
FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 129

8

COST-COGNIZANT TEST CASE PRIORITIZATION FOR SOFTWARE PRODUCT LINE USING GENETIC

ALGORITHM

*1Bello, A. and 2Alhassan, H. M.

1Department of Computer Science, Usmanu Danfodiyo University, Sokoto.

2Department of Computer Science, Federal Polytechnic Nasarawa.

*Corresponding authors’ email: Kiyawa99@gmail.com Phone: +2348035534197

ABSTRACT

Software Product Line (SPL) is a family of related software systems with some commonalities and variabilities

concerning features and relationships. SPL tends to reduce development and maintenance costs, increase

quality, and decrease time to market. Due to its unique features, most software companies are moving from

single software to SPL. A feature describes the behavior and capability of SPL displayed in a Feature Model.

Moreover, testing of SPL is a difficult task as compared to a single system, based on this, a test case

prioritization is needed to order test cases best on its importance. In this study, a cost-cognizant test case

prioritization for software product line that uses path-based testing to identify the possible execution approaches

was proposed. The path was extracted from a feature model of SPL obtained from FeatureIDE. Further, a

Genetic Algorithm (GA) was used to prioritized test cases based on the rate of fault detection per unit test cost.

The approach was evaluated using the Average Percentage of Fault Detection per Cost (APFDc) metric across

four program objects (Video Store Versions VS1, VS2, VS3, and VS4). For the result, the proposed approach

achieves higher performance compared to the existing methods namely CEC, RNDP and NOP. Specifically,

APFDc scores reached 94.48% for VS1, 91.84% for VS2, 90.93% for VS3, and 71.81% for VS4, confirming

the effectiveness and efficiency of the method in improving fault detection while reducing testing cost.

Keywords: Test Case Prioritization, Test Suite, Software Product Line, Genetic Algorithm

INTRODUCTION

Software engineering is mostly about developing a set of

single software products rather than developing a set of

related software product lines (SPLs) by reusing a common

set of features. On the other way round, SPL is among the

widely used means for capturing and handling commonalities

and variabilities of many applications of a target domain

(Ensan et al., 2011). The SPL differences and commonalities

are presented through a Feature Model (FM). A FM describes

the behavior and capability of a software system present in a

tree-like structure whose nodes are the domain features, and

the edges are the interaction between the features (Qureshi,

2018). Figure 1 shows the example of a feature model

representing an SPL Electronic shop (E-shop). The automated

analysis of FM based on the information extracted from the

computer was presented and only a valid combination of

features otherwise known as configuration undergoes

configuration processes. Given this, the analyses of SPL

reduced the development and maintenance cost, increased

quality, and decreased time to market.

However, the possible number of configurations of FM

increases exponentially based on the size of the feature model

and as such, the time and effort needed for testing of SPL will

increase which might lead to combinatorial explosion.

Outside the context of SPL, testing of a single software

application is easier as compared to SPL, to deal with such a

scenario, it is important to ensure that, fault is free by the

analysis of all its potential products comprehensively to

ensure the use of tools that have been developed for

penetration testing with the purpose of raising the level of

security strength (Aminu et al., 2020). For example, testing

the e-shop model obtained from SPLOT repository required

testing of more than 1 billion of products (Sanchez et al.,

2014) which makes testing a difficult task. In the context of

this, there have been different attempts used to reduce the

stress of testing by using regression testing techniques

(Sanchez et al., 2014; Bello, 2019; Al-Hajjaji et al., 2014;

Devroey et al., 2016).

Regression testing (RT) can be performed when changes are

made to existing software functionality in such a way that the

behaviors of the existing software are not altered. Among the

RT are Test Suite Minimization (TSM), Test Case Selection

(TCS), and Test Case Prioritization (TCP). TSM techniques

aim to identify redundant test cases and remove them from the

test suite to reduce the size of the test suite. TCS is concerned

with the problem of selecting a subset of test cases that will

be used to test the changed parts of the software and TCP

deals with the identification of the ideal ordering of test cases

based on some performance goals. One performance goal is

the rate of fault detection which is to measure how fast test

cases revealed faults (Yoo & Harman., 2010). The most

promising technique is the TCP technique which can schedule

test cases for execution so that attempt to increase their

effectiveness or efficiency at meeting some performance goal

(Raju, 2012). E.g., to increase the rate of fault detected, a

tester needs to order test cases based on the number of faults

detected by the test cases in the preceding executions of a test

suite. As regards to benefit derived from using TCP, it is

proving to provide a perfect result combined with an

evolutionary algorithm (Bello, 2019).

To this end, An Evolutionary Algorithms (EAs) as a search-

based methods that mimic the natural biological evolution

and/or the social behavior of species was presented. EA have

been developed to arrive at near-optimum solutions to large-

scale optimization problems (Elbeltagi et al., 2005). More

specifically, The Genetic algorithm (GA) for this study, It is

among the types of EA that increases the population of

chromosomes by continuously replacing one with another

based on fitness function assigned to each chromosome.

Furthermore GA start with generation of test

cases/chromosomes for product line and gradually improve

the quality of the test cases by evolving them in a control

manners (Ensan et al., 2012).

