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ABSTRACT 

This study presents a special case of proximal point algorithm for solving linear programming problem (LPP). 

This method, also known as the Alternating Direction Method of multipliers (ADMM), was deployed because 

of its strong convergence properties of the method of multipliers, the decomposability property of dual ascent 

and the potential to solve large- scale structured optimization problems. The update formulas for the LPP were 

derived from the associated augmented Lagrangian with the primal and dual residuals also derived for the 

convergence of the algorithm. The Game theory was re-structured into a LPP amenable to the ADMM. 

Prisoner’s Dilemma in Game theory was tested with the ADMM provided the matrix operator is invertible to 

guarantee its convergence. Other Numerical examples were also tested and it was discovered that the developed 

algorithm performs faster than the conventional simplex method.  
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INTRODUCTION 

Many scientific problems are described by the mathematical 

modeling of the form 

{
𝑑𝑦

𝑑𝑡
(𝑡) = 𝑓(𝑡, 𝑦(𝑡))            𝑡 ∈ [𝑡0, 𝑇],

𝑦(𝑡0) = 𝑦0.
  (1) 

The solutions are known under the global Lipschitz condition 

below 
|𝑓(𝑡, 𝑠1) − 𝑓(𝑡, 𝑠2)| < 𝐿|𝑠1 − 𝑠2|         (2) 

where (𝑡, 𝑠1), (𝑡, 𝑠2) ∈ 𝑑𝑜𝑚(𝑓) such that with the Lipschitz 

constant 𝐿 > 0, the problem (1) has a unique solution on the 

domain 𝑑𝑜𝑚(𝑓).  However, we cannot guarantee the 

analytical solutions of majority of such problems especially 

for Non-smooth differential equations of the delay type. It is 

then necessary to find suitable numerical algorithms to 

ascertain accurate approximated solutions to the problem. The 

numerical integration of (1) under condition (2) is the most 

applicable method in the numerical solution of the 

mathematical modeling of real-life problems. 

The aim of this paper is to deploy the 𝜃  - method for the 

numerical integration of the variant of problem (1) with 

multiple delays(lags); represented in the general form below:  

{
𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦𝑑(𝑡)),   𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑇,
𝑦(𝑡) = 𝜙(𝑡),           𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0              
𝑦(𝑡0) = 𝑦0     

 (3) 

where 𝑦(𝑡) ∈ 𝑅𝑛 , 𝜙(𝑡) ∈ 𝑅𝑛  is a known and piece-wise 

continuous function, 𝑦𝑑(𝑡) = (𝑦(𝑡 − 𝜏1), 𝑦(𝑡 −

𝜏2), … , 𝑦(𝑡 − 𝜏𝑑)) ∈ 𝑅
𝑛𝑑 , 

𝑓: [𝑡0, 𝑇] × 𝑅
𝑛(1+𝑑) → 𝑅𝑛  and the delays 𝜏1, 𝜏2, . . . , 𝜏𝑑  are 

given positive constants with 𝜏 = max{𝜏𝑗}𝑗=1
𝑑 ∈ 𝑅𝑛, hence a 

system of 𝑛 first order DDE. However, this research paper is 

limited to general in-homogeneous linear ODE with multiple 

delays such that the functional 𝑓 in eqn. (3) is expressed in the 

form  

𝑓(𝑡, 𝑦(𝑡), 𝑦𝑑(𝑡)) = 𝑝(𝑡)𝑦(𝑡) + ∑𝑑𝑗=1 𝛼
(𝑗)(𝑡)𝑦(𝑡 − 𝜏𝑗) +

𝑔(𝑡)     (4) 

where the coefficients of the ODE are 𝑛 × 𝑛  dimensional 

variable coefficient matrices with 𝑝(𝑡) ∈ 𝑅𝑛×𝑛, 𝑔(𝑡) =
[𝑔1(𝑡), 𝑔2(𝑡), . . . , 𝑔𝑛(𝑡)]

𝑇  ∈ 𝑅𝑛  is a known continuous 

function representing the external excitation and 𝛼(𝑗)(𝑡) ∈
𝑅𝑛×𝑛 for all 𝑗 = 1,2, . . . , 𝑑 and are continuous everywhere in 

the interval [𝑡0, 𝑇]. Also, the function 𝑓 and the initial (pre-

shaped) function 𝜙(𝑡) = [𝜙1(𝑡), 𝜙2(𝑡), . . . , 𝜙𝑛(𝑡)]
𝑇 ∈ 𝑅𝑛 

satisfy the following conditions: For any constant L, the 

Lipschitz condition holds:  

||𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)|| ≤ ||𝑦1 − 𝑦2||  (5) 

For any 𝑦 ∈ 𝐶1 ∈ [𝑡0 − 𝜏, 𝑇] , the mapping below is 

continuous:  

𝑓: 𝑡 ∈ [𝑡0 − 𝜏, 𝑇] → 𝑦(𝑡)   (6) 

Under the conditions (5) and (6) above, the statement of 

problem, in eqns. (3) -(4), has a unique solution. This method 

can be applied to the work of (Adamu et al., 2023) if 

redesigned into an optimal control model by introducing delay 

terms.   

 

MATERIALS AND METHODS 

A commonly used numerical scheme for the discretization of 

(3) is the forward backward Euler numerical scheme called 

the 𝜃  - method with 𝜃 ∈ [0,1] , the splitting parameter, 

expressed in the form  

𝑦𝑘+1 = 𝑦𝑘 + 𝛿[(1 − 𝜃)𝑓𝑘 + 𝜃𝑓𝑘+1],  (7) 

where 𝑦(𝑡) ≈ 𝑦(𝑡𝑘) = 𝑦𝑘 , 𝑓(𝑡, 𝑦(𝑡)), 𝑦
𝑑(𝑡) 

≈ 𝑓(𝑡𝑘, 𝑦(𝑡𝑘), 𝑦
𝑑(𝑡𝑘 −𝑚𝑗𝛿)) = 𝑓𝑘 for all 𝑗 = 1,2, . . . , 𝑑.  

 

Analysis of the 𝛉 - Method 

Let the linear difference operator defined on the method in 

eqn (7) be 

[𝑦(𝑡); 𝛿] = 𝐶0𝛿𝑦(𝑡) + 𝐶1𝛿𝑦′(𝑡) +
𝐶2𝛿

2𝑦′′(𝑡)+. . . +𝐶𝑝+1𝛿
𝑝+1𝑦𝑝+1(𝑡) + 𝑇𝑛+𝑘 (8) 

𝐶0 = 𝐶1 = 𝐶2 =. . . = 𝐶𝑝+1        𝐶𝑝+2 ≠ 0 (9) 

 

Definition 1: The coefficient 𝐶𝑝+2 is called the error constant, 

the term 𝑇𝑛+𝑘 = 𝐶𝑝+2𝑦
𝑝+2(𝑡) + 𝑂(𝛿𝑝+2)  the local 

truncation error and 𝑝 ≥ 1 the order of the method. 

