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ABSTRACT 

Agricultural sustainability relies on crop production, but the task of choosing appropriate crops for certain 

places is difficult owing to the ever-changing environmental circumstances. Traditional approaches are often 

limited in scope, failing to adapt to diverse soil types and environmental parameters. This study introduces a 

novel prediction method that utilizes a machine-learning model with ensemble approaches to provide 

recommendations for crops. The system was developed using a Design Science Research (DSR) methodology. 

The proposed model incorporates a wide array of machine-learning techniques, including K-Nearest 

Neighbors, Decision Trees, Support Vector Machines, Naive Bayes, Logistic Regression, and Extreme 

Gradient Boosting. The integration utilizes the Random Forest meta-model. The model was trained and 

validated using a large dataset gathered from Kaggle, which consisted of a wide variety of crops and 

environmental characteristics. The model's performance was evaluated using metrics such as Accuracy, Recall, 

F1-Score, and Precision. It exhibited outstanding accuracy of 99.8%, along with superior recall, precision, and 

F1 scores, outperforming previous research by a significant margin. Furthermore, data flow diagrams illustrate 

the data processing flow within the system. The implementation was carried out using the Python programming 

language, with MongoDB employed for database development. The resulting proof-of-concept system 

demonstrates the practical applicability of the model by providing reliable crop recommendations based on 

environmental data. This research marks a substantial advancement in optimizing crop management strategies 

through advanced predictive modeling, offering a robust tool to aid farmers in making informed decisions, 

ultimately enhancing agricultural productivity and sustainability.  

 

Keywords: Ensemble Learning, Crop Selection, Precision Agriculture, Predictive Modeling,  

Proof-of-Concept System 

 

INTRODUCTION 

Agriculture is a fundamental pillar of human civilization, 

offering nourishment, employment, and economic security to 

hundreds of millions of people globally. Within this realm, 

crop production plays a pivotal role, in driving agricultural 

productivity and shaping food security outcomes (Amanullah 

& Khan, 2024; Thakur, Kumari & Kumar, 2024). However, 

the agricultural landscape is marked by multifaceted 

challenges, including fluctuating environmental conditions, 

resource constraints, and evolving market dynamics 

(COSTEA et al., 2023; Hassan, Rai & Maharjan, 2023). In 

this context, the ability to make informed decisions regarding 

crop selection is paramount for farmers seeking to optimize 

yields, mitigate risks, and enhance profitability (Phadke, 

Goel, Bajpai & Mehta, 2022; Balaska, Adamidou, Vryzas & 

Gasteratos, 2023). 

Traditionally, farmers have relied on empirical knowledge, 

local practices, and historical data to guide their crop selection 

decisions (Sunil-Kumar, 2024). Nevertheless, the growing 

intricacy and fluctuation of environmental elements, such as 

the composition of the soil, climatic patterns, insect 

pandemics, and consumer demand, pose substantial obstacles 

to conventional decision-making methods (Khatri, Kumar, 

Shakya, Kirlas & Tiwari, 2023). Moreover, traditional 

methods often lack the scalability and adaptability required to 

address the diverse and dynamic nature of modern agricultural 

systems (Akkem, Biswas & Varanasi, 2024). 

There has been an increasing recognition in recent years of 

the potential of modern technology, particularly machine 

learning (ML), to revolutionize agricultural decision-making 

processes. ML techniques offer a data-driven approach to 

analyzing complex agricultural datasets, uncovering patterns, 

and generating insights that can inform more accurate and 

timely decisions (Chergui & Kechadi, 2022; Koshariya et al., 

2024). Among the various ML approaches, ensemble learning 

has emerged as a powerful paradigm for improving prediction 

accuracy and robustness (Maheswary et al., 2024). 

Ensemble learning refers to the procedure of combining the 

predictions generated by several independent models to 

obtain a single, more accurate forecast (Yang, Lv, & Chen, 

2023). The stacking ensemble is an advanced ensemble 

approach that combines the predictions of different base 

models using a meta-learner. The meta-learner is trained to 

optimize the combination of the base models' outputs 

(Mohammed & Kora, 2023; Raju, Ashoka & BV, 2024). 

Stacking ensemble models have shown greater performance 

in many prediction tasks by using the strengths of several 

algorithms and addressing their flaws (Kumar, Bajaj, Sharma 

& Narang, 2022). 

In the context of crop recommendation, stacking ensemble-

based predictive systems offer several potential advantages 

over traditional methods. These include the ability to capture 

complex interactions between environmental factors and crop 

performance, adapt to changing conditions over time, and 

provide more accurate and reliable recommendations to 

farmers (Ganaie, Hu, Malik, Tanveer & Suganthan, 2022). 

Stacking ensemble models may utilize a wide range of data 

sources, including satellite images, meteorological data, soil 

maps, and historical yield records, to provide more accurate 

forecasts. This integration of varied data sources allows for 

the leveraging of a multitude of knowledge, resulting in more 

robust predictions (Satish, Anmala, Rajitha & Varma, 2024). 
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Despite the considerable promise of stacking ensemble-based 

predictive systems for crop recommendation, there remains a 

gap in the literature regarding their development, evaluation, 

and practical application in real-world agricultural settings 

(Zhu, Wang, Yang, Xu & Yang, 2024; Ketheneni et al., 

2024). Therefore, this research paper aims to fill this need by 

creating and assessing a thorough stacking ensemble-based 

forecasting system in order to provide farmers with crop 

recommendations. The objective of this research is to analyze 

the performance of stacking ensemble approaches and their 

potential impact on agricultural decision-making processes. 