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 9 No. 9, September, 2025, pp 129 – 138

DOI: https://doi.org/10.33003/fjs-2025-0909-2901

mailto:Kiyawa99@gmail.com
https://doi.org/10.33003/fjs-2025-0909-2901

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 130

In this paper, An Evolutionary cost-cognizant test case

prioritization for SPLs was proposed. This approach aims to

detect faults while minimizing cost. To demonstrate the

implementation of this study, a path-based testing approach

was applied to source code of an extracted feature model and

its coverage information. The approach works by taking the

executing test case cost presented in Table 1 and the severities

of the exposed fault depicted in Table 2 as input from feature

models. Each test case information is collected from the

previous regression testing activities. Feature/Test case

repository holds the generated optimal order of the existing

test suite to enable reuse in future regression testing. As soon

as prioritization is applied, the proposed study inputs the

information about the test cases to the ECRTCP algorithm

whereby the algorithm will search for that order of test cases

effectively using the information retrieved from the

repository.

For the implementation of the approach, a prototype was

developed for Regression test case prioritization for software

product lines using Genetic Algorithm. The feature model of

the illustrative example was extracted from featureIDE of

Eclipse. After the extraction, the feature models are updated

and used a path-based testing approach to select the paths,

then the prioritized test cases were encoded. A Genetic

Algorithm (GA) was applied for software product line.

Starting with the generation of an initial population, followed

by Crossover, and finally Mutation operator. The fitness

functions were determined using the Award value formula

and the percentage score from the Average Percentage of

Fault Detection Per Cost (APFDc).

The approach was evaluated using an SPL object program

with four different versions. The Mujava tool, based on

(Fischer et al., 2018) was used to introduce mutants into the

source code of the program objects. The results showed that

the proposed approach achieved the highest scores compared

to other methods.

Related Works

The field of regression test case prioritization for Software

Product Lines (SPLs) has seen several key developments that

aimed at improving test case cost and fault detection rate. A

common goal across many studies is to select and prioritize

the most important test cases that can reveal faults in a timely

manner.

Several authors have proposed different approaches to

address the mentioned challenges. Ensan et al., (2011)

proposed a goal-oriented approach that selected the most

important features to reduce the test space and prioritize the

remaining test cases based on vital features. by identifying

those features that are more important and need to be tested.

This method aims to make the testing process more

manageable and effective. Similarly, Raju, (2012), presented

a different framework called Prioritization Factors (PF) for

SPLs. The framework considers a concrete factor such as test

case length, code coverage, data flow, and faults proneness,

as well as abstract factors like perceived code complexity and

severity of faults found by prioritized test cases.

Consequently, other researchers have explored different

approaches for prioritization. (Sanchez et al., 2014) presented

a TCP technique that shows an increase in the rate of early

fault detection for SPL. The technique was based on five

prioritization criteria to schedule the execution of test cases to

allow faster feedback and decrease the debugging efforts. Al-

Hajjaji et al., (2014) introduced a similarity-based

prioritization technique that help to reduce the number of

products under test by generating new ones. They also (2017)

proposed a delta-oriented modeling approach on similarity

measures to find the differences among products of SPLs.

Both of these methods focus on leveraging product

similarities to enhance fault detection. (Elbaum & Rothermel.,

2001; Malishevsky et al., 2006) proposed new metrics for

accessing the rate of fault detection of prioritized test cases.

The metric assumed that test case cost and fault severity vary,

while in practice it does.

As a significant area to focus is cost-cognizant for SPL.

Kumar, (2017) proposed a cost-based test case prioritization

technique for a software product line. This approach, applied

to test case prioritization, that considers varying test case costs

and fault severity. This study highlights the need to consider

economic factors in the prioritization process.

Genetic Algorithm

Researchers have also explored the use historical data and

algorithms to improve prioritization,

Tulasiraman and Kalimuthu, (2018) proposed a cost-

cognizant history-based test case prioritization approach that

utilizes the historical information of test cases, such as cost of

test cases, fault identified by test cases, and severity of faults

for prioritization. Bello, (2019) proposed a cost-cognizant

test case prioritization for object-oriented programming

software. The approach used path-based integration testing to

identify and extract the possible execution paths from the Java

system dependence graph (JSDG) method. Test cases were

prioritized by evolutionary algorithm. Sabharwal et al., (2010)

and Li et al., (2010) independently proposed a genetic

algorithm (GA)-based approach to identified the optimal test

case path. Additionally, Bello et al., (2018) extended this by

proposing an evolutionary cost-cognizant regression testing

approach. They found that prioritized test cases based on

severity of fault detection rate connected with dependency

effectively detects severe faults. The current research plans to

use this methodology within the context of SPLs, leveraging

an open-source repository and a feature model from

FeatureIDE.

MATERIALS AND METHODS

Automated analysis of Feature Models

An example of feature model representing an elevator system

SPL shown in Figure 1, was generated using FeatureIDE. This

model illustrate how test cases/features for SPL are prioritized

through a path-based testing approach, with fitness functions

are derived from test case cost and fault severity, as

summarized in Tables 1 and 2.