Equating eqn (8) to the Linear difference operator below 

yields; 

[𝑦(𝑡); 𝛿] = ∑𝑛𝑘=0 (𝛼𝑗𝑦𝑘+𝑗 − 𝛿𝛽𝑗𝑓𝑘+𝑗);   𝑓𝑜𝑟 𝑦𝑘+𝑗 = (𝑦𝑘 +

𝑗𝛿) (10) 

0 = 𝑦𝑘+1 − 𝑦𝑘 − 𝛿[(1 − 𝛿)𝑓𝑘 + 𝜃𝑓𝑘+1] (11) 

Taking the Taylor’s series expansion of the derivatives and 

combining coeficients of like terms in 𝛿𝑘  gives 𝐶0 = 𝐶1 =

𝐶2 = 0 𝑓𝑜𝑟 𝜃 =
1

2
 such that the error constant is 

−1

12
 and the 

order of the method is 𝑝 = 2. 
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Definition 2: A Linear Multistep method of order 𝑝 ≥ 1 is 

said to be consistent if the sum of the coefficient of the first 

characteristics polynomial is equal to zero (∑𝑛𝑘=0 𝑎𝑗 = 0) 

The sum of the coefficients of the first characteristics equation 

of eqn (10) is 
∑𝑛𝑘=0 𝛼𝑗 = −1 + 1 = 0   (12) 

The first characteristics polynomial is 𝜌(𝑟) = 

−1 + 𝑟 while 𝜌′(1) = 1. The second characteristics equation 

is 𝜎(𝑟) = (1 − 𝜃)𝑟0 + 𝜃𝑟  at 𝑟 = 1  yields 𝜎(1) = 1 . Since 

the conditions are all satisfied, we then conclude that the 

method in eqn (10) is consistent for all 𝜃 ∈ [0,1]. 
 

Definition 3: A Linear multistep method of is Zero stable if 

the roots of first characteristics polynomial 𝜌(𝑟)  has a 

modulus greater than 1 i.e |𝑟| ≥ 1  and absolutely stable 

within the region defined by ℎ(𝑟) =
𝜌(𝑟)

𝜎(𝑟)
 defined by boundary 

locus method. 

The first characteristics polynomial 𝜌(𝑟) = −1 + 𝑟 has a root 

at 𝑟 = 1 which satisfies the condition |𝑟| ≥ 1. Therefore, the 

method is zero stable. Furthermore, the piecewise linear 

interpolation of the functional in eqn. (3) over the entire 

interval [𝑡0 − 𝜏, 𝑇] can be defined as  

𝑦(ℎ)(𝑡) = {
𝜙(𝑡) for  𝑡 ≤ 𝑡0
(𝑡𝑘+1−𝑡)

ℎ
𝑦𝑘 +

(𝑡−𝑡𝑘)

ℎ
𝑦𝑘+1 for  𝑡 > 𝑡0

 (13) 

where 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] for 𝑘 = 1,2, . .. . The degree of precision 

(order) of 𝜃 - method is one while of second order if 𝜃 is set 

to 0:5. However, if the Delay Differential Equation (DDE) in 

(14) below is considered,  

{
𝑦′(𝑡) = 𝜆𝑦(𝑡) + 𝜇𝑦(𝑡 − 𝜏),    𝑡0 ≤ 𝑡 ≤ 𝑇,

𝑦(𝑡) = 𝜙(𝑡),    𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0,
 (14) 

where 𝜆, 𝜇 ∈ C  are complex numbers and 𝜏 > 0,  then the 

solution y(t) of the linear DDE (14) tends to zero as 𝑡 tends to 

infinity (that is, 𝑦(𝑡) → 0  as 𝑡 → ∞ ); provided 𝜙(𝑡)  is 

continuous and P - Stable, that is |𝜆| < 𝑅𝑒(𝜇) according to 

(Al-Mutib, 1984). Though the adaptation of the 𝜃 - method to 

DDE had been considered in many literature such as in (Calvo 

and Grande, 1988)  and (Liu and Spijker, 1990), however this 

research intends to adapt the 𝜃 - method to DDE with multiple 

delay terms with the aim of deploying a Direct Method or any 

of the numerical Algorithms (such as Conjugate Gradient 

Method or preconditioned Conjugate Gradient Method or 

perhaps any of the Newton’s methods) with high rate of 

convergence.  

 

Discretization 

For the purpose of illustration, the one-dimensional and 

generalized cases of the DDE in eqn. (3) were separately 

considered for 𝑛 = 1;𝑚 = 1 and 𝑛 > 1;𝑚 > 1 respectively. 

Recurrence relations were derived to help generate the matrix 

operators for each of the cases. The discretized matrix 

operators were well-posed sufficiently enough to ensure that 

the derived linear system were amenable to the direct method 

or perhaps any algorithms such as the CGM or Newton 

methods. To support the discretization procedure, we will be 

introducing some theorems as stated below:  

 

Theorem 1: (Rationality theorem): Given the real numbers 

𝜏𝑗 , 𝜏𝑗+1 > 0  for 𝜏𝑗 < 𝜏𝑗+1,  then there exist a unique real 

number 𝛿 < 1 ∈ 𝑅 such that the ratios of the numbers is a 

rational number 𝑄. 

 

Theorem 2: Given any interval [𝑎, 𝑏], there exist a steplength 

𝛿 ∈ 𝑅+ such that each sub-interval is a constant multiple of 

the steplength.. See proof of theorems 1 and 2 in (Dawodu, 

2021).   

 

Theorem 3: A numerical method for DDEs is called P-stable 

if, for all efficient 𝜆,  𝜇 satisfying the condition |𝜆| < 𝑅𝑒(𝜇) , 
the numerical solution 𝑦𝑘 , of (14) at the mesh points 𝑡𝑘 −
𝑘ℎ,    𝑘 > ,0,  satisfies 𝑦𝑘 → 0  as → ∞  for every stepsize ℎ 

such that ℎ = 𝜏/𝑚, where 𝑚 is a positive integer (𝑍𝑘). See 

proof of theorem in (Lu, 1991).   

 

Theorem 4: Given that 0 ≤ 𝜃 ≤ 1  then the numerical 

stability of the linear 𝜃 - method in (7) above is GP-stable if 

and only if 
1

2
≤ 𝜃 ≤ 1 . See proof of theorem in (Barwell, 

1975). 

By consequence of theorems 1 and 2 above, the entire interval 

[𝑇 − 𝑡0 + 𝜏]  is divided into 𝑁 +𝑚 ∈ Z+  number of grid 

points with a steplength of 𝛿 such that the ratio 𝑚𝑗 =
𝜏𝑗

𝛿
∈ R+ 

are on the grid points for all 𝑗 = 1,2, . . . , 𝑑. The choice of the 

steplength is picked to ensure that non of the ratios 𝑚𝑗  is off 

the grid. The steplength is made as finite as possible for better 

refinement or accuracy. It is imperative to note that if ℎ𝑚𝑎𝑥 is 

the maximum steplength for which 𝜏𝑗 = 𝑚𝑗ℎ𝑚𝑎𝑥 such that all 

the values 𝑚𝑗 ∈ Z
+ are all positive integers, then 10−𝑘ℎ𝑚𝑎𝑥 

for 𝑘 = 1,2, . ..  are better steplengths for improved 

refinements. In the discretization of the delays terms, the 

positive delay constants are assumed to be monotone 

increasing where 𝜏𝑗 < 𝜏𝑗+1 ∈ R  for all 𝑗′𝑠 . The discrete 

representation of the continuous-time interval [𝑡0, 𝑇] is given 

as 𝐼𝑘 = [𝑡𝑘 , 𝑡𝑘+1] by letting 𝑡𝑘 = 𝑡0 + 𝑘𝛿  for 𝑘 = 0,1, . . . , 𝑁 

with equal steplength 𝛿 =
(𝑇−𝑡0)

