𝑝 = 1, 𝛼 = 𝛽 = 1, 𝜀 = 0.1; 

The respective mass and energy conservation of the perturbed solution is presented in Fig 4 

 

 

 
Figure 4: log-plots of the mass 𝑀(𝑡) and energy 𝐸(𝑡) conservation of the perturbed solution 

For (higher nonlinearity) 𝑝 = 2, 𝛼 = 𝛽 = 1, 𝜀 = 0.1, we have the following results for the real parts of 𝑢1, 𝑢2, 𝑢3 shown the 

following figures of Fig.6. 
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Figure 5: Real parts of the correction terms and perturbed solution for 𝑝 = 2, 𝛼 = 𝛽 = 1, 𝜀 = 0.1    
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Imaginary parts of the solutions as described in Fig. 5 is shown as follows, for 𝑝 = 2, 𝛼 = 𝛽 = 1, and perturbation parameter 

𝜀 = 0.1 is shown in Fig. 6. 

 

  

  

Figure 6: The imaginary part of the perturbed solutions with correction terms as in Fig.5 

For 𝑝 = 2, 𝛽 = 𝛼 = 1, keeping 𝜀 = 0.1, we get the imaginary solutions as follows: 

 

 
 

  
Figure 7: Imaginary parts of the perturbed solutions and its correction terms for 𝑝 = 2, 𝛼 = 𝛽 = 1 

 

The perturbation approach is understood to be more efficient 

in terms of numerical implementation than the classical 

numerical approach like the finite difference and the likes. 

This is because it allows higher nonlinear parameters 𝑝 ≥ 2, 

unlike the RK4 implemented in the succeeding sections.  

 

Numerical Methods: Spectral Methods 

In addition to finite difference methods, spectral methods 

offer a highly accurate approach for solving partial 

differential equations, particularly when the solution is 

smooth. Spectral methods rely on approximating the solution 
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as a sum of basis functions, typically Fourier series or 

Chebyshev polynomials. 

For the nonlinear equation (2), we use a Fourier spectral 

method, where the spatial derivatives are computed in the 

Fourier domain. The nonlinear term 𝑢𝑝𝑢𝑥𝑥 is computed in 

physical space, and then transformed back to Fourier space. 

This combination of spectral and physical space calculations 

is known as a pseudo-spectral method. 

The advantage of these spectral methods is that they converge 

exponentially for smooth problems, providing highly accurate 

solutions with fewer grid points compared to finite difference 

methods. Thus, we consider, in our settings, only smooth 

scenarios like Schwarz initial data. However, they require 

periodic boundary conditions or special treatment of 

boundaries. 

 

RK4 - Fourier Transform Set-up 

This is implemented on the equations  

�̃�𝑡𝑡 =  𝐿�̃� + 𝑁[�̃�] 
where 𝐿 is linear operator and 𝑁(𝑢) a nonlinear operator in 𝑢. 

For an equation of the form: 
𝑑𝑢

𝑑𝑡
= 𝑓(𝑡, 𝑢),    𝑢(𝑡0) = 𝑢0  

the RK4 update formula is given by: 

Computation of Intermediate Steps: 

𝐾1 = ℎ 𝑓(𝑡𝑛, 𝑢𝑛), 

𝐾2 = ℎ 𝑓 (𝑡𝑛 +
ℎ

2
, 𝑢𝑛 +

𝐾1

2
),  

𝐾3 = ℎ 𝑓 (𝑡𝑛 +
ℎ

2
, 𝑢𝑛 +

𝐾2

2
),  

𝐾4 = ℎ 𝑓(𝑡𝑛 + ℎ, 𝑢𝑛 + 𝐾3),  
Getting Solution Updating the solution 𝒖(𝒕𝒏, 𝒙): 

𝑢𝑛+1 = 𝑢𝑛 +
1

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4). 

Here ℎ is the time step, 𝑡𝑛 us the current time and 𝑦𝑛 is the 

solution at the current time 𝑡𝑛. 

 

In our case, the time derivative is of second order, therefore 

there is need to convert the equation into a system. Letting 

𝑣 = 𝜕𝑡𝑢, we have the system that 
𝜕 𝑢

𝜕𝑡
=  𝑣  

 
𝜕 𝑣

𝜕𝑡
=  −𝛽 𝑘4 𝑢 − 𝛼 ℱ(𝑢𝑝𝑢𝑥𝑥) 

so that the solution 𝑢(𝑡𝑛, 𝑥) is updated at every instant 𝑡𝑛 for 

all 𝑥. 