Table 1: Assigning Cost to Test Cases

Test Case Cost

t1 = t6 = t8 5

t2 = t9 = t11 4

t3= t7 = t10 3

t4 = t13 2

t5 = t12 1

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 131

Table 2: Assigning Severities to Faults

Faults Severities

Fault (1) = Fault (6) = Fault (10) 2

Fault (2) = Fault (8) = Fault (12) 4

Fault (3) = Fault (7) = Fault (13) 5

Fault (4) = Fault (9) 3

Fault (5) = Fault (11) 1

Figure 1: A Feature Model Sample

The study describes a running example for a study on an

Elevator System Design (ES). This example has 21 features,

each with its own relationships. The relationships are grouped

into Mandatory group: which consist of elevator, behavior,

and modes. Optional group: service, priorities, voiceoutput,

callbuttons, security, safety and overloaded. Or relationship:

floorpermission and permissioncontrol. Alternate group:

sabbath, FIFO, shortestpath, Directedcall and undirectedcall

and lastly, cross tree constraint relationship: directedcall

require shortestpath and undirectedcall require FiFO or

shortestpath. In addition, feature Elevator is the basic

framework of the SPL that all variants have in common. In

our running example, firstly, we extracted the FM from

FeatureIDE for eclipse, then we updated it by assigning a path

to each features/test cases as presented in Table 3.

Table 3: Results for SPL Feature Model in Figure 1

Test case Extracted paths

t1 Elevator, behavior, modes, Sabbath

t2 Elevator, behavior, modes, FiFo

t3 Elevator, behavior, modes, shortestpath

t4 Elevator, behavior, service

t5 Elevator, behavior, priorities, rush Hour

t6 Elevator, behavior, priorities, floorpriority

t7 Elevator, behavior, priorities, person Priority

t8 Elevator, voiceoutput

t9 Elevator, cellbuttons, direct cells

t10 Elevator, cellbuttons, undirect cells

t11 Elevator, security, permission, floorpermission

t12 Elevator, security, permission, permissioncontrol

t13 Elevator, safety, overloaded

However, after the selection of test cases, it then continued

with the prioritization of the selected test cases using the

selected test case encoder for representing it properly as

shown in Table 4.

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 132

Table 4: SPL Feature Model Paths Encoded to Integer

Test case Paths

1 1, 2,3,4

2 1,2,3,5

3 1,2,3,6

4 1,2,3

5 1,2,7

6 1,2,8,9

7 1,2,8,10

8 1,2,8,11

9 1,13,14

10 1,13,15

11 1,16,17,18

12 1,16,17,19

13 1,20,21

The encoded solution of the test cases/features which serves

as the initial population was obtained from T = [t1, t2, t3, t4,

t5, t6, t7, t8, t9, t10, t11, t12, t13] to T’ = [1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13]. The initial population was randomly

generated by the encoded test cases based on the generated

random population algorithm as seen in Table 5. The award

value formula was used for the computation of fitness

functions.

Table 5: Initial Population

S/No Chromosome

1 3, 2, 1, 6, 5, 4

2 2, 1, 5, 3, 4, 6

3 5, 3, 6, 2, 4, 1

4 1, 3, 4, 2, 6, 5

5 5, 6, 4, 1, 2, 3

Test Case Prioritization (TCP)

Test case prioritization is among the techniques of regression

testing. The techniques schedule test cases for execution in an

order that attempts to increase their effectiveness at meeting

some performance goal (Rothermel et al., 2001). In such

scenario, running all test cases in an existing test suite can be

challenging due to cost and time constraint. The author above

reported that, an industry having an application of 20,000 line

of code required seven weeks to run its test suite. To resolve

this issue, TCP technique was employed by several

researchers (Kwon et al., 2014; Ramasamy et al., 2008;

Sulaiman et al., 2021).

Evolutionary Algorithm (EA)

EAs are inspired by biological evolution, which consists of

reproduction, selection, crossover, and mutation operators,

hence they focused on evolution as a search strategy. The

main logic of this is to find a near optimal solution by

gradually mutating and recombining these existing solutions

into newer solution so as a fitness function is improved in the

process (Ensan et al., 2012). There are numerous search

algorithms, includes the renowned Genetic Algorithm (GA)

that inspired natural selection processes. Also, it provides the

best solution to optimization and search problems. An

objective function (fitness function) is well-defined to guide

the search based on the objectives (Markiegi et al., 2017). In

addition, GA can simply be implemented by generating initial

population randomly, selection operator, crossover operators

and mutation operators.

Evolutionary Cost-Cognizant Test Case Prioritization for

Software Product Lines

In this section, we propose the application of regression test

case prioritization techniques in the context of Software

Product Line (SPL). As part of the proposal, we extracted a

feature model sample from a FeatureIDE, and coverage

information were generated from the source code of the

feature model sample by applying path-based testing

approach. This approach tends to prioritize test cases in such

a way that, the test case cost and severity of fault varies, which

gives room for detecting of fault based on its severity using

less cost. Hence, it could provide evidence that when the

testing process is halted, those severe faults will be detected

using less cost. In view of this, it gives faster feedback about

the system under test and detection of fault will be done earlier

(Elbaum et al., 2002).