𝑁
 . The discretization of the 

delay terms 𝑦(𝑡 − 𝜏𝑗) for all 𝑗 = 1,2, . . . , 𝑑 is then expressed 

as:  

 

 

𝑦(𝑘−𝑚𝑗) = {
𝜙(𝑡𝑘 −𝑚𝑗𝛿) : 𝑘 −𝑚𝑗 < 0; 𝑘 = 0,1, . . . , (𝑚𝑗 − 1), 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0]          (Known)

𝑦(𝑡𝑘 −𝑚𝑗𝛿) : 𝑘 −𝑚𝑗 ≥ 0;     for    𝑘 = 𝑚𝑗 , (𝑚𝑗 − 1), . . . , 𝑁, 𝑡 ∈ [𝑡0, 𝑇] (Unknown)
       (15) 

 

Case 1: One-Dimensional case with 𝒏 = 𝟏 and 𝒅 > 𝟏 

In this case, the DDE is posed as;  

{

𝑦′(𝑡) = 𝑝(𝑡)𝑦(𝑡) + ∑𝑑𝑗=1 𝛼𝑗(𝑡)𝑦(𝑡 − 𝜏𝑗) + 𝑔(𝑡),        𝑡0 ≤ 𝑡 ≤ 𝑇

𝑦(𝑡) = 𝜙(𝑡),    𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0
𝑦(𝑡0) = 𝑦0,

     (16) 

where 

𝑦(𝑡) ∈ R, 𝜙(𝑡) ∈ R, 𝑦𝑑(𝑡) = (𝑦(𝑡 − 𝜏1), 𝑦(𝑡 − 𝜏2), . . . 𝑦(𝑡 − 𝜏𝑑)) ∈ R
d, 𝑓: [𝑡0, 𝑇] × R

(1+d) →    R and 𝜏 = max{𝜏𝑗}𝑗=1
𝑑 ∈ R. 

Using the concept in eqn.(19), 𝑓(𝑘) and 𝑓(𝑘+1) are respectively given as  

𝑓𝑘 = 𝑝(𝑡𝑘)𝑦𝑘 + ∑
𝑑
𝑗=1 𝛼𝑗(𝑡𝑘)𝑦𝑘−𝑚𝑗 + 𝑔(𝑡𝑘)       (17) 

𝑓𝑘+1 = 𝑝(𝑡𝑘+1)𝑦𝑘+1 + 
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∑𝑑𝑗=1 𝛼𝑗(𝑡𝑘+1)𝑦𝑘+1−𝑚𝑗 + 𝑔(𝑡𝑘+1)        (18) 

Substituting eqns. (20) and (21) into the 𝜃-splitting scheme in eqn. (7) for the discretization of the continuous-time DDE yields 

the recurrence relation. 

𝛽(𝑘, 𝜃)𝑦𝑘 + 𝛾(𝑘 + 1, 𝜃)𝑦𝑘+1 = 𝑎(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡𝑘)𝑦𝑘−𝑚𝑗 + 𝑔(𝑡𝑘) + 𝑏(𝜃) + ∑
𝑑
𝑗=1 𝛼𝑗(𝑡𝑘+1)𝑦𝑘+1−𝑚𝑗

+𝑎(𝜃)𝑔(𝑡𝑘) + 𝑏(𝜃)𝑔(𝑡𝑘+1), 𝑘 = 0,1, . . . 𝑁 − 1                                     
 (19) 

 

where 𝛽(𝑘, 𝜃) = 𝛿(𝜃 − 1)𝑝(𝑡𝑘) − 1, 𝛾(𝑘 + 1, 𝜃) = 1 − 𝛿𝜃(𝑡𝑘+1), 𝑎(𝜃) = 𝛿(1 − 𝜃), 𝑏(𝜃) = 𝛿𝜃 and 𝑦𝑘−𝑚𝑗 = 𝜙(𝑡𝑘 −𝑚𝑗𝛿) 

fo all 𝑗 = 1,2, . . . , 𝑑. 
 

For 𝑘 = 1  

𝛽(0, 𝜃)𝑦0 + 𝛾(1, 𝜃)𝑦1 = 𝑎(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡0)𝑦−𝑚𝑗 + 𝑔(𝑡0) + 𝑏(𝜃) + ∑
𝑑
𝑗=1 𝛼𝑗(𝑡1)𝑦1−𝑚𝑗

+𝑎(𝜃)𝑔(𝑡0) + 𝑏(𝜃)𝑔(𝑡1),                             𝑚1 > 1
  

For 𝑘 = 2  

𝛽(1, 𝜃)𝑦0 + 𝛾(2, 𝜃)𝑦2 = 𝑎(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡1)𝑦1−𝑚𝑗 + 𝑏(𝜃) + ∑
𝑑
𝑗=1 𝛼𝑗(𝑡2)𝑦2−𝑚𝑗

+𝑎(𝜃)𝑔(𝑡1) + 𝑏(𝜃)𝑔(𝑡2),                             𝑚1 > 2
  

For 𝑘 = 𝑚1 

−𝑏(𝜃)𝛼1(𝑡𝑚1+1)𝑦1 + 𝛽(𝑚1, 𝜃)𝑦𝑚1 + 𝛾(𝑚1 + 1, 𝜃)𝑦𝑚1+1 = 𝛼(𝜃)∑
𝑑
𝑗=1 𝛼𝑗(𝑡𝑚1)𝑦𝑚1−𝑚𝑗

+𝑏(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡𝑚1)𝑦𝑚1−𝑚𝑗
+ 𝑎(𝜃)𝑔(𝑡𝑚1) + 𝑏(𝜃)𝑔(𝑡𝑚1)

  

For 𝑘 = 𝑚1 + 1 

−𝑎(𝜃)𝛼(𝑡=𝑚1+1)𝑦1 − 𝑏(𝜃)𝛼1(𝑡𝑚1+2)𝑦1 + 𝛽(𝑚1 + 1, 𝜃)𝑦𝑚1+1 + 𝛾(𝑚1 + 2, 𝜃)𝑦𝑚1+2

= 𝛼(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡𝑚1+1)𝑦𝑚1+1−𝑚𝑗 + 𝑏(𝜃)∑
𝑑
𝑗=1 𝛼𝑗(𝑡𝑚1+2)𝑦𝑚1+2−𝑚𝑗 + 𝑎(𝜃)𝑔(𝑡𝑚1+1) + 𝑏(𝜃)𝑔(𝑡𝑚1+2)

