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ABSTRACT 

Software Product Line (SPL) is a family of related software systems with some commonalities and variabilities 

concerning features and relationships. SPL tends to reduce development and maintenance costs, increase 

quality, and decrease time to market. Due to its unique features, most software companies are moving from 

single software to SPL. A feature describes the behavior and capability of SPL displayed in a Feature Model. 

Moreover, testing of SPL is a difficult task as compared to a single system, based on this, a test case 

prioritization is needed to order test cases best on its importance. In this study, a cost-cognizant test case 

prioritization for software product line that uses path-based testing to identify the possible execution approaches 

was proposed. The path was extracted from a feature model of SPL obtained from FeatureIDE. Further, a 

Genetic Algorithm (GA) was used to prioritized test cases based on the rate of fault detection per unit test cost. 

The approach was evaluated using the Average Percentage of Fault Detection per Cost (APFDc) metric across 

four program objects (Video Store Versions VS1, VS2, VS3, and VS4). For the result, the proposed approach 

achieves higher performance compared to the existing methods namely CEC, RNDP and NOP. Specifically, 

APFDc scores reached 94.48% for VS1, 91.84% for VS2, 90.93% for VS3, and 71.81% for VS4, confirming 

the effectiveness and efficiency of the method in improving fault detection while reducing testing cost. 
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INTRODUCTION 

Software engineering is mostly about developing a set of 

single software products rather than developing a set of 

related software product lines (SPLs) by reusing a common 

set of features. On the other way round, SPL is among the 

widely used means for capturing and handling commonalities 

and variabilities of many applications of a target domain 

(Ensan et al., 2011). The SPL differences and commonalities 

are presented through a Feature Model (FM). A FM describes 

the behavior and capability of a software system present in a 

tree-like structure whose nodes are the domain features, and 

the edges are the interaction between the features (Qureshi, 

2018). Figure 1 shows the example of a feature model 

representing an SPL Electronic shop (E-shop). The automated 

analysis of FM based on the information extracted from the 

computer was presented and only a valid combination of 

features otherwise known as configuration undergoes 

configuration processes. Given this, the analyses of SPL 

reduced the development and maintenance cost, increased 

quality, and decreased time to market. 

However, the possible number of configurations of FM 

increases exponentially based on the size of the feature model 

and as such, the time and effort needed for testing of SPL will 

increase which might lead to combinatorial explosion. 

Outside the context of SPL, testing of a single software 

application is easier as compared to SPL, to deal with such a 

scenario, it is important to ensure that, fault is free by the 

analysis of all its potential products comprehensively to 

ensure the use of tools that have been developed for 

penetration testing with the purpose of raising the level of 

security strength (Aminu et al., 2020).  For example, testing 

the e-shop model obtained from SPLOT repository required 

testing of more than 1 billion of products (Sanchez et al., 

2014) which makes testing a difficult task. In the context of 

this, there have been different attempts used to reduce the 

stress of testing by using regression testing techniques 

(Sanchez et al., 2014; Bello, 2019; Al-Hajjaji et al., 2014; 

Devroey et al., 2016). 

Regression testing (RT) can be performed when changes are 

made to existing software functionality in such a way that the 

behaviors of the existing software are not altered. Among the 

RT are Test Suite Minimization (TSM), Test Case Selection 

(TCS), and Test Case Prioritization (TCP). TSM techniques 

aim to identify redundant test cases and remove them from the 

test suite to reduce the size of the test suite. TCS is concerned 

with the problem of selecting a subset of test cases that will 

be used to test the changed parts of the software and TCP 

deals with the identification of the ideal ordering of test cases 

based on some performance goals. One performance goal is 

the rate of fault detection which is to measure how fast test 

cases revealed faults (Yoo & Harman., 2010). The most 

promising technique is the TCP technique which can schedule 

test cases for execution so that attempt to increase their 

effectiveness or efficiency at meeting some performance goal 

(Raju, 2012). E.g., to increase the rate of fault detected, a 

tester needs to order test cases based on the number of faults 

detected by the test cases in the preceding executions of a test 

suite. As regards to benefit derived from using TCP, it is 

proving to provide a perfect result combined with an 

evolutionary algorithm (Bello, 2019). 