Figure 2 shows an overview of the test case prioritization

process for SPL and how our approach fits on it. In the

beginning, the approach started with the feature model

extractor where the already designed feature model with its

source code for this study was selected from FeatureIDE. The

feature model was updated via its source code to suit our

study. In addition, the selected test cases served as an input to

the prioritization components whereby the test case encoder

served as an encoder that convert test cases to numeric integer.

Hence, the encoded integer now served as the solution to the

problem where the initial population was generated randomly

from the encoded integers. To obtain the size of the initial

population, a random population of that size of test cases was

generated. In that case, there is a need to compute the fitness

value of the population by assigning costs to test cases and

severities to faults, information from history of the previous

TCP was employed. Fitness value computation can be

achieved based on the cost of test cases that revealed faults

and the severities of the revealed faults executed during the

preceding TCP. Based on this, the initial population which

can be referred to as (set of chromosomes) and the affected

statements for each selected test cases were used to computes

the fitness of each chromosome. Test case award value

formula and APFDc are used for the computation and

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 133

evaluation of the fitness functions respectively. The

implementation of the proposed approach is presented in the

next section.

Figure 2: Overview ECRTCP for SPL

Test Case Prioritization Problem

Several TCP approaches for SPL are studied and their

efficacies in terms of faults detection are evaluated. Most of

the earlier published work (Malishevsky et al., 2006)

assumed that all test cases are equally expensive, and all faults

are equally severe, but in practice it is not. TCP can simply be

defined as:

Given: A set of test suite Ts, A set of permutation P of Ts, and

A function f, from 𝑃𝑇𝑠 → 𝑅 to the real numbers (default).

Problem: find 𝑇𝑠′′ ∈ 𝑃𝑇𝑠 such that, (∀𝑇𝑠′′)(𝑇𝑠′′ ∈
𝑃𝑇𝑠)(𝑇𝑠′′ ≠ 𝑇𝑠′)[𝑓(𝑇𝑠′) ≥ 𝑓(𝑇𝑠′′)].
Where: PTs is the set of possible prioritization orders of Ts

and f is an objective function that applied to any order which

yield an award value for that order.

Test Case Award Value (Ak)

The award value of test case (Ak) determines the position of

test cases. When calculating for K-th, valid configuration was

needed for software product line to calculate the award value

of each feature/test case (gene) in a chromosome which is

calculated by the below equation (1)

𝐴𝑘 = 𝑓𝑘 ×
𝑑𝑓𝑐𝑟𝑖𝑡𝑘−1

𝑐𝑜𝑠𝑡𝑘−1
 (1)

Where: fk: - number of faults executed by test case in the kth

configuration

dfcritk-1: - total severities of the faults exposed by the test case

and

costk-1: - total cost of test cases in kth-1 configuration. Test case

with the highest award value will be executed first follow by

the next.

Average Percentage of Fault Detection Per Cost (APFDc)

Since the goal of the proposed approach is to find the order of

test suite that detects more severe faults at a lower cost. The

cost-cognizant metrics APFDc was calculated by the formular

in equation (2)

𝐴𝑃𝐹𝐷𝑐 =
∑ (𝑓𝑖×(∑ 𝑡𝑗−

1

2
 𝑛
𝑗=𝑇𝐹𝑖

𝑡𝑇𝐹𝑖
)𝑚

𝑖=1)

∑ 𝑓𝑖
𝑛
𝑖=1 ×∑ 𝑡𝑗

𝑚
𝑗=1

 (2)

Let 𝑓𝑖 be the fault severity of fault 𝑖 for ordering Ts, 𝑡𝑗 be the

cost of 𝑗−𝑡ℎ test case in the chromosome and TFi be the first

test case in the chromosomes that detects the fault i.

Implementation of the Proposed Approach

The main idea of this work is to ensure that, the proposed

approach, evaluate fitness function and compute-award-value

formula works together to prioritize test cases during TCP.

Test Case Award Value Computation

Test case award value in equation 1 determine the position of

test cases whereby, as it input, it takes in CVRInfo (coverage

information), changed objects, test case cost, test suite, feature

criticalities, test case criticality and finally faults locations.

Test case award value was returned as its output.

In the beginning, the Award Value formula was used to

compute the award value of each gene (test case, feature) in a

chromosome. The below examples give the detailed

explanation on how the genes were computed. In

chromosome1 i.e., C1 = {3, 2, 1, 6, 5, 4} are computed by

collecting the feature information based on the coverage of

the genes that formed the chromosomes.

