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ABSTRACT 

Lifetime distributions are parametric models used in statistical analyses of time-to-event data. Several 

probability distributions have been very used in literature to model lifetime data sets which have been useful 

in the analysis of lifetime data, but in most cases, they are not flexible enough to analyze some complex lifetime 

data in practice. Due to the importance of these lifetime distributions in modeling real lifetime data, there has 

several modifications and generalization of lifetime distributions, particularly the Lomax distribution to 

develop more flexible distributions to address the drawback presented by some classical lifetime distributions 

including the Lomax distribution. Several attempts have been made by researchers to generalize classical 

lifetime distributions which offer more flexibility in modeling lifetime data. Our interest in this study is to 

introduce a new extension of Lomax distribution called the “The odd lomax Topp-Leone distribution” which 

is bounded on a unit interval data such that its flexibility can accommodate increasing, decreasing, right 

skewed, left skewed, symmetric and u-shaped data sets. An application to a real lifetime data set clearly shows 

that the proposed extension of the Lomax distribution is a better alternative to some existing distributions 

bounded on a unit interval.  
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INTRODUCTION 

Lifetime data analysis is a statistical method for analyzing 

time-to-event data. This could be the time of development of 

disease, time to response-to-treatment, time to death or the 

working time (reliability) of a device before the worn-out 

period etc. In recent years, the study of survival data is 

centered on predicting the probability of response, survival or 

mean lifetime and comparing the survival distributions of 

human patients. These predictions are attainable through the 

use of statistical models known as Lifetime Distributions. In 

light of this, many probability distributions have been 

proposed by researchers in the field of statistics to handle such 

situation. Some example of classical lifetime distributions 

includes the Exponential distribution, Gamma distribution, 

Weibull distribution, Gompert distribution, Lomax 

distribution, Lindley distribution, Log-normal distribution 

amongst others. These parametric models have been 

extensively studied and applied in literature and have been 

proven to be sufficient in modeling lifetime data. Marshall 

and Olkin (1997) noted that the Exponential distribution plays 

a central role in analyses of lifetime or survival data due to its 

convenient statistical theory, “lack of memory” as well as its 

constant failure rate property.  

Lomax (1954) introduced the Lomax distribution which is a 

heavy-tailed distribution as a special case of a Pareto 

distribution of the 2nd kind, hence called the Pareto type II 

distribution. Bryson (1974) said that the Lomax (or Type II 

Pareto) distribution as an alternative to the exponential 

distribution in the analysis of data with heavy-tailed. The 

Lomax distribution model has can be applied to many fields 

of study which includes income and wealth analysis, 

economics, actuarial science, medical and biological sciences, 

engineering, lifetime and reliability modeling and many more. 

Harris (1968) used Lomax distribution for the analysis of 

income and wealth data, Atkinson and Harrison (1978) used 

the Lomax distribution for modelling business failure data, 

Holland et al. (2006) used the Lomax distribution for 

modelling the distribution of the sizes of computer files on 

servers, Corbelini et al. (2007) used the Lomax distribution to 

model the size of firm and its queuing problems, amongst 

others. See Arnold (1983) and Johnson et al. (1994) for more 

details about the Lomax distribution and Pareto class of 

distributions.  

Ahsanulla (1991) studied the distributional properties of the 

Lomax distribution with regard to record values pointed out 

that: (1) the Lomax distribution reverse J-shape and can be 

used for modelling situation that shows an improved 

performance in the system as development continues over 

time, (2) the Lomax distribution has a linear residual life 

function instead of constant which makes it a better 

alternative to exponential distribution in reliability studies.  

Other form of statistical treatment of the Lomax distribution 

was presented which revealed that the Lomax distribution is a 

better for modelling waiting time data than the exponential 

distribution. 

In the last few decades, following the impact of the Lomax 

distribution in modelling time to event data as establishes by 

Ahsanulla (1991), the interest of researchers in the field of 

statistics have been drawn to developing modified (extended) 

forms of the Lomax distribution with the aim of increasing its 

flexibility in modeling real life data. Some examples of the 

modified and extended version of the Lomax distribution 

include the extended Lomax distribution by Lemonte and 

Cordeiro (2011), exponentiated Lonax distribution by Salem 

(2014), weighted Lomax distribution by Kilany (2015), power 

Lomax distribution by Rady et al. (2016), five parameter 

Lomax distribution by Mead (2016), generalization of the 

Lomax distribution by Oguntunde et al. (2017), and so on. 

Several methods of generating new probability distributions 

and family of probability distributions have been established 

in literature. Some of the most popularly and currently used 

generators in the literature include the Marshall-Olkin family 

by Marshall and Olkin (1997), the Beta-G family by Eugene 

et al. (2002), the transmuted-G family by Shaw and Bulkley 

(2007), the transformed-transformer (T-X) family by 

Alzaatreh et al. (2013), etc. Using these ideas, we have the 

exponential Lomax distribution by El-Bassiouny et al. (2015), 

the gamma Lomax distribution by Cordeiro et al. (2015), 

transmuted Lomax distribution by Ashour and Eltehiwy 

(2013), Poisson Lomax distribution by Al-Zahrani and Sagor 
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(2014), Weibull Lomax distribution Tahir (2015), Modified 

Kies–Lomax Distribution by Alsubie (2021), Marshall-Olkin 

Extended Power Lomax Distribution by Gillariose and Tomy 

(2020), the Lomax-Exponential Distribution by Nasrin et al. 