To this end, An Evolutionary Algorithms (EAs) as a search-

based methods that mimic the natural biological evolution 

and/or the social behavior of species was presented. EA have 

been developed to arrive at near-optimum solutions to large-

scale optimization problems (Elbeltagi et al., 2005).  More 

specifically, The Genetic algorithm (GA) for this study, It is 

among the types of EA that increases the population of 

chromosomes by continuously replacing one with another 

based on fitness function assigned to each chromosome. 

Furthermore GA start with generation of test 

cases/chromosomes for product line and gradually improve 

the quality of the test cases by evolving them in a control 

manners (Ensan et al., 2012).  
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In this paper, An Evolutionary cost-cognizant test case 

prioritization for SPLs was proposed. This approach aims to 

detect faults while minimizing cost. To demonstrate the 

implementation of this study, a path-based testing approach 

was applied to source code of an extracted feature model and 

its coverage information. The approach works by taking the 

executing test case cost presented in Table 1 and the severities 

of the exposed fault depicted in Table 2 as input from feature 

models. Each test case information is collected from the 

previous regression testing activities. Feature/Test case 

repository holds the generated optimal order of the existing 

test suite to enable reuse in future regression testing. As soon 

as prioritization is applied, the proposed study inputs the 

information about the test cases to the ECRTCP algorithm 

whereby the algorithm will search for that order of test cases 

effectively using the information retrieved from the 

repository. 

For the implementation of the approach, a prototype was 

developed for Regression test case prioritization for software 

product lines using Genetic Algorithm. The feature model of 

the illustrative example was extracted from featureIDE of 

Eclipse. After the extraction, the feature models are updated 

and used a path-based testing approach to select the paths, 

then the prioritized test cases were encoded. A Genetic 

Algorithm (GA) was applied for software product line. 

Starting with the generation of an initial population, followed 

by Crossover, and finally Mutation operator. The fitness 

functions were determined using the Award value formula 

and the percentage score from the Average Percentage of 

Fault Detection Per Cost (APFDc). 

The approach was evaluated using an SPL object program 

with four different versions. The Mujava tool, based on 

(Fischer et al., 2018) was used to introduce mutants into the 

source code of the program objects. The results showed that 

the proposed approach achieved the highest scores compared 

to other methods. 

 

Related Works 

The field of regression test case prioritization for Software 

Product Lines (SPLs) has seen several key developments that 

aimed at improving test case cost and fault detection rate. A 

common goal across many studies is to select and prioritize 

the most important test cases that can reveal faults in a timely 

manner. 

Several authors have proposed different approaches to 

address the mentioned challenges. Ensan et al., (2011)  

proposed a goal-oriented approach that selected the most 

important features to reduce the test space and prioritize the 

remaining test cases based on vital features. by identifying 

those features that are more important and need to be tested. 

This method aims to make the testing process more 

manageable and effective. Similarly, Raju, (2012), presented 

a different framework  called Prioritization Factors (PF) for 

SPLs. The framework considers a concrete factor such as test 

case length, code coverage, data flow, and faults proneness, 

as well as abstract factors like perceived code complexity and 

severity of faults found by prioritized test cases. 

Consequently, other researchers have explored different 

approaches for prioritization. (Sanchez et al., 2014) presented 

a TCP technique that shows an increase in the rate of early 

fault detection for SPL. The technique was based on five 

prioritization criteria to schedule the execution of test cases to 

allow faster feedback and decrease the debugging efforts. Al-

Hajjaji et al., (2014) introduced a similarity-based 

prioritization technique that help to reduce the number of 

products under test by generating new ones. They also  (2017) 

proposed a delta-oriented modeling approach on similarity 

measures to find the differences among products of SPLs. 

Both of these methods focus on leveraging product 

similarities to enhance fault detection. (Elbaum & Rothermel., 

2001; Malishevsky et al., 2006) proposed new metrics for 

accessing the rate of fault detection of prioritized test cases. 

The metric assumed that test case cost and fault severity vary, 

while in practice it does.  

As a significant area to focus is cost-cognizant for SPL. 