  

or 𝑘 = 𝑚𝑑;  
−𝑎(𝜃)𝛼𝑑−1(𝑡𝑚𝑑)𝑦𝑚𝑑 −𝑚𝑑−1. . . −𝑎(𝜃)𝛼2(𝑡𝑚𝑑)𝑦𝑚𝑚𝑑−𝑚2 − 𝛼(𝜃)𝛼1(𝑡𝑚𝑑)𝑦𝑚𝑑−𝑚1
−𝑏(𝜃)𝛼𝑑(𝑡𝑚𝑑+1)𝑦1. . . −𝑏(𝜃)𝛼2(𝑡𝑚𝑑+1)𝑦𝑚𝑑+1−𝑚2 − 𝑏(𝜃)𝛼1(𝑡𝑚𝑑+1)𝑦𝑚𝑑+1−𝑚1
+𝛽(𝑚𝑑 , 𝜃)𝑦𝑚𝑑 + 𝛾(𝑚𝑑 + 1, 𝜃)𝑦𝑚𝑑+1 = 𝛼(𝜃)𝛼𝑑(𝑡𝑚𝑑)𝑦0 + 𝛼(𝜃)𝑔(𝑡𝑚𝑑) + 𝑏(𝜃)𝑔(𝑡𝑚𝑑+1)

 

For 𝑘 = 𝑚𝑑 + 1;  
−𝑎(𝜃)𝛼𝑑(𝑡𝑚𝑑+1)𝑦1. . . −𝑎(𝜃)𝛼2(𝑡𝑚𝑑+1)𝑦𝑚𝑑+1−𝑚2 − 𝛼(𝜃)𝛼1(𝑡𝑚𝑑+1)𝑦𝑚𝑑+1−𝑚1
−𝑏(𝜃)𝛼𝑑(𝑡𝑚𝑑+2)𝑦2. . . −𝑏(𝜃)𝛼2(𝑡𝑚𝑑+2)𝑦𝑚𝑑+2−𝑚2 − 𝑏(𝜃)𝛼1(𝑡𝑚𝑑+2)𝑦𝑚𝑑+2−𝑚1
+𝛽(𝑚𝑑 + 1, 𝜃)𝑦𝑚𝑑+1 + 𝛾(𝑚𝑑 + 2, 𝜃)𝑦𝑚𝑑+2 = 𝛼(𝜃)𝛼𝑑(𝑡𝑚𝑑) + 𝑏(𝜃)𝑔(𝑡𝑚𝑑+2)

  

For 𝑘 = 𝑁 − 1;  
−𝑎(𝜃)𝛼𝑑(𝑡𝑁−1)𝑦𝑁−1−𝑚𝑑 . . . −𝑎(𝜃)𝛼2(𝑡𝑁−1)𝑦𝑁−1−𝑚2 − 𝛼(𝜃)𝛼1(𝑡𝑁−1)𝑦𝑁−1−𝑚1
−𝑏(𝜃)𝛼𝑑(𝑡𝑁)𝑦𝑁−𝑚𝑑 . . . −𝑏(𝜃)𝛼2(𝑡𝑁)𝑦𝑁−𝑚2 − 𝑏(𝜃)𝛼1(𝑡𝑁)𝑦𝑁−𝑚2 − 𝑏(𝜃)𝛼1(𝑡𝑁)𝑦𝑁−𝑚1 + 𝛽(𝑁 − 1, 𝜃)𝑦𝑁−1

+𝛾(𝑁, 𝜃)𝑦𝑁 = 𝛼(𝜃)𝑔(𝑡𝑁−1) + 𝑏(𝜃)𝑔(𝑡𝑁),

  

where, 

𝑓𝑘 = 𝑝(𝑡𝑘)𝑦𝑘 + ∑
𝑑
𝑗=1 𝛼𝑗(𝑡𝑘)𝑦𝑘−𝑚𝑗 + 𝑔(𝑡𝑘)       (20) 

𝑓𝑘+1 = 𝑝(𝑡𝑘+1)𝑦𝑘+1 +∑
𝑑
𝑗=1 𝛼𝑗(𝑡𝑘+1)𝑦𝑘+1−𝑚𝑗 + 𝑔(𝑡𝑘+1)      (21) 

Substituting eqns. (20) and (21) into the 𝜃-splitting scheme in eqn. (7) for the discretization of the continuous-time DDE yields 

the recurrence relation 

.
𝛽(𝑘, 𝜃)𝑦𝑘 + 𝛾(𝑘 + 1, 𝜃)𝑦𝑘+1 = 𝑎(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡𝑘)𝑦𝑘−𝑚𝑗 + 𝑔(𝑡𝑘) + 𝑏(𝜃) + ∑

𝑑
𝑗=1 𝛼𝑗(𝑡𝑘+1)𝑦𝑘+1−𝑚𝑗

+𝑎(𝜃)𝑔(𝑡𝑘) + 𝑏(𝜃)𝑔(𝑡𝑘+1), 𝑘 = 0,1, . . . 𝑁 − 1
 (22) 

where 𝛽(𝑘, 𝜃) = 𝛿(𝜃 − 1)𝑝(𝑡𝑘) − 1, 𝛾(𝑘 + 1, 𝜃) = 1 − 𝛿𝜃(𝑡𝑘+1), 𝑎(𝜃) = 𝛿(1 − 𝜃), 𝑏(𝜃) = 𝛿𝜃 and 𝑦𝑘−𝑚𝑗 = 𝜙(𝑡𝑘 −𝑚𝑗𝛿) 

for all 𝑗 = 1,2, . . . , 𝑑. 
For 𝑘 = 1  

𝛽(0, 𝜃)𝑦0 + 𝛾(1, 𝜃)𝑦1 = 𝑎(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡0)𝑦−𝑚𝑗 + 𝑔(𝑡0) + 𝑏(𝜃) + ∑
𝑑
𝑗=1 𝛼𝑗(𝑡1)𝑦1−𝑚𝑗

+𝑎(𝜃)𝑔(𝑡0) + 𝑏(𝜃)𝑔(𝑡1),                           𝑚1 > 1
  

For 𝑘 = 2  

𝛽(1, 𝜃)𝑦0 + 𝛾(2, 𝜃)𝑦2 = 𝑎(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡1)𝑦1−𝑚𝑗 + 𝑏(𝜃) + ∑
𝑑
𝑗=1 𝛼𝑗(𝑡2)𝑦2−𝑚𝑗

+𝑎(𝜃)𝑔(𝑡1) + 𝑏(𝜃)𝑔(𝑡2),                      𝑚1 > 2
  

For 𝑘 = 𝑚1 

−𝑏(𝜃)𝛼1(𝑡𝑚1+1)𝑦1 + 𝛽(𝑚1, 𝜃)𝑦𝑚1 + 𝛾(𝑚1 + 1, 𝜃)𝑦𝑚1+1 = 𝛼(𝜃)∑
𝑑
𝑗=1 𝛼𝑗(𝑡𝑚1)𝑦𝑚1−𝑚𝑗

+𝑏(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡𝑚1)𝑦𝑚1−𝑚𝑗
+ 𝑎(𝜃)𝑔(𝑡𝑚1) + 𝑏(𝜃)𝑔(𝑡𝑚1)

  

For 𝑘 = 𝑚1 + 1 

−𝑎(𝜃)𝛼(𝑡=𝑚1+1)𝑦1 − 𝑏(𝜃)𝛼1(𝑡𝑚1+2)𝑦1 + 𝛽(𝑚1 + 1, 𝜃)𝑦𝑚1+1 + 𝛾(𝑚1 + 2, 𝜃)𝑦𝑚1+2

= 𝛼(𝜃)∑𝑑𝑗=1 𝛼𝑗(𝑡𝑚1+1)𝑦𝑚1+1−𝑚𝑗 + 𝑏(𝜃)∑
𝑑
𝑗=1 𝛼𝑗(𝑡𝑚1+2)𝑦𝑚1+2−𝑚𝑗 + 𝑎(𝜃)𝑔(𝑡𝑚1+1) + 𝑏(𝜃)𝑔(𝑡𝑚1+2)