This will be done by systematically comparing their efficacy 

to conventional methods. The results of this study can provide 

crucial information, enabling farmers, agricultural 

practitioners, and politicians to make better knowledgeable 

decisions based on facts. This has the capacity to result in 

enhanced techniques for choosing and overseeing crops, 

ultimately improving agricultural production, sustainability, 

and food security. 

 

MATERIALS AND METHODS  

The study utilized a research methodology known as design 

and creation research, a variant of Design Science Research 

(DSR) commonly used in the fields of information models 

and computer research. DSR focuses on problem-solving and 

the creation of artifacts, encompassing the integration of 

organizational, human, and technical components to address 

complex difficulties. The methodology is based on the 

principles of DSR and is visualized in Figure 1. 

 

 
Figure 1: Research Methodology Framework 

 

Solution Objectives 

The key goal of the study is to construct a predictive model 

for crop recommendation using an ensemble-based approach. 

This phase involves applying methodological, theoretical, and 

systematic approaches to implement the formulated 

ensemble-based model to a proof-of-concept system. 

 

Design and Development  

This is the phase where the ensemble-based predictive model 

was developed. With insight from the literature review, the 

stacking ensembling technique was selected as the 

appropriate learning algorithm for the model development 

following the machine learning pipeline procedures.  

 

Evaluation  

The ensemble-based prediction model was assessed using 

several assessment metrics and methods, including accuracy, 

precision, recall, and f1 score. The model's performance is 

assessed by comparing it to earlier approaches discovered in 

the literature review. 

 

Dataset Description 

The dataset was obtained from the website 

https://www.kaggle.com/datasets/aksahaha/crop-

recommendation. Table 1 presents a concise dataset summary 

including 2200 records and 17 columns, all of which include 

numerical values. The given data include statistics for many 

factors, including Nitrogen, Phosphorus, Potassium, 

Temperature, Humidity, pH, Rainfall, Clay, Loamy, Silt, 

Sandy Loam, Loamy Sand, Silt Loam, Clay Loam, Drainage, 

Water Retention Moderate, and Water Retention High. The 

dataset consists of statistical metrics, including the mean, 

standard deviation, minimum, maximum, and quartiles. These 

metrics provide crucial information on the average values and 

range of agricultural indicators, making it easier to analyse 

and identify any abnormal data points. 
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Table 1: Statistical summary of study data 

 

 
 

Figure 2 displays the correlation matrix for the input 

characteristics. It is worth mentioning that there is a 

significant and positive connection of 0.74 between potassium 

and phosphorus. With the exception of this particular pair, 

most of the characteristics exhibit weak associations. This 

attribute is beneficial for our dataset since it reduces 

multicollinearity, hence improving the interpretability of the 

model. Furthermore, it mitigates the likelihood of overfitting, 

thereby enhancing the precision and generalizability of the 

model. The diminished correlations also result in less 

processing time, enabling the model to prioritize pertinent 

information. Moreover, it streamlines the process of 

determining the most relevant elements that affect the result 

variable. 

 

 
Figure 2: Correlation Matrix for the Input Features 
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Furthermore, the dataset analysis revealed specific soil and 

environmental requirements for different labeled crops. For 

instance, cotton requires a higher amount of nitrogen, while 

apple has a high phosphorus requirement. Additionally, the 

study found that Papaya thrives in extreme temperatures, and 

coconut has a higher moisture content. Chickpeas have a 

higher pH requirement, and rice requires significant rainfall. 

Table 2 presents the results of the analysis, including 

parameters like Rainfall, Temperature, Humidity, Nitrogen, 

Potassium, Phosphorus, and pH. 

 

Table 2: Crop Characteristics Analysis 

S/N Crop Rainfall Temperature Humidity Nitrogen Potassium Phosphorus pH 

1. Rice ✓       

2. Cotton    ✓    

3. Apple     ✓ ✓  

4. Grapes     ✓   

5. Papaya  ✓      

6. Coconut   ✓     

7. Chickpea       ✓ 

 

Feature Selection 

Feature selection plays a vital role in this study by minimizing 

overfitting, enhancing detection accuracy, and reducing the 

time required for model training. The effectiveness of 

machine learning models heavily depends on the quality and 

relevance of the dataset features used for training. Irrelevant, 

unsuitable, or partially relevant features can negatively impact 

model performance. To identify and prioritize the most 

significant features contributing to the target variable, a 

feature selection process was applied to the dataset. In this 

study, all features were determined to be relevant and were 

subsequently utilized for training the models. The dataset was 

split into 80% for training and 20% for testing, ensuring a 

balanced evaluation of the model's performance. 

 

Description of Machine Learning Methods Used 

This section offers a thorough explanation of the seven 

selected machine-learning models for this research. The 

assortment comprises the subsequent models: The machine 

learning algorithms mentioned include Random Forest, 

Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), Logistic Regression (LR), Naïve Bayes, Decision 

Tree, and Extreme Gradient Boosting. 

 

Random Forest is a machine learning algorithm employed for 

solving problems associated with regression and 

classification (Ren, Zhang & Suganthan, 2016). It generates 

decision trees using random data samples, reducing 

correlation and overfitting ((Zounemat-Kermani, Batelaan, 

Fadaee & Hinkelmann, 2021; Dev & Eden, 2019). Widely 

used in fields like image classification, bioinformatics, and 

financial forecasting, it provides reliable forecasts (Katuwal, 

Suganthan & Zhang, 2020). 