Kumar, (2017) proposed a cost-based test case prioritization 

technique for a software product line. This approach, applied 

to test case prioritization, that considers varying test case costs 

and fault severity. This study highlights the need to consider 

economic factors in the prioritization process.  

Genetic Algorithm 

Researchers have also explored the use historical data and 

algorithms to improve prioritization,  

Tulasiraman and Kalimuthu, (2018) proposed a cost-

cognizant history-based test case prioritization approach that 

utilizes the historical information of test cases, such as cost of 

test cases, fault identified by test cases, and severity of faults 

for prioritization.  Bello, (2019) proposed a cost-cognizant 

test case prioritization for object-oriented programming 

software. The approach used path-based integration testing to 

identify and extract the possible execution paths from the Java 

system dependence graph (JSDG) method. Test cases were 

prioritized by evolutionary algorithm. Sabharwal et al., (2010) 

and  Li et al., (2010) independently proposed a genetic 

algorithm (GA)-based approach to identified the optimal test 

case path. Additionally, Bello et al., (2018) extended this by 

proposing an evolutionary cost-cognizant regression testing 

approach. They found that prioritized test cases based on 

severity of fault detection rate connected with dependency 

effectively detects severe faults. The current research plans to 

use this methodology within the context of SPLs, leveraging 

an open-source repository and a feature model from 

FeatureIDE. 

  

MATERIALS AND METHODS 

Automated analysis of Feature Models 

An example of feature model representing an elevator system 

SPL shown in Figure 1, was generated using FeatureIDE. This 

model illustrate how test cases/features for SPL are prioritized 

through a path-based testing approach, with fitness functions 

are derived from test case cost and fault severity, as 

summarized in Tables 1 and 2. 

 

Table 1: Assigning Cost to Test Cases 

Test Case Cost 

t1 = t6 = t8 5 

t2 = t9 = t11 4 

t3= t7 = t10 3 

t4 = t13 2 

t5 = t12 1 
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Table 2: Assigning Severities to Faults 

Faults Severities 

Fault (1) = Fault (6) = Fault (10) 2 

Fault (2) = Fault (8) = Fault (12) 4 

Fault (3) = Fault (7) = Fault (13) 5 

Fault (4) = Fault (9) 3 

Fault (5) = Fault (11) 1 

 

 
Figure 1: A Feature Model Sample 

 

The study describes a running example for a study on an 

Elevator System Design (ES). This example has 21 features, 

each with its own relationships. The relationships are grouped 

into Mandatory group: which consist of elevator, behavior, 

and modes. Optional group: service, priorities, voiceoutput, 

callbuttons, security, safety and overloaded. Or relationship: 

floorpermission and permissioncontrol. Alternate group: 

sabbath, FIFO, shortestpath, Directedcall and undirectedcall 

and lastly, cross tree constraint relationship: directedcall 

require shortestpath and undirectedcall require FiFO or 

shortestpath. In addition, feature Elevator is the basic 

framework of the SPL that all variants have in common. In 

our running example, firstly, we extracted the FM from 

FeatureIDE for eclipse, then we updated it by assigning a path 

to each features/test cases as presented in Table 3. 

 

Table 3: Results for SPL Feature Model in Figure 1 

Test case Extracted paths 

t1 Elevator, behavior, modes, Sabbath 

t2 Elevator, behavior, modes, FiFo 

t3 Elevator, behavior, modes, shortestpath 

t4 Elevator, behavior, service 

t5 Elevator, behavior, priorities, rush Hour 

t6 Elevator, behavior, priorities, floorpriority 

t7 Elevator, behavior, priorities, person Priority 

t8 Elevator, voiceoutput 

t9 Elevator, cellbuttons, direct cells 

t10 Elevator, cellbuttons, undirect cells 

t11 Elevator, security, permission, floorpermission 

t12 Elevator, security, permission, permissioncontrol 

t13 Elevator, safety, overloaded 

 

However, after the selection of test cases, it then continued 

with the prioritization of the selected test cases using the 

selected test case encoder for representing it properly as 

shown in Table 4. 
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Table 4: SPL Feature Model Paths Encoded to Integer 