  

For 𝑘 = 𝑚𝑑; 

−𝑎(𝜃)𝛼𝑑−1(𝑡𝑚𝑑)𝑦𝑚𝑑 −𝑚𝑑−1. . . −𝑎(𝜃)𝛼2(𝑡𝑚𝑑)𝑦𝑚𝑚𝑑−𝑚2 − 𝛼(𝜃)𝛼1(𝑡𝑚𝑑)𝑦𝑚𝑑−𝑚1

−𝑏(𝜃)𝛼𝑑(𝑡𝑚𝑑+1)𝑦1. . . −𝑏(𝜃)𝛼2(𝑡𝑚𝑑+1)𝑦𝑚𝑑+1−𝑚2 − 𝑏(𝜃)𝛼1(𝑡𝑚𝑑+1)𝑦𝑚𝑑+1−𝑚1
+𝛽(𝑚𝑑 , 𝜃)𝑦𝑚𝑑

+ 𝛾(𝑚𝑑 + 1, 𝜃)𝑦𝑚𝑑+1 = 𝛼(𝜃)𝛼𝑑(𝑡𝑚𝑑)𝑦0 + 𝛼(𝜃)𝑔(𝑡𝑚𝑑) + 𝑏(𝜃)𝑔(𝑡𝑚𝑑+1)
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For 𝑘 = 𝑚𝑑 + 1;  
−𝑎(𝜃)𝛼𝑑(𝑡𝑚𝑑+1)𝑦1. . . −𝑎(𝜃)𝛼2(𝑡𝑚𝑑+1)𝑦𝑚𝑑+1−𝑚2 − 𝛼(𝜃)𝛼1(𝑡𝑚𝑑+1)𝑦𝑚𝑑+1−𝑚1
−𝑏(𝜃)𝛼𝑑(𝑡𝑚𝑑+2)𝑦2. . . −𝑏(𝜃)𝛼2(𝑡𝑚𝑑+2)𝑦𝑚𝑑+2−𝑚2 − 𝑏(𝜃)𝛼1(𝑡𝑚𝑑+2)𝑦𝑚𝑑+2−𝑚1
+𝛽(𝑚𝑑 + 1, 𝜃)𝑦𝑚𝑑+1 + 𝛾(𝑚𝑑 + 2, 𝜃)𝑦𝑚𝑑+2 = 𝛼(𝜃)𝛼𝑑(𝑡𝑚𝑑) + 𝑏(𝜃)𝑔(𝑡𝑚𝑑+2)

 

For 𝑘 = 𝑁 − 1;  
−𝑎(𝜃)𝛼𝑑(𝑡𝑁−1)𝑦𝑁−1−𝑚𝑑 . . . −𝑎(𝜃)𝛼2(𝑡𝑁−1)𝑦𝑁−1−𝑚2 − 𝛼(𝜃)𝛼1(𝑡𝑁−1)𝑦𝑁−1−𝑚1
−𝑏(𝜃)𝛼𝑑(𝑡𝑁)𝑦𝑁−𝑚𝑑 . . . −𝑏(𝜃)𝛼2(𝑡𝑁)𝑦𝑁−𝑚2 − 𝑏(𝜃)𝛼1(𝑡𝑁)𝑦𝑁−𝑚2 − 𝑏(𝜃)𝛼1(𝑡𝑁)𝑦𝑁−𝑚1 + 𝛽(𝑁 − 1, 𝜃)𝑦𝑁−1

+𝛾(𝑁, 𝜃)𝑦𝑁 = 𝛼(𝜃)𝑔(𝑡𝑁−1) + 𝑏(𝜃)𝑔(𝑡𝑁),

 

 

which yields the following linear system of equations:  

𝐴𝑌 = 𝐶 + 𝐹 + (𝐷 × 𝐸) = �̅�,         (23) 

where 𝛽(𝑘, 𝜃) = 𝛽(𝑘), 𝛾(𝑘 + 1, 𝜃) = 𝛾(𝑘 + 1), 𝑎(𝜃) = 𝑎 and 𝑏(𝜃) = 𝑏 and  

 

A =

(

 
 
 
 
 
 
 

𝛾(1) 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝛽(1) 𝛾(2) 0 0 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋯ ⋱ ⋱ ⋮
−𝑏𝛼1(𝑡𝑚1+1) ⋱ ⋱ ⋱ ⋱ ⋯ ⋱ ⋱ ⋮

−𝑎𝛼1(𝑡𝑚1+1) −𝑏𝛼1(𝑡𝑚1+2) ⋱ 𝛽(𝑚1 + 1) 𝛾(𝑚1 + 2) ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
−𝑏𝛼𝑑(𝑡𝑚𝑑+1) ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ −𝑎𝛼(𝑡𝑁−1) −𝑏𝛼𝑑(𝑡𝑁) ⋯ ⋯ ⋯ 𝛽(𝑁 − 1) 𝛾(𝑁))

 
 
 
 
 
 
 

  

 

𝑌 =

(

 
 
 
 
 
 

  

𝑦1
𝑦2
⋮
⋮
⋮
⋮
⋮
𝑛𝑁−1
𝑦𝑁 )

 
 
 
 
 
 

,    𝐶 =

(

 
 
 
 
 
 
 
 

𝑎∑
𝑗=1
𝑑 𝛼𝑗(𝑡0)𝑦−𝑚𝑗 + 𝑏∑

𝑑
𝑗=1 𝛼𝑗(𝑡1)𝑦1−𝑚𝑗

𝑎∑
𝑗=1
𝑑 𝛼𝑗(𝑡1)𝑦1−𝑚𝑗 + 𝑏∑

𝑑
𝑗=1 𝛼𝑗(𝑡2)𝑦2−𝑚𝑗

⋮

𝑎 ∑
𝑗=1
𝑑 𝛼𝑗(𝑡𝑚1)𝑦𝑚1−𝑚𝑗 + 𝑏∑

𝑑
𝑗=2 𝛼𝑗(𝑡𝑚1+1)𝑦𝑚1+1−𝑚𝑗

⋮
𝑎𝛼(𝑡𝑚𝑑

)𝑦0
0
⋮
0 )

 
 
 
 
 
 
 
 

  

 

𝑡 =

(

 
 

𝑡0
𝑡1
⋮
⋮
𝑡𝑁)

 
 
, 𝑃 =

(

 
 

𝑝(𝑡0)
𝑝(𝑡1)
⋮
⋮
𝑝(𝑡𝑁))

 
 
,𝐷 =

(

 
 

𝑎 𝑏 0 ⋯ ⋯ 0
0 𝑎 𝑏 0 ⋮ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ 0 𝑎 𝑏)

 
 
, 𝐸 =

(

 
 

𝑔(𝑡0)
𝑔(𝑡1)
⋮
⋮
𝑔(𝑡𝑁))

 
 

  

 

𝛽(𝑘, 𝜃) =

(

 
 
 

𝛽(0)