 

Support Vector Machine (SVM) is a sophisticated machine 

learning technology for predictive analysis and pattern 

recognition, particularly effective for large datasets (Shubham 

& Kamalraj, 2022; Campbell & Ying, 2022; Cervantes, 

Garcia-Lamont, Rodríguez-Mazahua & Lopez, 2020).). It is 

used to build binary classifiers by representing data items as 

points in an n-dimensional space. 

 

K-Nearest Neighbors Is a regression-based machine learning 

technique that utilizes similarity learning (Isnaeni, Indriani, 

Zaman & Nugroho, 2024). It identifies K nearest data points 

from the training set, determining class or value through 

majority voting (Bian, Vong, Wong & Wang, 2020; 

(Cunningham & Delany, 2020). KNN's simplicity and 

flexibility allow it to adapt to various data patterns and 

distributions (Rimanic, Renggli, Li, & Zhang, 2020). 

The logistic Regression (LR) method is a fundamental 

machine-learning technique, that transforms linear input 

attributes into probability-like values (Santoso, Singh, Rajest, 

Regin & Kadhim, 2021; (Song, Liu, Liu & Wang, 2021). It 

makes use of the sigmoid function, transforming them into 

scales representing probabilities(Talpur & O’Sullivan, 2020; 

Ray, 2019). 

 

Naive Bayes is a commonly employed method in the fields of 

machine learning and statistics, especially for tasks involving 

categorization (Veziroğlu, Eziroğlu & Bucak, 2024). The 

calculation of the likelihood of a hypothesis being true is 

based on Bayes' theorem, which is a fundamental premise in 

probability theory (Alnuaimi & Albaldawi, 2024; Reddy et 

al., 2024). This simplicity simplifies probabilities, making 

them computationally efficient and easy to implement 

(Alnuaimi & Albaldawi, 2024; Verma & Sahu, 2024). 

 

Decision Trees are a powerful machine learning model that 

effectively handles regression tasks by making binary 

decisions based on the value of features (Costa & Pedreira, 

2023; Fong & Motani, 2024). They mimic human decision-

making processes, handle numerical and categorical data, and 

capture complex relationships (Linardatos, 

Papastefanopoulos & Kotsiantis, 2020; Nanfack, Temple & 

Frénay, 2022; Glanois et al.,2024). 

Extreme Gradient Boosting (XGBoost) XGBoost, an 

advanced form of gradient-boosting, is renowned for its 

exceptional speed, precision, and adaptability. (Ali et 

al.,2024). Developed by Tianqi Chen, it builds an ensemble 

of weak learners, correcting previous errors (Wade & Glynn, 

2020). Unlike traditional methods, XGBoost uses regularized 

gradient boosting to control overfitting and enhance 

generalization performance, enhancing performance across 

various tasks (Wade & Glynn, 2020; Huber, Yushchenko, 

Stratmann & Steinhage, 2022). 

 

Stacking 

Stacking, also known as Stacked Generalization, is a 

technique that combines predictions from many models using 

a meta-model (Seireg, Omar & Elmahalawy, 2023). 

Throughout the stacking process, a sequence of fundamental 

models is trained separately. Every model possesses certain 

characteristics or exhibits unique flaws when trained on the 

data (de-Zarzà, de-Curtò, Hernández-Orallo & Calafate, 

2023). The primary models provide forecasts, which are 

subsequently combined and utilized to train a meta-model. 

The meta-model, often a less complex algorithm such as 

linear regression, is trained using the aforementioned 

forecasts (Chen, Zeb, Nanehkaran, & Zhang, 2023). The 
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meta-model is designed with the express purpose of 

improving the combination of results from the fundamental 

models, resulting in a more precise and accurate prediction 

during the testing or validation phase (Liang & Liu, 2023).  

The core premise of stacking is to leverage the synergistic 

powers of several models, hence surpassing the predictive 

capabilities of any one model (Yang et al., 2023). In order to 

achieve the best results in real-life situations, it is essential to 

carefully assess many models and select an appropriate meta-

model when using the stacking strategy, as it may greatly 

enhance performance. This research examines many 

foundational models, including K-Nearest Neighbors (KNN), 

Decision Tree, Support Vector Machine (SVM), Naïve Bayes, 

Logistic Regression, and XGBoost. The Random Forest (RF) 

serves as the metamodel.  

 

 
Figure 3: Stacking Ensembling Technique 

Source: Author  

 

Framework for Ensemble-Based Model for Crop 

Recommendation  

Figure 3 depicts the fundamental framework of the stacked 

ensemble model employed for crop recommendation. The 

framework is organized into two main categories of essential 

elements for recommendation processes: meteorological 

variables and ecological factors. Weather factors refer to data 

regarding temperature, precipitation, and humidity, whereas 

environmental factors refer to information on soil pH, 

nitrogen, phosphorus, and potassium levels. The first models, 

including support vector machine, decision tree, logistic 

regression, K-nearest neighbor, naïve Bayes, and XGBoost, 

are trained and evaluated using both meteorological and 

environmental data. After analyzing the literature study, the 

random forest is selected as the meta-model because to its 

outstanding performance. The predictions produced by the 

core models are combined and used as input for the meta-

model, optimizing the integration of their outcomes. During 

the final prediction phase, the fundamental models are once 

again utilized to create predictions on fresh data, and the meta-

model amalgamates these predictions to generate the ultimate 

outcome. 