The first genes (feature, test case) A3 of chromosome1

transverses 4 paths i.e., t3 = {Elevator, behavior, modes,

shortestpath}

A3 = 4 * the criticality of the revealed faults/ cost of executing

gene 3

According to Table 4.1, the executing cost of t3 (gene3) is 3,

i.e

A3 = 4 * (1+2+3+6)/3 = 16

Gene2 (feature2) executes 4 statements i.e., t2 = {Elevator,

behavior, modes, FiFo}

A2 = 4* (1+2+3+5)/4 = 11

Gene1 (feature1) executes 4 statements i.e., t1 = {Elevator,

behavior, modes, sabbath}

A1 = 4 * (1+2+3+4)/5 = 8

Gene 6 (feature6) executes 4 statements i.e., t6 = {Elevator,

behavior, priorities, floorpriority}

A6 = 4 * (1+2+8+9)/5 = 16

Gene5 (feature5) executes 3 statements i.e., t5 = {Elevator,

behavior, priorities, rush Hour}

A5 =3* (1+2+7)/1 =30

Gene 4 (featue4) executes 3 statements i.e., t4 = {Elevator,

behavior, service}

A4 = (1+2+3)/2 = 9

The award value of the selected 6 test cases (features, genes)

are calculated in Table 6.

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 134

Table 6: The Award Value of Calculated Features

S/No Gene (Test Case/ Feature) Award value (A) Prioritized Test Cases

1 1 8 t5

2 2 11 t6

3 3 16 t3

4 4 9 t2

5 5 30 t4

6 6 16 t1

The prioritized test cases T’ = {5, 6, 3, 2, 4, 1}

APFDc Computation

Using the APFDc formula in equation 2, the approach computes the fitness values of the chromosomes in Table 5 as shown in

Table 7

Table 7: Initial Population and Their Fitness Values

S/No Chromosome Fitness value (VcVs)

1 3, 2, 1, 6, 5, 4 0.596

2 2 ,1, 5, 3, 4, 6 0.717

3 5, 3, 6, 2, 4, 1 0.596

4 1, 3, 4, 2, 6, 5 0.492

5 5, 6, 4, 1, 3, 2 0.492

6 5, 6, 3, 2, 4, 1 0.642

Test Case Selection

Here, the best two chromosomes taken to the next generation

for production are selected. The selected chromosomes with

higher fitness functions are excellent for next generation

chromosomes. The initial population chromosome and their

respective fitness values are shown in Table 7. Based on the

given table, chromosomes 2 and 6 have the highest fitness

value and therefore, are considered fit for production in the

next generation.

P1 = 2, 1, 5, 3, 4, 6

P2 = 5, 6, 3, 2, 4, 1

Crossover

In this approach, i.e., ECRTCP used a single point crossover

on the selected chromosomes (P1 & P2). The crossover was

done by generating an integer number n between 1 and the

chromosomes size. Based on the size of our chromosomes

which is 6, the n (random integer number) was chosen

between n-1 and 6 to be the point of crossover. The child

chromosome (C1, C2) produced from the parent

chromosomes (P1& P2) are shown in figure 3. Hence, the

crossover point as regard to this case was chosen to be k=3.

Figure 3: Diagrammatic Representation of Crossover

C1 = child 1 chromosome = {2, 1, 5, 6, 3, 4} and

C2 = child 2 chromosome = {5, 6, 3, 2, 1, 4}

Mutation

In this approach i.e., ECRTCP used Mutation to selects two

random integer numbers from 0 to the size of the

chromosomes minus 1, which will be from 0 to 5. Two integer

numbers 1 and three were selected for which the number of

the position selected are switched as shown in Figure 4.

Hence, based on the mutation operation carried out, two new

child chromosomes were produced (C1 and C2).

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 135

Figure 4: Diagrammatic Representation of Mutation Operation on Childs’ Chromosomes

C1 = {2, 3, 5, 6, 1, 4} and

C2 = {5, 1, 3, 2, 6, 4}

Finally, we compute the fitness values of the newly

chromosomes produced. Table 8: shows the first generation

and their fitness values.

Table 8: First Generation and their Fitness Values

S/No Code Chromosome Fitness Value

1 P1 2, 1, 5, 3, 4, 6 0.717

2 P2 5, 6, 3, 2, 4, 1 0.675

3 C1 2, 3, 5, 6, 1, 4 0.590

4 C2 5, 1, 3, 2, 6, 4 0.718

After the completion of the fitness values score of the newly

produced chromosomes, the two best chromosomes were

selected for reproduction. Whereas the remaining worse

chromosomes are discarded from the population. This process

continued until it reached termination stage.

RESULTS AND DISCUSSION

In this section, an experiment is presented to answer the

following research questions;

RQ1: How can a GA-based evolutionary approach be used to

propose test case prioritization for software product line?

RQ2: How can the proposed approach increase the Average

Percentage of Fault Detection per Cost (APFDc) of test case

prioritization for software product line?

Firstly, the experimental settings are described, followed by

the explanation of the experimental results.

Experimental Settings

To assess our approach, we developed a prototype

implementation for the proposed approach i.e., Test Case

Prioritization for Software Product Lines using Genetic

Algorithm (GA). The prototype inputs a program object and

TCP approach and generates an ordered set of test cases. We

used an open-source repository to obtain the program objects

for this study (Ritterman & Klein, 2009). All the experiments

performed were carried out on the same computer having the

following specifications. HP, 2.00 GHz, 4.00GB RAM, 64-

bit OS, x64-based processor, Java SE Development Kit (64-

bit), FeatureIDE for Eclipse, and Mujava tool.