 

Mathematical Analysis of RK4 

The RK4 scheme is chose in order that: 

Order of Accuracy: the local truncation error is  𝑂(ℎ5), while 

the global error is 𝑂(ℎ4). This is because the RK4 is a fourth-

order scheme. 

Stability: the solution 𝑢(𝑡, 𝑥) is stable for all 𝑡. This is sequel 

to the fact that RK4 is conditionally stable, and its stability 

depends on the size of the time step ℎ relative to the 

eigenvalues of the differential operator in the equation. 

Energy Conservation: For biharmonic equations, RK4 does 

not inherently conserve energy. Special adaptations or 

symplectic methods might be necessary for long-term 

simulations. 

However, the RK4 method on the nonlinear version may 

suffer numerical instability especially for higher order power 

𝑝 ≥ 2. This is due to the possible accumulation of errors when 

taking the exponents 𝑝 in generating the solution, except, the 

when the dispersion coefficient parameter𝛽 is small. For 

instance, see the solution as shown in the figure below. It, 

moreover, develops singularity as 𝑡 → ∞. 

 

 
Figure 8: Showing the solution for 𝑝 = 1, 𝛼 = 1, 𝛽 = 0.05 
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Figure 9: Showing the real part of the solution 𝑢(𝑡, 𝑥) for 𝑝 = 2, 𝛼 = 1, 𝛽 = 0.05 

 

Singularity is observed in these cases, just as expected, in a 

situation where nonlinearity dominates. As one will notice 

later, the when the dispersion is made stronger and 

nonlinearity is weakened, the dispersion takes over thereby 

having the initial lump dispersing away through the space. 

These are the not surprising since the common property of 

dispersive equations.  

 

 
Figure10: Showing the solution for 𝑝 = 2, 𝛼 = 1, 𝛽 = 0.05 

 

Moreover, we do not get good control of the energy function as it is not preserved for all 𝑡. This is illustrated in the second 

figure in Fig. 11 below. 
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The mass 𝑀(𝑡) of the solution of the nonlinear problem with 𝑝 = 2. 

 
Figure 11: The evolution of mass and energy functions for 𝑝 = 2 𝛼 = 1, 𝛽 = 0.05 

 

When 𝛽 = 0.5, we get the following results. The mass remains conserved as in the case for 𝛽 = 0.05, but the energy shows 

significant change while the solution is as shown. 

  

 
Figure 12: Evolution of energy function with 𝛽 = 0.5 and 𝑝 = 2 
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The solution with these parameters is shown in the Fig.13.  

 
Figure 13: evolution of 𝑢(𝑡, 𝑥) for 𝛽 = 0.5, 𝛼 = 1, 𝑝 = 2 

 
Figure 14: the evolution of the real part of the solution 𝑢(𝑡, 𝑥) for 𝛽 = 0.5, 𝛼 = 1, 𝑝 = 2 

 

One notices that in Fig.14 that stronger dispersion causes 

wave packet to disperse quickly. 

 

Derivation of Travelling Wave Solution 

We begin by applying the travelling wave ansatz 𝑢(𝑥, 𝑡) =
 𝑓(𝜉),   𝜉 =  𝑥 − 𝑐𝑡 to reduce the partial differential equation 

to an ordinary differential equation. Substituting  

𝑢(𝑥, 𝑡) =  𝑓(𝜉),        𝜉 = 𝑥 − 𝑐𝑡 

into the nonlinear equation (1), we obtain: 

−𝑐2𝑓′′(𝜉)  +  𝛽𝑓′′′′(𝜉)  +  𝛼𝑓(𝜉)𝑓′′(𝜉)  =  0. 
This equation can be integrated once to give: 

𝛽𝑓′′′(𝜉) + 𝑐2𝑓′(𝜉) +
𝛼

2
𝑓(𝜉)2 = 𝐴 

where A is an integration constant. Multiplying through by 

𝑓′(𝜉) and integrating again yields an energy-like equation for 

𝑓(𝜉): 
𝛽

2
(𝑓′′(𝜉))2 +

𝑐2

2
(𝑓′(𝜉))2 +

𝛼

3
𝑓(𝜉)3 = 𝐶, where C is another 

constant of integration. Solutions to this equation can be 

studied numerically or approximated using perturbation 

methods. Results of this equation can be attained by 

successful implementation as described earlier. 