𝛽(1)
⋮
⋮
𝛽(𝑁 − 1)
𝛽(𝑁) )

 
 
 
=

(

 
 
 

𝛿(𝜃 − 1)𝑝(𝑡0) − 1

𝛿(𝜃 − 1)𝑝(𝑡1) − 1
⋮
⋮
𝛿(𝜃 − 1)𝑝(𝑡𝑁−1) − 1
𝛿(𝜃 − 1)𝑝(𝑡𝑁) − 1 )

 
 
 
, 𝐹 =

(

 
 

𝛽(0)𝑦(0)

0
⋮
⋮
0 )

 
 

  

  

and    𝛾(𝑘 + 1, 𝜃) =

(

 
 
 

𝛾(1)

𝛾(2)
⋮
⋮
𝛾(𝑁 − 1)
𝛾(𝑠𝑁) )

 
 
 
=

(

 
 
 

1 − 𝛿𝜃𝑝(𝑡0)

1 − 𝛿𝜃𝑝(𝑡1)
⋮
⋮
1 − 𝛿𝜃𝑝(𝑡𝑁−1)
1 − 𝛿𝜃𝑝(𝑡𝑁) )

 
 
 

  

The dimensions of the above vectors and matrices are given as 𝐴 ∈ 𝑅𝑁×𝑁, 𝐷 ∈ 𝑅𝑁×(𝑁+1), 𝐶 ∈ 𝑅𝑁 , 𝐸 ∈ 𝑅(𝑁+1), 𝑌 ∈ 𝑅𝑁, 𝛾 ∈

𝑅𝑁, 𝛽 ∈ 𝑅(𝑁+1) and 𝐹 ∈ 𝑅𝑁. 

 

Case 2: Generalized case wit n>1 and 𝒅 > 𝟏 

The generalized case is formulated from the system of n-linear DDE expressed below.The generalized case is formulated from 

the system of n- linear DDE expressed below. 
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𝑦′1(𝑡) = 𝑝11𝑦1(𝑡) + 𝑝12𝑦2(𝑡) + ⋯+ 𝑝1𝑛𝑦𝑛(𝑡) + 𝛼11
(1)
(𝑡)𝑦1(𝑡 − 𝜏1) +⋅ +𝛼1𝑛

(1)
(𝑡)𝑦𝑛(𝑡 − 𝜏1)

+𝛼11
(𝑛)(𝑡)𝑦1(𝑡 − 𝜏𝑑) +⋅ 𝛼1𝑛

(𝑛)(𝑡)𝑦𝑛(𝑡 − 𝜏𝑑) + 𝑔1(𝑡)

𝑦′2(𝑡) = 𝑝21𝑦1(𝑡) + 𝑝22𝑦2(𝑡) +⋯+ 𝑝2𝑛𝑦𝑛(𝑡) + 𝛼21
(1)
(𝑡)𝑦1(𝑡 − 𝜏1) +⋅ +𝛼2𝑛

(1)
(𝑡)𝑦𝑛(𝑡 − 𝜏1)

+𝛼21
(𝑛)
(𝑡)𝑦1(𝑡 − 𝜏𝑑) +⋅ 𝛼2𝑛

(𝑛)
(𝑡)𝑦𝑛(𝑡 − 𝜏𝑑) + 𝑔2(𝑡)

 

while the pre-shaped function and initial conditions expressed as: 

 

𝑦1(𝑡) = 𝜙1(𝑡)
𝑦2(𝑡) = 𝜙2(𝑡)
⋮      ⋮      =      ⋮      ⋮
𝑦𝑛(𝑡) = 𝜙𝑛(𝑡)

 

 

The above systems of equations can be represented below in the matrix form as; 

(

 
 

𝑦′1(𝑡)

𝑦′2(𝑡)
⋮
⋮
𝑦′𝑛(𝑡))

 
 
=

(

 
 

𝑝11 𝑝12 ⋯ ⋯ 𝑝1𝑛
𝑝21 𝑝22 ⋯ ⋯ 𝑝2𝑛
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝑝𝑛1 𝑝𝑛2 ⋯ ⋯ 𝑝𝑛𝑛)

 
 

(

 
 

𝑦1(𝑡)

𝑦2(𝑡)
⋮
⋮
𝑦𝑛(𝑡))

 
 
+

(

 
 
 

𝛼11
(1)

𝛼12
(1)

⋯ ⋯ 𝛼1𝑛
(1)

𝛼21
(1)

𝛼22
(1)

⋯ ⋯ 𝛼2𝑛
(1)

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝛼𝑛1
(1)

𝛼𝑛2
(1)

⋯ ⋯ 𝛼𝑛𝑛
(1)
)

 
 
 

(

 
 

𝑦1(𝑡 − 𝜏1)

𝑦2(𝑡 − 𝜏1)
⋮
⋮
𝑦𝑛(𝑡 − 𝜏1))

 
 

+⋯+

(

 
 
 

𝛼11
(𝑑)

𝛼12
(𝑑)

⋯ ⋯ 𝛼1𝑛
(𝑑)

𝛼21
(𝑑)

𝛼22
(𝑑)

⋯ ⋯ 𝛼2𝑛
(𝑑)

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝛼𝑛1
(𝑑)

𝛼𝑛2
(𝑑)

⋯ ⋯ 𝛼𝑛𝑛
(𝑑)
)

 
 
 

(

 
 

𝑦1(𝑡 − 𝜏𝑑)
𝑦2(𝑡 − 𝜏𝑑)
⋮
⋮
𝑦𝑛(𝑡 − 𝜏𝑑))

 
 
+

(

 
 

𝑔1(𝑡)
𝑔2(𝑡)
⋮
⋮
𝑔𝑛(𝑡))

 
 

  

 

with delay (pre-shaped) function  

(

 
 

𝑦1(𝑡)
𝑦2(𝑡)
⋮
⋮
𝑦𝑛(𝑡))

 
 
=

(

 
 

𝜙1(𝑡)
𝜙2(𝑡)
⋮
⋮
𝜙𝑛(𝑡))

 
 

 

and initial conditions (𝑦1(𝑡0), 𝑦2(𝑡0),⋯ , 𝑦𝑛(𝑡0)) =
(𝑦10, 𝑦20, ⋯ , 𝑦𝑛0) as posed in eqns. (20) - (22) above. The 

discretization of the above equations yields similar matrix 

representation as (26) with the formulated discrete block-

matrices have each entry as a matrix (column). The 

dimensions of the block-matrices are as follows: 𝐴 ∈

𝑅𝑛𝑁×𝑛𝑁 , 𝐷 ∈ 𝑅𝑛𝑁×𝑛(𝑁+1), 𝐶 ∈ 𝑅𝑛𝑁, 𝐸 ∈ 𝑅𝑛(𝑁+1), 𝑌 ∈

𝑅𝑛𝑁, 𝛾 ∈ 𝑅𝑛𝑁 , 𝛽 ∈ 𝑅𝑛(𝑁+1) and 𝐹 ∈ 𝑅𝑛𝑁 The derivation is as 

shown in the case 1 above. The derived linear equation is 

made amenable to the MCGM where the matrix operator A is 

invertible (i.e 𝐴−1 exist). 