Test case Paths 

1 1, 2,3,4 

2 1,2,3,5 

3 1,2,3,6 

4 1,2,3 

5 1,2,7 

6 1,2,8,9 

7 1,2,8,10 

8 1,2,8,11 

9 1,13,14 

10 1,13,15 

11 1,16,17,18 

12 1,16,17,19 

13 1,20,21 

 

The encoded solution of the test cases/features which serves 

as the initial population was obtained from T = [ t1, t2, t3, t4, 

t5, t6, t7, t8, t9, t10, t11, t12, t13] to T’ = [1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11, 12, 13]. The initial population was randomly 

generated by the encoded test cases based on the generated 

random population algorithm as seen in Table 5. The award 

value formula was used for the computation of fitness 

functions. 

 

Table 5: Initial Population 

S/No Chromosome 

1 3, 2, 1, 6, 5, 4 

2 2, 1, 5, 3, 4, 6 

3 5, 3, 6, 2, 4, 1 

4 1, 3, 4, 2, 6, 5 

5 5, 6, 4, 1, 2, 3 

 

Test Case Prioritization (TCP) 

Test case prioritization is among the techniques of regression 

testing. The techniques schedule test cases for execution in an 

order that attempts to increase their effectiveness at meeting 

some performance goal (Rothermel et al., 2001). In such 

scenario, running all test cases in an existing test suite can be 

challenging due to cost and time constraint. The author above 

reported that, an industry having an application of 20,000 line 

of code required seven weeks to run its test suite. To resolve 

this issue, TCP technique was employed by several 

researchers (Kwon et al., 2014; Ramasamy et al., 2008; 

Sulaiman et al., 2021). 

 

Evolutionary Algorithm (EA) 

EAs are inspired by biological evolution, which consists of 

reproduction, selection, crossover, and mutation operators, 

hence they focused on evolution as a search strategy. The 

main logic of this is to find a near optimal solution by 

gradually mutating and recombining these existing solutions 

into newer solution so as a fitness function is improved in the 

process (Ensan et al., 2012). There are numerous search 

algorithms, includes the renowned Genetic Algorithm (GA) 

that inspired natural selection processes. Also, it provides the 

best solution to optimization and search problems. An 

objective function (fitness function) is well-defined to guide 

the search based on the objectives (Markiegi et al., 2017). In 

addition, GA can simply be implemented by generating initial 

population randomly, selection operator, crossover operators 

and mutation operators.   

 

Evolutionary Cost-Cognizant Test Case Prioritization for 

Software Product Lines 

In this section, we propose the application of regression test 

case prioritization techniques in the context of Software 

Product Line (SPL). As part of the proposal, we extracted a 

feature model sample from a FeatureIDE, and coverage 

information were generated from the source code of the 

feature model sample by applying path-based testing 

approach. This approach tends to prioritize test cases in such 

a way that, the test case cost and severity of fault varies, which 

gives room for detecting of fault based on its severity using 

less cost. Hence, it could provide evidence that when the 

testing process is halted, those severe faults will be detected 

using less cost. In view of this, it gives faster feedback about 

the system under test and detection of fault will be done earlier 

(Elbaum et al., 2002).   

Figure 2 shows an overview of the test case prioritization 

process for SPL and how our approach fits on it. In the 

beginning, the approach started with the feature model 

extractor where the already designed feature model with its 

source code for this study was selected from FeatureIDE. The 

feature model was updated via its source code to suit our 

study. In addition, the selected test cases served as an input to 

the prioritization components whereby the test case encoder 

served as an encoder that convert test cases to numeric integer. 

Hence, the encoded integer now served as the solution to the 

problem where the initial population was generated randomly 

from the encoded integers. To obtain the size of the initial 

population, a random population of that size of test cases was 

generated. In that case, there is a need to compute the fitness 

value of the population by assigning costs to test cases and 

severities to faults, information from history of the previous 

TCP was employed. Fitness value computation can be 

achieved based on the cost of test cases that revealed faults 

and the severities of the revealed faults executed during the 

preceding TCP. Based on this, the initial population which 

can be referred to as (set of chromosomes) and the affected 

statements for each selected test cases were used to computes 

the fitness of each chromosome. Test case award value 

formula and APFDc are used for the computation and 
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evaluation of the fitness functions respectively. The 

implementation of the proposed approach is presented in the 

next section. 