 

 
Figure 4: Framework for the Ensemble-Based Predictive Model for Crop Recommendation 

 

Algorithm of the Ensemble-Based Predictive Model for 

Crop Recommendation  

The Stacked Ensemble model for crop selection, as described 

in Algorithm 1, seeks to improve forecast accuracy by using 

the capabilities of many base models. At first, the training data 

is divided into N folds in order to do cross-validation. 

Afterwards, many core models like as Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), Logistic 

Regression (LR), Decision Trees (DT), Naive Bayes (NB), 

and XGBoost are trained on subsets of the data using N-1 

folds of a Random Forest. The results of these foundational 

models are combined by concatenating them and utilized as 

input for a meta-model, which is trained to maximize the 

amalgamation of the base model results. During the final 

prediction step, the underlying models are once again 

employed to predict fresh data, while the meta-model 

combines these predictions to produce the final result. 
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Algorithm 1: Algorithm for Crop Ensemble-Based Model  

Start  

Split the training Data (TD) into 𝑁 𝑓𝑜𝑙𝑑 → 𝐷1, 𝐷2, … 𝐷𝑁 

For each base model, 𝑚 ∈ 𝑆𝑉𝑀, 𝐾𝑁𝑁, 𝐿𝑅, 𝐷𝑇, 𝑁𝐵 𝑎𝑛𝑑 𝑋𝐺𝐵𝑂𝑂𝑆𝑇 

Train 𝑇𝑚𝑜𝑑𝑒𝑙𝑠 , 𝑚1, 𝑚2, … 𝑚𝑁 on 𝑁 − 1 folds of the RF  

Keep the predicted outputs  Ẑ𝑚 ,𝑡 (𝑋) for 𝑚𝑡 on each test 𝑓𝑜𝑙𝑑 𝐷𝑛 

Concatenate the predicted output from all base models for each test fold: 

𝑋𝑘 = [Ẑ𝑆𝑉𝑀, 1(𝐷𝑛), Ẑ𝑆𝑉𝑀, 2(𝐷𝑛), … 𝑦𝑋𝐺𝐵𝑂𝑂𝑆𝑇, 𝑇(𝐷𝑛)]  
Train a metal model 𝑓(𝑋) on the concatenate the predicted output 𝑋𝑛 for each fold. 

For each test fold 𝐷𝑛 use the base models to predict the output Ẑm(x) and concatenate the outputs:  

𝑋 = {Ẑ𝑆𝑉𝑀(𝐷𝑛), Ẑ𝐾𝑁𝑁(𝐷𝑛), Ẑ𝐿𝑅(𝐷𝑛), Ẑ𝐷𝑇(𝐷𝑛), Ẑ𝑁𝐵(𝐷𝑛), Ẑ𝑋𝐺𝐵𝑂𝑂𝑆𝑇(𝐷𝑛)}  
Use the trained meta-model to predict the final output: Ẑ𝑓𝑖𝑛𝑎𝑙(𝑥) = 𝑓(𝑥) 

End 

 

System Architecture 

The diagram in Figure 4 illustrates the system architecture of 

the proposed system. This system use a stacking ensemble-

based prediction approach to provide crop recommendations 

to farmers. The system has four primary components: 

PYQT5, Rendering Engine, Controller, and Model.  PYQT5 

employs Python bindings for the Qt framework to facilitate 

the creation of graphical user interfaces (GUIs) and programs 

that can run on several platforms. The Rendering Engine is 

accountable for graphically presenting crop recommendation 

outcomes via data visualization within the graphical user 

interface (GUI). The Controller manages the transfer of data 

and commands between the Graphical User Interface (GUI) 

and the Model. The system gathers user input and sends it to 

the Model for forecasting. The Model, which serves as the 

core element of the system, employs a stacking ensemble-

based machine learning algorithm to provide crop 

suggestions. This technique employs an ensemble 

methodology by combining predictions from many base 

models, hence enhancing the accuracy of projections.  The 

stacking ensemble technique involves training many base 

models on input data and aggregating their predictions using 

a meta-model. The core models encompass a variety of 

machine learning techniques, including decision trees, 

support vector machines, and neural networks. The meta-

model effectively combines the predictions of the basic model 

to get the definitive crop recommendation.  

 

 
Figure 5: The Proposed System Architecture 

 

Employing a stacking ensemble-based machine learning 

technique enhances the precision of recommendations by 

leveraging the advantages of many base models. This notion 

is particularly beneficial in agriculture, since it necessitates 

complex and multidimensional factors for predicting crop 

yields.  

 

Performance Metrics for Classification 

The evaluation criteria utilized for gauging the effectiveness 

of this analysis are as follows: 

 

Accuracy  

The efficacy of a model is assessed by the proportion of 

accurate predictions produced across all sorts of forecasts 

(Ricciardi, Ramankutty, Mehrabi, Jarvis & Chookolingo, 

2018). The evaluation process involves assessing the accuracy 

of classification by comparing the count of correctly 

categorized instances to the overall count of occurrences 

(Petropoulos & Siemsen, 2023). The measure of accuracy is 

particularly valuable in cases when the distribution of classes 

in the target variable is uniformly spread throughout the 

dataset. This is expressed in Equation 1. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
   (1) 

 

Sensitivity or Recall  

Sensitivity is a numerical metric used to calculate the 

proportion of correctly identified positive situations that were 

incorrectly labeled as negative by the model. It is sometimes 

denoted as recall or true positive rate (Hutter, 2012). 