1. Models: For our experiment, we selected 1 program

object having four different versions from open source

repository (Ritterman & Klein, 2009). Table 9 lists the

characteristics of the model namely: Object Program,

Line of Code (LOC), Number of Classes (NOC),

Number of Methods (NOM), Number of Tests (NOT),

Traditional Mutants (#TM), Class Mutants (#CM), and

All Mutants (#AM) are presented.

Table 9: Program Objects Used in our Experiments

Video Store
Program Object

LOC NOC NOM NOT #TMs #CMs #Ams

V1 218 3 18 18 235 3 238

V2 241 3 18 18 387 3 390

V3 260 4 22 22 396 4 408

V4 243 4 26 26 Nil Nil Nil

2. Seeding of Fault: In order to measure the efficiency and

effectiveness of the approach, a mutation operator named

Mujava (μjava) was used to seed faults into the code of

SPL. Several researchers (Ma & Offutt, 2016; Bello,

2019) used it to evaluate their work. Similarly, the source

program of the selected program objects was compiled

and the .class file was placed in classes sub directory

under Mujava directory. After executing the Mujava

tool, the original program was mutated into a modified

program, and it was stored in a result subfolder under

Mujava directory. All the changes obtained when

running the program are in the result folder as mutation

log.

3. Evaluation Metric: To evaluate how fast severe faults

are detected with minimal cost during testing, the

Average Percentage of Fault Detection per Cost

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 136

(APFDc) metric was used (Bello, 2019; Askarunisa et

al., 2010; Bello et al., 2018; Tulasiraman & Kalimuthu,

2018). This metric has been discussed in section III.

Experimental Setup

For each model presented in Table 9, a series of steps were

performed, consisting of a test to treatment on the selected

measures. A Randomized Complete Block Design (RCBD)

was chosen for the study, with the experiment blocked on

each object to ensure that each object used all the treatments

only once. Each of the four treatments was randomly assigned

to four program objects to run the experiment. Additionally,

the faulted features for each program object were generated

and compiled only once, which allowed for other approaches

to used. The generated faulted features are stored temporary

in features pool for reuse. Finally, for the analysis, the APFDc

metric was used to compare the presented approach with an

existing one with the help of descriptive statistical analysis

Experimental Results

Table 10 presented the experimental data of APFDc together

with four versions of SPL video store used in this study. The

best score in each row is highlighted in boldface and the

average scores are shown in the last column. As illustrated,

among all the experimental object used for the experiment,

ECRTCP was the approach with the highest APFDc measure

having the highest percentage scores as 94.48 for VS4,

91.84% for VS3, 90.93% for VS2 and 71.81% for VS1.

Furthermore, for the second-best approach, CEC had the

following scores, VS2 (79.01%), VS1 (76.72%),), VS3

(76.39%) and VS4 (76.16%). followed by RNDP had the

highest score as (80.77%) VS4, followed by the remaining

scores as (72.93%) VS3, (69.82%) and (50.44%). The

program object with least APFDc had a highest score for VS4

as (62.5%), followed by VS1 with (58.33%), then, VS3

(51.84%) and VS2 (48.34%). The approach with the least

APFDc results were NOP and RNDP having the lowest

APFDc results on three program objects. This suggested that

those with highest APFDc score used cost in their approaches.

Table 10: Experimental Data of APFDc

Video

store

Program Object APFDc

LOC NOC NOM NOT #TMs #CMs #AMs NOP RNDP Km2017 ECR TCP

Version 1

(VS1)

218 3 18 18 235 3 238 58.33 50.44 76.72 78.51

Version2

(VS2)

241 3 18 18 387 3 390 48.34 69.82 79.01 90.93

Version3

(VS3)

260 4 22 22 396 4 408 51.84 72.93 76.39 91.84

Version4

(VS4)

243 4 26 26 NIL NIK NIL 62.50 80.77 79.16 94.48

Average 44.40 68.49 77.82 88.94

Furthermore, the comparison of APFDc observed from the experimental data in Table 10 was illustrated in Figure 5 as a means

of statistical approach.

Figure 5: APFDc Analysis

Hence, with the results obtained from our computations on all

the object programs, we decided to further the study based on

the APFDc average scores on all the approaches. Bar chart

was employed for this statistical analysis on all the

approaches represented in Figure 6.

0

20

40

60

80

100

Version1(VS1) Version2(VS2) Version3(VS3) Version4(VS4)

A
P

FD
c

Prioritization Approaches

ECRTCP CEC RNDP NOP

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 137

Figure 6: Average APFDc

The answer to RQ1 and RQ2 was solved from the results

obtained. As regards to RQ1, the results shows that GA-based

evolutionary approach is effective for prioritization of test

cases for software product line. Concerning RQ2 the results

shows that the proposed approach increases the Average

Percentage of Fault Detection per Cost (APFDc) of test case

prioritization for software product line as compared with other

approaches which shows that, our approach has the highest

percentage score.

Threat to Validity

The study’s validity is threatened by several key assumptions;

a. Issues of reuse without modification, it assumes that the

features, faults, and test pools, which were not selected based

on any principles, are sufficient for the experiment. There’s

no assurance that the test pool has the same coverage and fault

detection rate as a rigorously selected one. Secondly, the

Mujava tool was to automatically seed faults, which assumes

that the programs won’t have similar complexity, regardless

of how this is measured. This creates a risk that the

experimental results could vary depending on the specific

fault injected.

b. To determine the efficacy of the prioritization approach,

APFDc was not the only measures that could achieved that.