 

Symmetry Analysis and Conservation Laws 

To further explore the structure of the equation, we perform a 

Lie symmetry analysis. Lie symmetries are transformations 

that leave the equation invariant and can be used to reduce the 

number of independent variables, simplifying the problem. 
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For the nonlinear equation, we seek transformations of the 

form: 

𝑥′ = 𝑓(𝑥, 𝑡, 𝑢),   𝑡′ =  𝑔(𝑥, 𝑡, 𝑢), 𝑢′ =  ℎ(𝑥, 𝑡, 𝑢) 

 that leave the equation invariant (unchanged). Using standard 

techniques from Lie group theory, we find that the equation 

admits scaling symmetries of the form: 

𝑥 →  𝜆𝑥,   𝑡 →  𝜆2𝑡,    𝑢 →  𝜆−1𝑢 

 as well as translation symmetries in 𝑥 and 𝑡 (at least for 𝑝 =
1). These symmetries allow us to reduce the equation to 

simpler forms, potentially leading to exact solutions. 

The conserved quantities associated with these symmetries 

can be derived using Noether’s theorem. For instance, the 

time translation symmetry leads to conservation of energy, 

while 

the spatial translation symmetry leads to conservation of 

momentum. These conserved quantities provide important 

insights into the long-term behaviour of the solutions. 

Lie symmetry analysis is a powerful tool in the study of 

nonlinear partial differential equations, as it can reveal hidden 

structures and simplify the problem. In this case, it helps us 

identify invariant solutions and conserved quantities that 

govern the evolution of the system. 

 

RESULTS AND DISCUSSION 

The linear equation (2) admits an exact solution, especially 

for 𝛽 = 1, and its solution is projected to attain the solution 

for the nonlinear biharmonic equation (1) via perturbation 

approach. It has been observed that, in the strongly nonlinear 

and weakly dispersive regime, the perturbative solution 

agrees well with the numerical solutions implemented via 

RK4 scheme. This is evident from the fact that, we cannot 

maintain stability of the RK4 scheme as we take strongly 

dispersive terms, unless slightly weaker dispersive, as shown 

in the Figures Fig. 8-14.  It shows employing a hybrid 

approach helps a lot, particularly in the case analytical one is 

not easily implementable fully.  

The results as found and shown in the Fig. 3 – Fig. 7 show 

construction can be constructed up to choice of the 

nonlinearity exponent for the perturbation unlike when the 

solution is constructed numerically. Overall, the nature of the 

solutions is a focusing wave-packet or dispersive waves. An 

initial lump decomposes and propagate through space 

whereby singularity is formed (blow-up) for larger 𝑝 ≥ 2 and 

𝛼 ≥ 1 and disperses away otherwise. Such behaviour is 

observed in NLS equation, see Sulem & Sulem (1999), where 

the equation is classified as critical, subcritical and 

supercritical depending on the nonlinearity exponent involved 

in the NLS equation. Our solutions indicate that the equation 

is subcritical for 𝑝 < 2 and supercritical for 𝑝 ≥ 2 for a fixed 

𝛼 = 1 and weaker 𝛽 ∼ 1. It is guaranteed that having 𝛽 ∼ 0, 

the solution blows up, as an obvious result. Nevertheless, the 

equation appears to simulate wave phenomenon, such as 

shock waves and light pulses, that are strongly sensitive to the 

dispersion, see Ablowit & Segur (1991), Agrawal (2019). 

The trace of conservation of energy and mass, in all the cases, 

the RK4 scheme does remarkably well for that of mass, 

thereby implying the conservation nature of the dynamical 

equation. The wiggly tails we see in the tracing of the mass 

and energy using perturbation is as a result of truncations of 

the expansion of the terms. This can somewhat be improved 

when more correction terms are added.  

The symmetry analysis and the travelling wave approach 

reveals that variant and special classes of solutions, including 

solitary waves and periodic solutions can be obtained. 

However, there is need for robust approach towards 

enhancing the existing methods that could handle well the 

obtained travelling wave solutions. Moreover, the symmetry 

approach permits one to scale the solution in some reasonable 

way so that one studies its behaviour of solutions effectively.   

 

CONCLUSION  

The study of the nonlinear dispersive equation 𝑢𝑡𝑡 +
𝛽𝑢𝑥𝑥𝑥𝑥 + 𝛼𝑢𝑢𝑥𝑥  =  0 using traveling wave solutions, 

numerical methods, and perturbation techniques has provided 

a comprehensive understanding of the solution behaviour. 

Each approach offers unique insights into different aspects of 

the problem, from exact solutions to numerical 

approximations. This research demonstrates the power of 

combining numerical, perturbation, and symmetry methods to 

tackle complex nonlinear dispersive equations. Future work 

could focus on extending the analysis to include different 

forms of nonlinearity or higher-dimensional generalizations 

of the equation, e.g. for 𝑝 ≥ 2. 
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