 

Implementation of Numerical Methods 

The discretization of the delay (system of) differential 

equations could also yield rectangular system of equations on 

rear cases. And suppose 𝐴 ∈ 𝑅𝑚𝑁×𝑛𝑁  is rectangular, the 

pseudo-inverse (𝐴 †∈ 𝑅𝑚𝑁×𝑛𝑁) was computed as; 

(𝐴𝑇𝐴)𝑌 = 𝐴𝑇�̅�, 

𝑌 = 𝐴 † �̂̅�,    (24) 

where 𝐴 †= (𝐴𝑇𝐴)−1  and �̂̅� = 𝐴𝑇�̅� . If the square matrix �̂̅� 

in eqn. (24) is not positive definite, we then deploy the 

procedure below with the condition number,  

(𝑐𝑜𝑛𝑑. �̂̅�) =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
.  

In the computation of the search direction of Linear function 

f(x) with iterative sequence 𝑦0 → 𝑦1 → 𝑦2⋯ → 𝑦
∗ ,s the 

coeficient matrix 𝐴  should be positive definite for all y; 

otherwise the search direction might not be a descent 

direction. In the case where the coeficient matrix is not 

positive definite, it is then imperative to carryout a 

modification on the matrix else the Conjugate Gradient 

Algorithm might fail. However, the modification of the 

Hessian matrix yields a modified matrix �̅� = 𝐴 + 𝐸  that is 

now positive definite and preserves the information of the 

original matrix A with the  

correction matrix 𝐸 = 𝜏𝐼 (a multiple of the identity) as small 

as possible so as to make it well-conditioned for the 

algorithm. In ensuring the positive definiteness  of the matrix 

operator for smooth computation of the Cholesky 

factorization strategies could be deployed for modifying non-

positive definite matrices using the spectral decomposition 

approach. Two decomposition strategies of the forms 𝐿𝐿𝑇 and 

𝐿𝐷𝐿𝑇  , called the Cholesky factorization and the Modified 

Cholesky factorization respectively, were used with L lower 

triangular matrix. However, the standard Cholesky 

factorization is preferable to the modified Cholesky because 

of its simplicity and convergence and as such will be deployed 

in this research. In this case, the symmetric Coeficient and 

error matrices be expressed as 𝐴 = 𝑃𝜆𝑃𝑇  and 𝐸 = 𝑃𝜏𝐼𝑃𝑇 

respectively with 𝜏 ≥ 0, 𝜆 = 𝑑𝑖𝑎𝑔(𝜆𝑖)  and 𝐸 = 𝑑𝑖𝑎𝑔(𝜏𝑖) , 

then �̅� = 𝑃[𝜆 + 𝜏𝐼]𝑃𝑇 = 𝑃𝑑𝑖𝑎𝑔(𝜆𝑖 + 𝜏𝑖)𝑃
𝑇  can be 

expressed as;  

𝑑𝑖𝑎𝑔(𝜆𝑖 + 𝜏𝑖) = 

[

(𝜆1 + 𝜏1) 0 ⋯ 0
0 (𝜆2 + 𝜏2) ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 (𝜆𝑛 + 𝜏𝑛)

], (25) 

with (𝜆𝑖 + 𝜏𝑖) > 0∀𝑖 such that �̅� is positive definite. Suppose 

the minimum eigenvalue of A, for which the matrix A is not 

positive definite, is 𝜆𝑚𝑖𝑛(𝐴)  and there exist any positive 

number 𝛿 > 0 such that 𝜆𝑚𝑖𝑛(𝐴) + 𝛿 > 0, then the minimum 

Euclidean (or Frobenius) norm, satisfies 𝜆𝑚𝑖𝑛(�̅�) =
𝜆𝑚𝑖𝑛(𝐴 + 𝜏𝐼) > 0    for    (𝜆𝑖 + 𝜏𝑖) > 𝛿    ∀𝑖. 
Consequently, 𝜏 = 𝑚𝑎𝑥{0, 𝛿 − 𝜆𝑚𝑖𝑛(𝐴)}  for 𝜏 =

{𝜏1, 𝜏2, ⋯ , 𝜏𝑛} and 𝜏1 = {
𝛿 − 𝜆𝑖 𝜆𝑖 < 𝛿
  0 𝜆𝑖 ≥ 𝛿

, 

provided 𝜆𝑚𝑖𝑛(𝐴) + 𝛿 > 0 . Therefore, the mathematical 

strategy is to develop an algorithm that will construct the 

modified (corrected) matrix at the minimum correction factor 

(𝜏∗) such that the modified matrix estimates the Coeficient 

matrix at a minimum error. In other words, the strategy is to 

search for the matrix �̅�∗  having the minimum correction 
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matrix (𝐸∗) with minimum Euclidean (Frobenius) norm that 

satisfies𝜆𝑚𝑖𝑛(𝐴 + 𝐸
∗) + 𝛿 > 0 and as well as the cholesky 

factorization (spectral decomposition) of the said matrix in the 

form 𝐿𝐿𝑇 . 

The numerial solution to the derived linear system of 

equations can be ascertained using the direct numerical 

method or perhaps any of the numerical algorithms such as 

the Conjugate Gradient Method (CGM) or its variants 

(Preconditioned CGM,, Projection CGM), Newton’s method 

etc.  

 

RESULTS AND DISCUSSION 

Example 1 

Solve the delay diferential equation (DDE)  

 2𝑦′(𝑡) − 𝑡2𝑦(𝑡) = 4𝑦(𝑡 − 𝜏)     𝑓𝑜𝑟     − 𝜏 ≤ 𝑡 ≤
2, 
 𝑦(𝑡) = 𝑡2       − 𝜏 ≤ 𝑡 ≤ 0, 
 𝑦(0) = 0   𝑎𝑛𝑑   𝜏 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} 
Applying the procedures in equation (20) - (23) yields the 

discretized matrices below for 𝜏 = 0.3, 𝑇 = 2, 𝑁 = 10, 𝜃 =
0.5 and 𝑡𝑘 = 0.2𝑘 for 𝑘 = 0,1,⋯ ,10.  

𝜙 = (
−0.4000
    0

) ∈ R2 

𝐵 =

(

 
 
 
 
 
 
 

0.2000 0.2000
  0 0.2000
  0   0
  0   0
  0   0
  0   0
  0   0
  0   0
  0   0
  0   0 )

 
 
 
 
 
 
 

∈ R10×2, 

   𝑎𝑛𝑑 

𝐵 × 𝜙 =

(

 
 
 
 
 
 
 

 

−0.0800
   0
   0
   0
   0
   0
   0
   0
   0
   0 )

 
 
 
 
 
 
 

∈ R10. 

 

 

A =

(

 
 
 
 
 
 
 

1.0020 0 0 0 0 0 0 0 0 0
0.2000 1.0080 0 0 0 0 0 0 0 0
0.2000 0.2000 1.0180 0 0 0 0 0 0 0
0 0.2000 0.2000 1.0320 0 0 0 0 0 0
0 0 0.2000 0.2000 1.0500 0 0 0 0 0
0 0 0 0.2000 0.2000 1.0720 0 0 0 0
0 0 0 0 0.2000 0.2000 1.0980 0 0 0
0 0 0 0 0 0.2000 0.2000 1.1280 0 0
0 0 0 0 0 0 0.2000 0.2000 1.1620 0
0 0 0 0 0 0 0 0.2000 0.2000 1.2000)

 
 
 
 
 
 
 

 

 

The problem was solved by direct inverse method and the solution 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦10) ∈ R
10 was represented graphically 

and outlined in the table below for various values of the delay constants (𝜏) and steplength (ℎ). 