The approach does not count for the possibilities that faults

and test cases may have different severities and costs, it can

partially capture the essential aspect of prioritization.

c. An evolutionary search and optimization based on genetic

algorithm concept designed for finding the optimal ordering

of test cases was used. The algorithm may not only find the

true optimal ordering of the experiment. This is because, the

approach was conventional and intentionally ignored several

factors: the cost of human intervention, the cost of debugging,

and the time spent on prioritizing test cases.

However, it would have been more effective to use real faults

and faults injected by hand. Although, the analysis assumes

that all parts of the program objects were considered.

CONCLUSION

In this paper, we presented an automated regression test case

prioritization for software product line. The approach was

implemented in java and used the FeatureIDE tool to create

the feature model. It utilized a Genetic Algorithm based on

foundational theoretical concepts.

Similarly, the approach ECRTCP was empirically evaluated

and compared against three other methods: CEC, RNDP and

NOP. The result showed that the proposed method ECRTP for

SPL had the highest APFDc, indicating that, it effectively

prioritized costs and fault severities.

For the future work. Firstly, is by continuing research in cost-

cognizant for software product lines, by creating a fully

automated regression test case prioritization for software

product lines and lastly, to evaluate this study with a larger

program object.

REFERENCES

Al-hajjaji, M., Lity, S., Lachmann, R., Th, T., Schaefer, I., &

Saake, G. (2017). Delta-Oriented Product Prioritization for

Similarity-Based Product-Line Testing.

https://doi.org/10.1109/VACE.2017.8

Al-Hajjaji, M., Thüm, T., Meinicke, J., Lochau, M., & Saake,

G. (2014). Similarity-based prioritization in software product-

line testing. ACM International Conference Proceeding

Series, 1(September), 197–206.

https://doi.org/10.1145/2648511.2648532

Bello, A., Sultan, A. M., Ghani, A. A. A., & Zulzalil, H.

(2018). Evolutionary cost cognizant regression test

prioritization for object-oriented programs based on fault

dependency. International Journal of Engineering and

Technology(UAE), 7(4), 28–32.

https://doi.org/10.14419/ijet.v7i4.1.19486

Bello abdulkarim. (2019). Evolutionary cost-cognizant

regression test case prioritization for object-oriented

programs abdulkarim bello fsktm 2019 6.

Devroey, X., Perrouin, G., Legay, A., Schobbens, P., &

Heymans, P. (2016). Search-based Similarity-driven

Behavioural SPL Testing.

Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002).

Test case prioritization: A family of empirical studies. IEEE

Transactions on Software Engineering, 28(2), 159–182.

https://doi.org/10.1109/32.988497

Elbaum Sebastian; Rothermel, G. (2001). Incorporating

Varying Test Costs and Fault Severities into Test Case

Prioritization.

Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison

among five evolutionarElbeltagi, E., Hegazy, T., & Grierson,

D. (2005). Comparison among five evolutionary-based

44.4

68.49

77.82

88.94

0

10

20

30

40

50

60

70

80

90

100

A
av

er
ag

e
A

P
FD

c

Prioritization Approaches

NOP

RNDP

CEC

ECRTCP

https://doi.org/10.1109/VACE.2017.8
https://doi.org/10.1145/2648511.2648532
https://doi.org/10.14419/ijet.v7i4.1.19486
https://doi.org/10.1109/32.988497

COST-COGNIZANT TEST CASE PRI… Bello and Alhassan FJS

FUDMA Journal of Sciences (FJS) Vol. 9 No. 9, September, 2025, pp 129 – 138 138

 ©2025 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

optimization algorithms. 19, 43–53.

https://doi.org/10.1016/j.aei.2005.01.004y-based

optimization algorithms. 19, 43–53.

https://doi.org/10.1016/j.aei.2005.01.004

Ensan, A., Bagheri, E., Asadi, M., Gasevic, D., & Biletskiy,

Y. (2011). Goal-oriented test case selection and prioritization

for product line feature models. Proceedings - 2011 8th

International Conference on Information Technology: New

Generations, ITNG 2011, 291–298.

https://doi.org/10.1109/ITNG.2011.58

Ensan, F., Bagheri, E., & Gaˇ, D. (2012). Evolutionary

Search-Based Test Generation for Software Product Line

Feature Models. 613–628.

Fischer, S., Lopez-Herrejon, R. E., & Egyed, A. (2018).

Towards a fault-detection benchmark for evaluating software

product line testing approaches. Proceedings of the ACM

Symposium on Applied Computing, 2034–2041.

https://doi.org/10.1145/3167132.3167350

Kumar, S. (2017). cost-based test case prioritization technique

for software product line. 40(115).