Mathematically, it is defined as the ratio of the number of true 

positive (TP) occurrences to the sum of true positive and false 

negative (FN) cases.  It is mathematically expressed as:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

 

F1 score rate  

The F1 score represents the computed weighted average of 

both precision and recall (Bach, 2020). As such, this score 

takes into account the balance between false positives and 

false negatives. 



STACKING ENSEMBLE-BASED PREDICTIVE…            Aimufua et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 72 - 83 78 

F1 Score = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (3) 

 

Precision 

Precision is a metric that measures the accuracy of positive 

predictions made by a model (Davis, 2015). It is defined as 

the ratio of correctly predicted positive samples to the total 

number of samples predicted as positive. 

Precision =   
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (4) 

 

RESULTS AND DISCUSSION 

This section evaluates the proposed model's numerical 

experimental performance using the Kaggle dataset, varying 

sample and feature counts. The outcomes are displayed in 

tables and graphs for a comprehensive presentation. 

 

Performance of Selected Machine Learning Models 

Table 3 provides analysis of the performance of the selected 

machine-learning models. This study considered eight 

models—K-Nearest Neighbors (KNN), Decision Tree (DT), 

Random Forest (RF), Support Vector Machine (SVM), Naive 

Bayes (NB), Logistic Regression (LR), and XGBoost. Each 

model was individually trained and evaluated for crop 

prediction, with their performance metrics computed to 

inform the development of a stacked ensemble predictive 

model. 

 

Table 3: Performance Metrics of Selected Machine Learning Models 

S/N Model Accuracy (%) Precision Recall F-Score Support 

1 KNN 98.4 0.98 0.99 0.99 141 

2 DT 99.5 0.99 0.99 0.97 141 

3 SVM 98.9 0.96 0.99 0.99 141 

4 RF 99.8 0.96 0.99 0.97 141 

5 LR 96.1 0.97 0.98 0.98 141 

6 NB 99.6 0.99 0.99 0.99 141 

7 XGBoost 89.1 0.89 0.88 0.88 141 

8 Stacked Model 99.8 0.99 0.99 0.99 141 

 

From the analysis, Random Forest (RF) and the Stacked 

Ensemble Model demonstrated the highest accuracy of 

99.8%, with excellent recall, precision, and F1-scores, 

underscoring their effectiveness for crop prediction. Naive 

Bayes (NB) followed closely with an accuracy of 99.6% and 

consistently strong performance across all metrics. The 

Decision Tree (DT) achieved an impressive accuracy of 

99.5%, while Support Vector Machine (SVM) and K-Nearest 

Neighbors (KNN) also performed well, with accuracies of 

98.9% and 98.4%, respectively. 

In comparison, Logistic Regression (LR) exhibited a 

respectable accuracy of 96.1%. However, XGBoost, with an 

accuracy of 89.1%, lagged in precision, recall, and F1-score, 

reflecting areas where its performance could be improved. 

These results highlight the superior capabilities of Random 

Forest and the stacked ensemble model for crop prediction, 

validating their potential for practical implementation. 

Stacking Ensembled-Based Model Performance 

As shown in Table 4, the stacking ensemble model delivers 

outstanding performance in crop prediction, achieving a 

flawless Precision, Recall, and F1-Score of 1.00 across 20 of 

the 22 crop categories, with a remarkable overall accuracy of 

100%. Even the slight deviations observed for Pomegranate 

(Precision: 0.95, F1-Score: 0.98) and Coconut (Recall: 0.95, 

F1-Score: 0.97) do little to detract from the model's 

exceptional reliability and predictive power. The perfect 

Macro and Weighted Averages of 1.00 further underscore its 

ability to deliver consistent and balanced predictions across 

diverse crop types. These results, detailed in Table 4, 

highlight the model as a groundbreaking solution for real-

world multi-crop recommendation systems, setting a new 

standard for precision agriculture. 

 

Table 4: Crop Characteristics Analysis 

Crop Precision Recall F1-Score Support 

Rice 1.00 1.00 1.00 22 

Maize 1.00 1.00 1.00 18 

Chickpea 1.00 1.00 1.00 22 

Kidneybeans 1.00 1.00 1.00 15 

Pigeonpeas 1.00 1.00 1.00 18 

Mothbeans 1.00 1.00 1.00 17 

Mungbean 1.00 1.00 1.00 22 

Blackgram 1.00 1.00 1.00 29 

Lentil 1.00 1.00 1.00 25 

Pomegranate 0.95 1.00 0.98 20 

Banana 1.00 1.00 1.00 18 

Mango 1.00 1.00 1.00 20 

Grapes 1.00 1.00 1.00 17 

Watermelon 1.00 1.00 1.00 24 

Muskmelon 1.00 1.00 1.00 24 

Apple 1.00 1.00 1.00 26 

Orange 1.00 1.00 1.00 15 

Papaya 1.00 1.00 1.00 14 

Coconut 1.00 0.95 0.97 19 
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Cotton 1.00 1.00 1.00 23 

Jute 1.00 1.00 1.00 13 

Coffee 1.00 1.00 1.00 19 

Accuracy 1.00   440 

Macro Avg 1.00 1.00 1.00 440 

Weighted Avg 1.00 1.00 1.00 440 

 

Figure 6 of the dataset shows the classification report of the 

stacking ensemble-based model. The performance 

measurements are presented for a comprehensive variety of 

22 crops, including apple, banana, blackgram, chickpea, 

coconut, coffee, cotton, grapes, jute, kidney beans, lentil, 

maize, mango, moth beans, mungbean, muskmelon, orange, 

papaya, pigeon peas, pomegranate, rice, and watermelon. 