 

 
Figure 2: Overview ECRTCP for SPL 

 

Test Case Prioritization Problem 

Several TCP approaches for SPL are studied and their 

efficacies in terms of faults detection are evaluated. Most of 

the earlier published work (Malishevsky et al., 2006)  

assumed that all test cases are equally expensive, and all faults 

are equally severe, but in practice it is not. TCP can simply be 

defined as: 

Given: A set of test suite Ts, A set of permutation P of Ts, and 

A function f, from 𝑃𝑇𝑠 → 𝑅 to the real numbers (default). 

Problem: find 𝑇𝑠′′ ∈ 𝑃𝑇𝑠 such that,  (∀𝑇𝑠′′)(𝑇𝑠′′ ∈
𝑃𝑇𝑠 )(𝑇𝑠′′ ≠ 𝑇𝑠′)[𝑓(𝑇𝑠′) ≥ 𝑓(𝑇𝑠′′)]. 
Where: PTs is the set of possible prioritization orders of Ts 

and f is an objective function that applied to any order which 

yield an award value for that order.  

 

Test Case Award Value (Ak) 

The award value of test case (Ak) determines the position of 

test cases. When calculating for K-th, valid configuration was 

needed for software product line to calculate the award value 

of each feature/test case (gene) in a chromosome which is 

calculated by the below equation (1) 

𝐴𝑘 = 𝑓𝑘 ×
𝑑𝑓𝑐𝑟𝑖𝑡𝑘−1

𝑐𝑜𝑠𝑡𝑘−1
    (1) 

Where: fk: - number of faults executed by test case in the kth 

configuration 

dfcritk-1: - total severities of the faults exposed by the test case 

and  

costk-1: - total cost of test cases in kth-1 configuration. Test case 

with the highest award value will be executed first follow by 

the next.  

 

Average Percentage of Fault Detection Per Cost (APFDc) 

Since the goal of the proposed approach is to find the order of 

test suite that detects more severe faults at a lower cost. The 

cost-cognizant metrics APFDc was calculated by the formular 

in equation (2) 

𝐴𝑃𝐹𝐷𝑐 =
∑ (𝑓𝑖×(∑ 𝑡𝑗−

1

2
 𝑛
𝑗=𝑇𝐹𝑖

𝑡𝑇𝐹𝑖
)𝑚

𝑖=1 )

∑ 𝑓𝑖
𝑛
𝑖=1 ×∑ 𝑡𝑗

𝑚
𝑗=1

  (2) 

Let  𝑓𝑖 be the fault severity of fault 𝑖 for ordering Ts,  𝑡𝑗 be the 

cost of 𝑗−𝑡ℎ test case in the chromosome and TFi be the first 

test case in the chromosomes that detects the fault i.  

 

 

 

 

 

 

Implementation of the Proposed Approach 

The main idea of this work is to ensure that, the proposed 

approach, evaluate fitness function and compute-award-value 

formula works together to prioritize test cases during TCP. 

 

Test Case Award Value Computation 

Test case award value in equation 1 determine the position of 

test cases whereby, as it input, it takes in CVRInfo (coverage 

information), changed objects, test case cost, test suite, feature 

criticalities, test case criticality and finally faults locations. 

Test case award value was returned as its output.  

In the beginning, the Award Value formula was used to 

compute the award value of each gene (test case, feature) in a 

chromosome. The below examples give the detailed 

explanation on how the genes were computed. In 

chromosome1 i.e., C1 = {3, 2, 1, 6, 5, 4} are computed by 

collecting the feature information based on the coverage of 

the genes that formed the chromosomes. 