Kwon, J., Ko, I., Rothermel, G., & Staats, M. (2014). Test

Case Prioritization Based on Information Retrieval Concepts.

https://doi.org/10.1109/APSEC.2014.12

Li, S., Bian, N., Chen, Z., You, D., He, Y., & Prioritization,

A. T. C. (2010). A Simulation Study on Some Search

Algorithms for Regression Test Case Prioritization. 72–81.

https://doi.org/10.1109/QSIC.2010.15

Ma, Y., & Offutt, J. (2016). Description of muJava ’ s

Method-level Mutation Operators. 1–4.

Malhotra, R. (2015). Empirical research in software

engineering : concepts, analysis, and applications. CRC press.

Malishevsky, A. G., Ruthruff, J. R., Rothermel, G., &

Elbaum, S. (2006). Cost-cognizant Test Case Prioritization.

Department of Computer Science and Engineering University

of NebraskaLincoln Techical Report, TR-UNL-CSE-2006-

0004, 1–41.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13

1.6542&rep=rep1&type=pdf

Markiegi, U., Arrieta, A., Sagardui, G., & Etxeberria, L.

(2017). Search-based product line fault detection allocating

test cases iteratively. 123–132.

https://doi.org/10.1145/3106195.3106210

MS. A. Askarunisa, MS. L. Shanmugapriya, D. N. R. (2010).

Cost and Coverage Metrics for Measuring the Effectiveness

of Test Case Prioritization Techniques.

Panigrahi, C. R., & Mall, R. (2014). A heuristic-based

regression test case prioritization approach for object-oriented

programs. Innovations in Systems and Software Engineering,

10(3), 155–163. https://doi.org/10.1007/s11334-013-0221-z

Qureshi, S. A. (2018). Test Case Prioritization for Software

Product Line Testing. CAPITAL UNIVERSITY OF

SCIENCE AND TECHNOLOGY, ISLAMABAD.

Raju, S. (2012). Factors Oriented Test Case Prioritization

Technique in Regression Testing using Genetic Algorithm.

74(3), 389–402.

Ramasamy, K., Ieee, M., & A, S. A. S. A. M. S. (2008).

Incorporating varying Requirement Priorities and Costs in

Test Case Prioritization for New and Regression testing. 2.

Ritterman, J., & Klein, E. (2009). OOP Lab 3 Exercises :

Instances , Arrays , and Encapsulation Exercises Exercise 1 :

Looking at the Weather. 1–11.

Rothermel, G., Untcn, R. H., Chu, C., & Harrold, M. J. (2001).

Prioritizing test cases for regression testing. IEEE

Transactions on Software Engineering, 27(10), 929–948.

https://doi.org/10.1109/32.962562

Sabharwal, S., Sibal, R., & Sharma, C. (2010). Prioritization

of test case scenarios derived from activity diagram using

genetic algorithm. 2010 International Conference on

Computer and Communication Technology, ICCCT-2010,

481–485. https://doi.org/10.1109/ICCCT.2010.5640479

Sahak, M., Jawawi, D. N. A., & Halim, S. A. (2017). An

Experiment of Different Similarity Measures on Test Case

Prioritization for Software Product Lines. 9(3), 177–185.

Sanchez, A. B., Segura, S., & Ruiz-Cortes, A. (2014). A

Comparison of test case prioritization criteria for software

product lines. Proceedings - IEEE 7th International

Conference on Software Testing, Verification and Validation,

ICST 2014, 41–50. https://doi.org/10.1109/ICST.2014.15

Sulaiman, R. A., Jawawi, D. N. A., & Halim, S. A. (2021). A

Dissimilarity with Dice-Jaro-Winkler Test Case Prioritization

Approach for Model- Based Testing in Software Product

Line. 15(3), 932–951.

Tulasiraman, M., & Kalimuthu, V. (2018). Cost Cognizant

History Based Prioritization of Test Case for Regression

Testing Using Immune Algorithm. Journal of Intelligent

Engineering and Systems, 11(1), 221–228.

https://doi.org/10.22266/ijies2018.0228.23

Wohlin, C., Runeson, P., H¨ost, M., Ohlsson, M. C., Regnell,

B., & Wessl´en, A. (2012). Experimentation in SOftware

Engineering. London: Springer Heidelberg New York

Dordrecht. In Springer Heidelberg New York Dordrecht.

london. https://doi.org/10.1007/978-3-642-29044-2

Yoo, S., & Harman, M. (2010). Regression testing

minimization, selection and prioritization: a survey. Software

Testing, Verification and Reliability, n/a-n/a.

https://doi.org/10.1002/stvr.430

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.aei.2005.01.004y-based
https://doi.org/10.1016/j.aei.2005.01.004
https://doi.org/10.1109/ITNG.2011.58
https://doi.org/10.1145/3167132.3167350
https://doi.org/10.1109/APSEC.2014.12
https://doi.org/10.1109/QSIC.2010.15
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6542&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6542&rep=rep1&type=pdf
https://doi.org/10.1145/3106195.3106210
https://doi.org/10.1007/s11334-013-0221-z
https://doi.org/10.1109/32.962562
https://doi.org/10.1109/ICCCT.2010.5640479
https://doi.org/10.1109/ICST.2014.15
https://doi.org/10.22266/ijies2018.0228.23
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1002/stvr.430