 
Figure 6: Performance of the Stacked Ensembling Model 

 

The model has outstanding precision and recall scores for 

several crops, including rice, maize, chickpeas, kidney beans, 

pigeon peas, moth beans, Mungbean, black gram, lentil, 

banana, mango, grapes, watermelon, muskmelon, apple, 

orange, papaya, cotton, jute, and coffee. The accuracy of 

coconut and pomegranate was substantially lower, with a 

value of 0.95, suggesting a modest number of additional false 

positives. The algorithm effectively detects almost all genuine 

positive instances with just minor discrepancies for 

pomegranate and coconut. The F1 scores, which quantify the 

balance between accuracy and recall, consistently exhibit 

outstanding performance, with the majority of crops earning 

a perfect F1 score of 1.00. The model's overall accuracy of 

1.00 indicates that almost all projections are accurate. 

Achieving this high degree of performance is crucial for 

providing precise crop suggestions in real-life situations. The 

model's outstanding performance emphasizes its robust 

endurance and reliability, making it highly relevant for 

practical applications. It provides precise crop 

recommendations, helping farmers make informed choices 

based on reliable estimates. The model's ability to consistently 

achieve high accuracy, precision, recall, and F1-scores across 

different crop kinds signifies significant advancement in 

agricultural decision support systems. This enhances the 

advancement of more sustainable and effective techniques for 

managing crops, eventually maximizing agricultural output 

and sustainability. 

 

Ensemble Based Crop Recommendation System  

This section will provide details on how the developed model 

has been integrated into a crop recommendation system. 

Additionally, the following steps will showcase the Graphical 

User Interfaces (GUIs) of the system and the procedural 

aspects required to execute a crop recommendation task 

within the system. 

 

Training Page Interface  

The user interface shown in Figure 6 presents multiple 

navigation choices, such as Training, Recommendation, 

Upload, and Train. To start the system's training phase, users 

are required to provide the crop suggestions dataset. Once the 

dataset is selected through the "Upload" button, users can 

proceed to initiate the system's training by clicking on the 

TRAIN button. 
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Figure 7: Training Page Interface 

 

After the training phase is completed, the system provides feedback to the user. The feedback message reads 

"complete...100%,” depicted in Figure 7 indicating that the training process is finished. 

 

 
Figure 8: Training Completion 

 

Recommendation Page Interface  

The system includes a crop recommendation interface, as seen 

in Figure 8. The user will be prompted to specify certain 

qualities of the farmland, such as Nitrogen, Phosphorus, 

Potassium, Humidity, pH, and Rainfall, in order to receive 

accurate suggestions. The system will evaluate these criteria 

to determine the appropriate crops for the specified land. 

 

 
Figure 9: Crop Recommendation Page Interface 

 

Once the required data are supplied to the system, it generates recommendations based on the input, and the feedback is 

displayed in the Recommendation Area depicted in Figure 10.  
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Figure 10: Crop Recommendation Sample 

 

From Figure 10, it can be seen that inputting the following 

data: Nitrogen = 88, Phosphorus = 39, Potassium = 41, 

Humidity = 82, pH = 4.5, and Rainfall = 140, the system will 

recommend growing Papaya. Similarly, when you provide 

different data such as Nitrogen = 100, Phosphorus = 39, 

Potassium = 41, Humidity = 82, pH = 4.5, and Rainfall = 14, 

the system will suggest cultivating Apples. It is worth noting 

that the system's recommendations are in perfect agreement 

with that of the ensemble model.  

 

CONCLUSION 

This work provides a thorough analysis of the development of 

a crop recommendation prediction system utilizing an 

ensemble-based machine learning technique. The study 

utilizes a Design Science Research (DSR) methodology to 

create a strong model framework by integrating multiple 

machine learning techniques, such as K-Nearest Neighbors 

(KNN), Decision Trees, Support Vector Machines (SVM), 

Naive Bayes, Logistic Regression, and Extreme Gradient 

Boosting (XGBoost), with Random Forest acting as the meta-

model. The developed technique utilizes a stacking ensemble 

strategy to successfully combine many models, using the 

unique capabilities of each model to increase the overall 

predictive performance. The model underwent training and 

validation using an extensive dataset collected from Kaggle. 

The dataset consisted of several crops and their corresponding 

environmental characteristics, including soil composition, 

nitrogen levels, temperature, and precipitation. The model's 

remarkable performance was proved by a comprehensive 

examination utilizing measures such as accuracy, recall, F1-

Score, and precision. The obtained accuracy of 99.8%, 

together with elevated recall, precision, and F1 scores for 

various crops, demonstrates a substantial enhancement in 

comparison to current techniques. The categorization report 

demonstrates the model's regular provision of precise 

recommendations for a diverse array of crops, emphasizing its 

strength and dependability. Data flow diagrams were 

employed to visually depict the movement of data inside the 

system, with the objective of improving understanding of its 

operation. The system was developed using the Python 

programming language, using its wide range of tools for 

machine learning and data processing. The use of MongoDB 

facilitated the efficient construction of the database, 

guaranteeing the dependable storage and retrieval of 

extensive datasets. The implemented model was utilized to 

create a proof-of-concept system that offers practical advice 

to farmers, relying on the forecasts produced by the ensemble 

model. This technology has the capacity to increase crop 

management tactics, ensuring improved response to diverse 

environmental situations. This research represents a 

substantial advancement in improving agricultural 

sustainability and production by employing sophisticated 

predictive modeling techniques. Additional study might 

enhance the current foundation by increasing the dataset, 

integrating supplementary characteristics, and investigating 

more advanced machine learning approaches to enhance the 

accuracy of the model. The work we do makes a substantial 

contribution to the current efforts aimed at achieving 

sustainable agriculture practices and enhancing food security 

through the utilization of data-driven decision-making. 