The first genes (feature, test case) A3 of chromosome1 

transverses 4 paths i.e., t3 = {Elevator, behavior, modes, 

shortestpath} 

A3 = 4 * the criticality of the revealed faults/ cost of executing 

gene 3 

According to Table 4.1, the executing cost of t3 (gene3) is 3, 

i.e  

A3 = 4 * (1+2+3+6)/3 = 16 

Gene2 (feature2) executes 4 statements i.e., t2 = {Elevator, 

behavior, modes, FiFo} 

A2 = 4* (1+2+3+5)/4 = 11 

Gene1 (feature1) executes 4 statements i.e., t1 = {Elevator, 

behavior, modes, sabbath} 

A1 = 4 * (1+2+3+4)/5 = 8 

Gene 6 (feature6) executes 4 statements i.e., t6 = {Elevator, 

behavior, priorities, floorpriority} 

A6 = 4 * (1+2+8+9)/5 = 16 

Gene5 (feature5) executes 3 statements i.e., t5 = {Elevator, 

behavior, priorities, rush Hour} 

A5 =3* (1+2+7)/1 =30 

Gene 4 (featue4) executes 3 statements i.e., t4 = {Elevator, 

behavior, service} 

A4 = (1+2+3)/2 = 9 

The award value of the selected 6 test cases (features, genes) 

are calculated in Table 6. 
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Table 6: The Award Value of Calculated Features 

S/No Gene (Test Case/ Feature) Award value (A) Prioritized Test Cases 

1 1 8 t5 

2 2 11 t6 

3 3 16 t3 

4 4 9 t2 

5 5 30 t4 

6 6 16 t1 

The prioritized test cases T’ = {5, 6, 3, 2, 4, 1} 

 

APFDc Computation 

Using the APFDc formula in equation 2, the approach computes the fitness values of the chromosomes in Table 5 as shown in 

Table 7 

 

Table 7: Initial Population and Their Fitness Values 

S/No Chromosome Fitness value (VcVs) 

1 3, 2, 1, 6, 5, 4 0.596 

2 2 ,1, 5, 3, 4, 6 0.717 

3 5, 3, 6, 2, 4, 1  0.596  

4 1, 3, 4, 2, 6, 5 0.492  

5 5, 6, 4, 1, 3, 2 0.492 

6 5, 6, 3, 2, 4, 1 0.642  

 

Test Case Selection 

Here, the best two chromosomes taken to the next generation 

for production are selected. The selected chromosomes with 

higher fitness functions are excellent for next generation 

chromosomes. The initial population chromosome and their 

respective fitness values are shown in Table 7. Based on the 

given table, chromosomes 2 and 6 have the highest fitness 

value and therefore, are considered fit for production in the 

next generation.  

P1 = 2, 1, 5, 3, 4, 6  

P2 = 5, 6, 3, 2, 4, 1 

Crossover  

In this approach, i.e., ECRTCP used a single point crossover 

on the selected chromosomes (P1 & P2).  The crossover was 

done by generating an integer number n between 1 and the 

chromosomes size. Based on the size of our chromosomes 

which is 6, the n (random integer number) was chosen 

between n-1 and 6 to be the point of crossover. The child 

chromosome (C1, C2) produced from the parent 

chromosomes (P1& P2) are shown in figure 3. Hence, the 

crossover point as regard to this case was chosen to be k=3. 

 

 
Figure 3: Diagrammatic Representation of Crossover 

 

C1 = child 1 chromosome = {2, 1, 5, 6, 3, 4} and 

C2 = child 2 chromosome = {5, 6, 3, 2, 1, 4} 

 

Mutation 

In this approach i.e., ECRTCP used Mutation to selects two 

random integer numbers from 0 to the size of the 

chromosomes minus 1, which will be from 0 to 5. Two integer 

numbers 1 and three were selected for which the number of 

the position selected are switched as shown in Figure 4. 

Hence, based on the mutation operation carried out, two new 

child chromosomes were produced (C1 and C2).             
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Figure 4: Diagrammatic Representation of Mutation Operation on Childs’ Chromosomes 

 

C1 = {2, 3, 5, 6, 1, 4} and  

C2 = {5, 1, 3, 2, 6, 4} 

Finally, we compute the fitness values of the newly 

chromosomes produced. Table 8: shows the first generation 

and their fitness values. 

 

Table 8: First Generation and their Fitness Values 

S/No Code Chromosome Fitness Value 

1 P1 2, 1, 5, 3, 4, 6 0.717  

2 P2 5, 6, 3, 2, 4, 1 0.675 

3 C1 2, 3, 5, 6, 1, 4 0.590    

4 C2 5, 1, 3, 2, 6, 4 0.718 

 

After the completion of the fitness values score of the newly 

produced chromosomes, the two best chromosomes were 

selected for reproduction. Whereas the remaining worse 

chromosomes are discarded from the population. This process 

continued until it reached termination stage. 