 

Table  1: The Results with 𝑻 = 𝟐, 𝜽 = 𝟎. 𝟓 

𝒉 𝝉 = 𝟎. 𝟏 𝝉 = 𝟎. 𝟑 𝝉 = 𝟎. 𝟓 𝝉 = 𝟎. 𝟕 𝝉 = 𝟎. 𝟗 

    0.2000     0.0826     0.0826    1.3297    1.3297    3.8193 

    0.0200     0.0756     0.8151    2.7219    5.9330    9.7890 

    0.0020     0.2389     2.5769    8.6070   18.7396   30.8985 

    0.0002     0.7554     8.1487   27.2178   59.2526   97.6914 

 

 
Figure 1: Results with T=2, 𝜃 = 0.5 
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Example 2 

Solve the multiple delay differential equation (DDE)  

𝑦′(𝑡) = 𝑡2𝑦(𝑡) + 2𝑡𝑦(𝑡 − 0.3) + 3(𝑡 − 1)𝑦(𝑡 − 0.5)
+ 5𝑡2 ,   − 0.5 ≤ 𝑡 ≤ 𝑇,    𝑇 ∈ {1,2,2.5}, 

𝑦(𝑡) = 2𝑡2 ,    − 0.5 ≤ 𝑡 ≤ 0, 
𝑦(0) = 0. 
The discrete matrices by applying equation (20) - (23) is given 

in Table 2 below for 𝜏 = 0.3, 𝑇 = 1,𝑁 = 10, 𝜃 = 0.5  and 

𝑡𝑘 = 0.1𝑘 for 𝑘 = 0,1,⋯ ,10.   

 

(

 
 
 
 
 
 
 
 

0
0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000)

 
 
 
 
 
 
 
 

∈ 𝐑11,     

 

𝜙 =

(

 
 
 

0.5000
0.3200
0.1800
0.0800
0.0200
0 )

 
 
 
∈ 𝐑6,                           

𝐵 × 𝜙 =

(

 
 
 
 
 
 
 

−0.1166
−0.0634
−0.0296
−0.0102
−0.0018
0
0
0
0
0 )

 
 
 
 
 
 
 

∈ 𝐑10, 

 

𝐷 × 𝐸 =

(

 
 
 
 
 
 
 

0.0250
0.0750
0.1250
0.1750
0.2250
0.2750
0.3250
0.3750
0.4250
0.4750)

 
 
 
 
 
 
 

∈ 𝐑10 

 

 

 

𝐴 =

(

 
 
 
 
 
 
 

0.9995 0 0 0 0 0 0 0 0 0
−1.0005 0.9980 0 0 0 0 0 0 0 0
0 −1.0020 0.9955 0 0 0 0 0 0 0
0.0300 0 −1.0045 0.9920 0 0 0 0 0 0
0.0300 0.0400 0 −1.0080 0.9875 0 0 0 0 0
−0.0750 0.0400 0.0500 0 −1.0125 0.9820 0 0 0 0
−0.0750 −0.0600 0.0500 0.0600 0 −1.0180 0.9755 0 0 0
0 −0.0600 −0.0450 0.0600 0.0700 0 −1.0245 0.9680 0 0
0 0 −0.0450 −0.0300 0.0700 0.0800 0 −1.0320 0.9595 0
0 0 0 −0.0300 −0.0150 0.0800 0.0900 0 −1.0405 0.9500)

 
 
 
 
 
 
 

 

 

𝐷 =

(

 
 
 
 
 
 
 
 
 

0.9995 0 0 0 0 0 0 0 0 0 0
−1.0005 0.9980 0 0 0 0 0 0 0 0 0
0.0500 0.0500 0 0 0 0 0 0 0 4 4
0 0.0500 0.0500 0 0 0 0 0 0 7 4
0 0 0.0500 0.0500 0 0 0 0 0 0 0
0 0 0 0.0500 0.0500 0 0 0 0 0 0
0 0 0 0 0.0500 0.0500 0 0 0 0 0
0 0 0 0 0 0.0500 0.0500 0 0 0 0
0 0 0 0 0 0 0.0500 0.0500 0 0 0
0 0 0 0 0 0 0 0.0500 0.0500 0 0
0 0 0 0 0 0 0 0 0.0500 0.0500 0

)

 
 
 
 
 
 
 
 
 

 

 

𝐵 =

(

 
 
 
 
 
 
 

−0.1500 −0.1350 0 0.0200 0 0
0 −0.1350 −0.1200 0.0100 0.0300 0
0 0 −0.1200 −0.1050 0.0200 0
0 0 0 −0.1050 −0.0900 0
0 0 0 0 −0.0900 −0.0750
0 0 0 0 0 −0.0750
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 
 
 
 

∈ 𝐑10×6. 

𝑌 = 𝐴−1[(𝐷 × 𝐸) + 𝐹 + (𝐵 × 𝜙)] ∈ 𝐑10.            (26) 

The solution, ∥ 𝑦 ∥, of MDDE is displayed in the table and graphs below. Figure 1 is the graph for Table 2 above, while Figures 

1 and 2 are for varying values of the terminal time (𝑇) for 𝑇 = 2 and 𝑇 = 2.5 respectively. 



LINEAR-THETA METHOD FOR THE…      Dawodu and Obarhua FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December, 2024, pp 313 –320 320 

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

Table  2: The Results with 𝝉𝟏 = 𝟎. 𝟑, 𝝉𝟐 = 𝟎. 𝟓, 𝜽 = 𝟎. 𝟓 

𝑵 𝑻 = 𝟏. 𝟎 𝑻 = 𝟏. 𝟓 𝑻 = 𝟐. 𝟎 𝑻 = 𝟐. 𝟓 𝑻 = 𝟑. 𝟎 

10 3.6955 11.2757 2.7227 4.5328 5.4319 

100 10.3855 24.7201 3.78190× 101 42.9279 899.5692 

1000 3.2440× 101 7.6661× 101 1.1482× 102 1.3351× 102 2.726 × 103 

10000 1.0245× 102 2.4195× 102 3.6164× 102 4.2164× 102 8.5792× 103 

 

Figure 1 is the graph for table 2 above while figures 1 and 2 are for varying values of the terminal time (𝑇) for 𝑇 = 2 and 𝑇 =
2.5 respectively.  

 

 
Figure 2: Results with T=1, 𝜃 = 0.5 

 

 
Figure 3: Results with T=5, r= 0.2 

 

 
Figure 4: Results with T=2.5, 𝜃 = 0.5 

 
Figure 5: Results with T=0.30, N=100, h=0.03 

 

CONCLUSION 

The linear 𝜃 − method of discretization for multiple delay 

first order ordinary differential equation is simple, precise and 

reliable. The method has numerical B-stability for 
1

2
≤ 𝜃 ≤ 1, 

consistent and thereby guarantees the convergence and 

accuracy of the discretized matrix operators in the derived 

linear system of equations in (Lu, 1991). The method can be 

extended to both linear and nonlinear complex first and higher 

order differential equations with or without delays.  
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