 

REFERENCES 

Akkem, Y., Biswas, S. K., & Varanasi, A. (2024). A 

comprehensive review of synthetic data generation in smart 

farming by using variational autoencoder and generative 

adversarial network. Engineering Applications of Artificial 

Intelligence, 131, 107881. 

 

Ali, Z. A., Abduljabbar, Z. H., Taher, H. A., Sallow, A. B., & 

Almufti, S. M. (2023). Exploring the power of eXtreme 

gradient boosting algorithm in machine learning: A 

review. Academic Journal of Nawroz University, 12(2), 320-

334. 

 

Alnuaimi, A. F., & Albaldawi, T. H. (2024). An overview of 

machine learning classification techniques. In BIO Web of 

Conferences (Vol. 97, p. 00133). EDP Sciences. 

 

Alnuaimi, A. F., & Albaldawi, T. H. (2024). An overview of 

machine learning classification techniques. In BIO Web of 

Conferences (Vol. 97, p. 00133). EDP Sciences. 

 

Amanullah, A., & Khan, U. (2024). Advancing sustainable 

agriculture with beneficial microbes: Enhancing crop growth 

and yield for food security and human health. Advances in 

Modern Agriculture, 4(2). 

 

Balaska, V., Adamidou, Z., Vryzas, Z., & Gasteratos, A. 

(2023). Sustainable crop protection via robotics and artificial 

intelligence solutions. Machines, 11(8), 774. 

 

Bian, Z., Vong, C. M., Wong, P. K., & Wang, S. (2020). 

Fuzzy KNN method with adaptive nearest neighbors. IEEE 

transactions on cybernetics, 52(6), 5380-5393. 

 



STACKING ENSEMBLE-BASED PREDICTIVE…            Aimufua et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 72 - 83 82 

Chen, J., Zhao, F., Sun, Y., & Yin, Y. (2020). Improved 

XGBoost model based on genetic algorithm. International 

Journal of Computer Applications in Technology, 62(3), 240-

245. 

 

Cheng, F., Yang, C., Zhou, C., Lan, L., Zhu, H., & Li, Y. 

(2020). Simultaneous determination of metal ions in zinc 

sulfate solution using UV–Vis spectrometry and SPSE-

XGBoost method. Sensors, 20(17), 4936. 

 

Chergui, N., & Kechadi, M. T. (2022). Data analytics for crop 

management: a big data view. Journal of Big Data, 9(1), 123. 

 

Costa, V. G., & Pedreira, C. E. (2023). Recent advances in 

decision trees: An updated survey. Artificial Intelligence 

Review, 56(5), 4765-4800. 

 

COSTEA, M., LEAH, D., PAȘCALĂU, R., ȘMULEAC, L., 

STANCIU, S., MERGHEȘ, P., ... & FEHER, A. (2023). 

CHALLENGES AND ISSUES FOR FARMERS IN THE 

MODERN ERA. Research Journal of Agricultural 

Science, 55(2). 

 

Cunningham, P., & Delany, S. J. (2020). k-Nearest neighbour 

classifiers: (with Python examples). arXiv preprint 

arXiv:2004.04523. 

 

Cunningham, P., & Delany, S. J. (2021). K-nearest neighbour 

classifiers-a tutorial. ACM computing surveys (CSUR), 54(6), 

1-25. 

 

Fong, K. S., & Motani, M. (2024, March). Symbolic 

Regression Enhanced Decision Trees for Classification 

Tasks. In Proceedings of the AAAI Conference on Artificial 

Intelligence (Vol. 38, No. 11, pp. 12033-12042). 

 

Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & 

Suganthan, P. N. (2022). Ensemble deep learning: A 

review. Engineering Applications of Artificial 

Intelligence, 115, 105151. 

 

Glanois, C., Weng, P., Zimmer, M., Li, D., Yang, T., Hao, J., 

& Liu, W. (2024). A survey on interpretable reinforcement 

learning. Machine Learning, 1-44. 

 

Hassan, M., Rai, P., & Maharjan, S. (2023). Empowering 

south asian agricultural communities: A comprehensive 

approach to iot-driven agriculture through awareness, 

training, and collaboration. Quarterly Journal of Emerging 

Technologies and Innovations, 8(3), 18-32. 

 

Huber, F., Yushchenko, A., Stratmann, B., & Steinhage, V. 

(2022). Extreme Gradient Boosting for yield estimation 

compared with Deep Learning approaches. Computers and 

Electronics in Agriculture, 202, 107346. 

 

Isnaeni, I. A., Indriani, S., Zaman, M. R. N., & Nugroho, A. 

(2024). Comparison of K-Nearest Neighbors (KNN) and 

Decision Tree with Binary Particle Swarm Optimization 

(BPSO) in Predicting Employee Performance. International 

Journal of Open Information Technologies, 12(3), 57-65. 

 

Ketheneni, K., Yenuga, P., Garnepudi, P., Paleti, L., Burla, N. 

R., Srinivas, O., ... & Yamarthi, N. R. (2024). Crop, Fertilizer 

and Pesticide Recommendation using Ensemble Method and 

Sequential Convolutional Neural Network. International 

Journal of Intelligent Systems and Applications in 

Engineering, 12(2), 473-485. 