 

RESULTS AND DISCUSSION 

In this section, an experiment is presented to answer the 

following research questions; 

RQ1: How can a GA-based evolutionary approach be used to 

propose test case prioritization for software product line? 

RQ2: How can the proposed approach increase the Average 

Percentage of Fault Detection per Cost (APFDc) of test case 

prioritization for software product line?  

Firstly, the experimental settings are described, followed by 

the explanation of the experimental results. 

 

 

 

 

Experimental Settings 

To assess our approach, we developed a prototype 

implementation for the proposed approach i.e., Test Case 

Prioritization for Software Product Lines using Genetic 

Algorithm (GA). The prototype inputs a program object and 

TCP approach and generates an ordered set of test cases. We 

used an open-source repository to obtain the program objects 

for this study (Ritterman & Klein, 2009). All the experiments 

performed were carried out on the same computer having the 

following specifications. HP, 2.00 GHz, 4.00GB RAM, 64-

bit OS, x64-based processor, Java SE Development Kit (64-

bit), FeatureIDE for Eclipse, and Mujava tool. 

1. Models: For our experiment, we selected 1 program 

object having four different versions from open source 

repository (Ritterman & Klein, 2009). Table 9 lists the 

characteristics of the model namely: Object Program, 

Line of Code (LOC), Number of Classes (NOC), 

Number of Methods (NOM), Number of Tests (NOT), 

Traditional Mutants (#TM), Class Mutants (#CM), and 

All Mutants (#AM) are presented. 

 

Table 9: Program Objects Used in our Experiments 

Video Store 
Program Object 

LOC NOC NOM NOT #TMs #CMs #Ams 

V1 218 3 18 18 235 3 238 

V2 241 3 18 18 387 3 390 

V3 260 4 22 22 396 4 408 

V4 243 4 26 26 Nil Nil Nil  

 

2. Seeding of Fault: In order to measure the efficiency and 

effectiveness of the approach, a mutation operator named 

Mujava (μjava) was used to seed faults into the code of 

SPL. Several researchers (Ma & Offutt, 2016; Bello, 

2019) used it to evaluate their work. Similarly, the source 

program of the selected program objects was compiled 

and the .class file was placed in classes sub directory 

under Mujava directory. After executing the Mujava 

tool, the original program was mutated into a modified 

program, and it was stored in a result subfolder under 

Mujava directory. All the changes obtained when 

running the program are in the result folder as mutation 

log.   

3. Evaluation Metric: To evaluate how fast severe faults 

are detected with minimal cost during testing, the 

Average Percentage of Fault Detection per Cost 
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(APFDc) metric was used (Bello, 2019; Askarunisa et 

al., 2010; Bello et al., 2018; Tulasiraman & Kalimuthu, 

2018). This metric has been discussed in section III.  

 

Experimental Setup 

For each model presented in Table 9, a series of steps were 

performed, consisting of a test to treatment on the selected 

measures. A Randomized Complete Block Design (RCBD) 

was chosen for the study, with the experiment blocked on 

each object to ensure that each object used all the treatments 

only once. Each of the four treatments was randomly assigned 

to four program objects to run the experiment. Additionally, 

the faulted features for each program object were generated 

and compiled only once, which allowed for other approaches 

to used. The generated faulted features are stored temporary 

in features pool for reuse. Finally, for the analysis, the APFDc 

metric was used to compare the presented approach with an 

existing one with the help of descriptive statistical analysis  

 

 

Experimental Results 

Table 10 presented the experimental data of APFDc together 

with four versions of SPL video store used in this study. The 

best score in each row is highlighted in boldface and the 

average scores are shown in the last column. As illustrated, 

among all the experimental object used for the experiment, 

ECRTCP was the approach with the highest APFDc measure 

having the highest percentage scores as 94.48 for VS4, 

91.84% for VS3, 90.93% for VS2 and 71.81% for VS1. 