 

Khatri, P., Kumar, P., Shakya, K. S., Kirlas, M. C., & Tiwari, 

K. K. (2023). Understanding the intertwined nature of rising 

multiple risks in modern agriculture and food 

system. Environment, Development and Sustainability, 1-44. 

 

Koshariya, A. K., Rameshkumar, P. M., Balaji, P., Cavaliere, 

L. P. L., Dornadula, V. H. R., & Singh, B. (2024). Data-

Driven Insights for Agricultural Management: Leveraging 

Industry 4.0 Technologies for Improved Crop Yields and 

Resource Optimization. In Robotics and Automation in 

Industry 4.0 (pp. 260-274). CRC Press. 

 

Kumar, M., Bajaj, K., Sharma, B., & Narang, S. (2022). A 

Comparative Performance Assessment of Optimized 

Multilevel Ensemble Learning Model with Existing Classifier 

Models. Big Data, 10(5), 371-387. 

 

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. 

(2020). Explainable ai: A review of machine learning 

interpretability methods. Entropy, 23(1), 18. 

 

Maheswary, A., Nagendram, S., Kiran, K. U., Ahammad, S. 

H., Priya, P. P., Hossain, M. A., & Rashed, A. N. Z. (2024). 

Intelligent Crop Recommender System for Yield Prediction 

Using Machine Learning Strategy. Journal of The Institution 

of Engineers (India): Series B, 1-9. 

 

Mbanaso, U. M., Abrahams, L., & Okafor, K. C. (2023). 

Research Techniques for Computer Science, Information 

Systems and Cybersecurity (1st ed.). Springer. 

 

Mohammed, A., & Kora, R. (2023). A comprehensive review 

on ensemble deep learning: Opportunities and 

challenges. Journal of King Saud University-Computer and 

Information Sciences, 35(2), 757-774. 

 

Nanfack, G., Temple, P., & Frénay, B. (2022). Constraint 

enforcement on decision trees: A survey. ACM Computing 

Surveys (CSUR), 54(10s), 1-36. 

 

Oates, B. J. (2006). Researching Information Systems and 

Computing (First, Vol. 1). SAGE Publications. 

 

Phadke, M., Goel, M., Bajpai, R., & Mehta, N. (2022). 

Designing an algorithm to support optimized crop selection 

by farmers. In ICT Analysis and Applications (pp. 345-357). 

Springer Singapore. 

 

Raju, C., Ashoka, D. V., & BV, A. P. (2024). CropCast: 

Harvesting the future with interfused machine learning and 

advanced stacking ensemble for precise crop 

prediction. Kuwait Journal of Science, 51(1), 100160. 

 

Reddy, G. V., Reddy, M. V. K., Spandana, K., Subbarayudu, 

Y., Albawi, A., Chandrashekar, R., ... & Praveen, P. (2024). 

Precision farming practices with data-driven analysis and 

machine learning-based crop and fertiliser recommendation 

system. In E3S Web of Conferences (Vol. 507, p. 01078). 

EDP Sciences. 

 

Rimanic, L., Renggli, C., Li, B., & Zhang, C. (2020). On 

convergence of nearest neighbor classifiers over feature 

transformations. Advances in Neural Information Processing 

Systems, 33, 12521-12532. 



STACKING ENSEMBLE-BASED PREDICTIVE…            Aimufua et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 72 - 83 83 

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

 

Sagi, O., & Rokach, L. (2021). Approximating XGBoost with 

an interpretable decision tree. Information sciences, 572, 522-

542. 

Satish, N., Anmala, J., Rajitha, K., & Varma, M. R. (2024). A 

stacking ANN ensemble model of ML models for stream 

water quality prediction of Godavari River Basin, 

India. Ecological Informatics, 80, 102500. 

 

Sunil Kumar, S. (2024). MACHINE LEARNING-BASED 

CROP RECOMMENDATION SYSTEM FOR ENHANCED 

YIELD PRODUCTION. Journal of Interdisciplinary Cycle 

Research, 26(1), 597-611. 

 

Thakur, A., Kumari, D., & Kumar, P. (2024). Climate Change 

and Agriculture: Assessing the relationship between 

agricultural practices, greenhouse gas emissions, and climate 

change. A Comprehensive Exploration of Soil, Water, and Air 

Pollution in Agriculture, 155. 

 

Verma, G., & Sahu, T. P. (2024). A correlation-based feature 

weighting filter for multi-label Naive Bayes. International 

Journal of Information Technology, 16(1), 611-619. 

 

Veziroğlu, M., Eziroğlu, E., & Bucak, İ. Ö. (2024). 

Performance Comparison between Naive Bayes and Machine 

Learning Algorithms for News Classification. In Bayesian 

Inference-Recent Trends. IntechOpen. 

 

Wade, C., & Glynn, K. (2020). Hands-On Gradient Boosting 

with XGBoost and scikit-learn: Perform accessible machine 

learning and extreme gradient boosting with Python. Packt 

Publishing Ltd. 

 

Yang, Y., Lv, H., & Chen, N. (2023). A survey on ensemble 

learning under the era of deep learning. Artificial Intelligence 

Review, 56(6), 5545-5589. 

 

Zhu, L., Wang, L., Yang, Z., Xu, P., & Yang, S. (2024). 

PPSNO: A Feature-Rich SNO Sites Predictor by Stacking 

Ensemble Strategy from Protein Sequence-Derived 

Information. Interdisciplinary Sciences: Computational Life 

Sciences, 1-26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/