Furthermore, for the second-best approach, CEC had the 

following scores, VS2 (79.01%), VS1 (76.72%),), VS3 

(76.39%) and VS4 (76.16%). followed by RNDP had the 

highest score as (80.77%) VS4, followed by the remaining 

scores as (72.93%) VS3, (69.82%) and (50.44%). The 

program object with least APFDc had a highest score for VS4 

as (62.5%), followed by VS1 with (58.33%), then, VS3 

(51.84%) and VS2 (48.34%). The approach with the least 

APFDc results were NOP and RNDP having the lowest 

APFDc results on three program objects. This suggested that 

those with highest APFDc score used cost in their approaches. 

 

Table 10: Experimental Data of APFDc 

Video 

store 

Program Object APFDc 

LOC NOC NOM NOT #TMs #CMs #AMs NOP RNDP Km2017 ECR TCP 

Version 1 

(VS1) 

218 3 18 18 235 3 238 58.33 50.44 76.72 78.51 

Version2 

(VS2) 

241 3 18 18 387 3 390 48.34 69.82 79.01 90.93 

Version3 

(VS3) 

260 4 22 22 396 4 408 51.84 72.93 76.39 91.84 

Version4 

(VS4) 

243 4 26 26 NIL NIK NIL 62.50 80.77 79.16 94.48 

Average        44.40 68.49 77.82 88.94 

 

Furthermore, the comparison of APFDc observed from the experimental data in Table 10 was illustrated in Figure 5 as a means 

of statistical approach. 

 

 
Figure 5: APFDc Analysis 

 

Hence, with the results obtained from our computations on all 

the object programs, we decided to further the study based on 

the APFDc average scores on all the approaches. Bar chart 

was employed for this statistical analysis on all the 

approaches represented in Figure 6. 
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Figure 6: Average APFDc 

 

The answer to RQ1 and RQ2 was solved from the results 

obtained. As regards to RQ1, the results shows that GA-based 

evolutionary approach is effective for prioritization of test 

cases for software product line. Concerning RQ2 the results 

shows that the proposed approach increases the Average 

Percentage of Fault Detection per Cost (APFDc) of test case 

prioritization for software product line as compared with other 

approaches which shows that, our approach has the highest 

percentage score. 

 

Threat to Validity 

The study’s validity is threatened by several key assumptions; 

a. Issues of reuse without modification, it assumes that the 

features, faults, and test pools, which were not selected based 

on any principles, are sufficient for the experiment. There’s 

no assurance that the test pool has the same coverage and fault 

detection rate as a rigorously selected one. Secondly, the 

Mujava tool was to automatically seed faults, which assumes 

that the programs won’t have similar complexity, regardless 

of how this is measured. This creates a risk that the 

experimental results could vary depending on the specific 

fault injected.  

b. To determine the efficacy of the prioritization approach, 

APFDc was not the only measures that could achieved that. 

The approach does not count for the possibilities that faults 

and test cases may have different severities and costs, it can 

partially capture the essential aspect of prioritization.  

c. An evolutionary search and optimization based on genetic 

algorithm concept designed for finding the optimal ordering 

of test cases was used. The algorithm may not only find the 

true optimal ordering of the experiment. This is because, the 

approach was conventional and intentionally ignored several 

factors: the cost of human intervention, the cost of debugging, 

and the time spent on prioritizing test cases. 

However, it would have been more effective to use real faults 

and faults injected by hand. Although, the analysis assumes 

that all parts of the program objects were considered. 

 

CONCLUSION 

In this paper, we presented an automated regression test case 

prioritization for software product line. The approach was 

implemented in java and used the FeatureIDE tool to create 

the feature model. It utilized a Genetic Algorithm based on 

foundational theoretical concepts.  

Similarly, the approach ECRTCP was empirically evaluated 

and compared against three other methods: CEC, RNDP and 

NOP. The result showed that the proposed method ECRTP for 

SPL had the highest APFDc, indicating that, it effectively 

prioritized costs and fault severities. 

For the future work. Firstly, is by continuing research in cost-

cognizant for software product lines, by creating a fully 

automated regression test case prioritization for software 

product lines and lastly, to evaluate this study with a larger 

program object. 
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