(2016),Applications of Half Logistic Marshall-Olkin Lomax-

X family of Distributions to Time Series, Acceptance 

Sampling and Stress-strength Parameter by Tomy and Jose 

(2022), A New Transmuted Generalized Lomax Distribution 

byWael et al. (2021) and Cordeiro et al. (2019) presented the 

odd Lomax-G family of distributions. Ogunde et al. (2023) 

developed the Kumaraswamy Generalized Inverse Lomax 

(KGIL) distribution. Other distributions such as Weibll Dal 

and Burrxii-Dal and Weibull together with their properties 

and applications have been studied extensively (Nawaz S. et 

al 2021a,Nawaz S. et al 2021b,and Nawaz S. et al 2021c). 

In this study, we present a new probability distribution as an 

extension of Lomax distribution called “The Odd Lomax 

Topp Leone distribution” which is more flexible lifetime 

distribution than some existing lifetime distributions. 

 

MATERIALS AND METHODS 

The Formation of Odd Lomax Topp Leone (OLxTL) 

Distribution 

A random variable is said to follow the Topp Leone (TL) 

distribution if the cumulative distribution function (CDF) and 

probability density function (pdf) are respectively given as  

𝑮(𝒙) = 𝒙𝜽(𝟐 − 𝒙)𝜽 = [𝟏 − (𝟏 − 𝒙)𝟐]𝜽  

 𝟎 < 𝒙 < 𝟏, 𝜽 > 𝟎   (1) 

And 

𝒈(𝒙) = 𝟐𝜽𝒙𝜽−𝟏(𝟏 − 𝒙)(𝟐 − 𝒙)𝜽−𝟏 = 𝟐𝜽(𝟏 − 𝒙)[𝟏 − (𝟏 −
𝒙)𝟐]𝜽−𝟏     (2) 

Based on the framework of the T-X family presented by 

Azaatreh et al. (2013), Cordeiro et al, (2019) presented the 

Odd Lomax-G (OLx-G) family of distributions. The 

cumulative distribution function (cdf) of the function OLx-G 

family is defined as 

𝐹(𝑥; 𝛼, 𝛽, 𝛷) = 𝛼𝛽𝛼 ∫ (𝛽 + 𝑡)−(𝛼+1)𝑑𝑡

𝐺(𝑥;𝛷)

�̄�(𝑥;𝛷)

0
= 1 − 𝛽𝛼 {𝛽 +

𝐺(𝑥;𝛷)

�̄�(𝑥;𝛷)
}
−(𝛼+1)

    (3) 

Where 𝐺(𝑥; 𝛷)  is the cdf of a baseline distribution and 

�̄�(𝑥;𝛷) = 1 − 𝐺(𝑥;𝛷) is the survival function with 𝛷   as 

vector of unknown parameters, 𝛼 > 0  and 𝛽 > 0 are the 

shape and scale parameters respectively from the Lomax 

distribution. The corresponding pdf of the OLx-G family, 

which is obtained by differentiating (3) with respect to  is 

defined as 

𝑓(𝑥; 𝛼, 𝛽, 𝛷) ==
𝛼𝛽𝛼𝑔(𝑥;𝛷)

[�̄�(𝑥;𝛷)]2
{𝛽 +

𝐺(𝑥;𝛷)

�̄�(𝑥;𝛷)
}
−(𝛼+1)

 (4) 

The cdf of the proposed odd Lomax Topp Leone (OLxTL) 

distribution model is obtained by substituting (1) into (3) to 

get 

𝐹(𝑥; 𝛼, 𝛽, 𝜃) = 1 − 𝛽𝛼 {𝛽 +
[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}
−𝛼

, 𝜶, 𝜷, 𝜽 >

𝟎𝟎 < 𝒙 < 𝟏    (5) 

Also, the pdf of the OLxTL distribution is derived by 

substituting (1) and (2) into (4) to get 

𝑓(𝑥; 𝛼, 𝛽, 𝛷) ==
2𝜃𝛼𝛽𝛼(1−𝑥)[1−(1−𝑥)2]𝜃−1

{1−[1−(1−𝑥)2]𝜃}
2 {𝛽 +

[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}
−(𝛼+1)

   (6) 

 

 
Figure 1: Cumulative Distribution Function of the OLxTL Distribution 
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Figure 2: Probability Density Function of the OLxTL Distribution 

 

The Reliability Functions of OLxTL Distribution 

Some of the reliability characteristics that are of great 

significance in the study of lifetime models are derived for the 

OLxTL distribution in this section. These include the survival 

function𝑆(𝑥; 𝛼, 𝛽, 𝜃) , the hazard rate functionℎ(𝑥; 𝛼, 𝛽, 𝜃), 
the inverse hazard rate function 𝛾(𝑥; 𝛼, 𝛽, 𝜃)  and the 

cumulative hazard rate function𝐻(𝑥; 𝛼, 𝛽, 𝜃). These functions 

are respectively given as 

𝑆(𝑥; 𝛼, 𝛽,𝛷) = 𝛽𝛼 {𝛽 +
[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}
−(𝛼+1)

 (7) 

ℎ(𝑥; 𝛼, 𝛽, 𝛷) =
2𝛼𝛽𝛼𝜃(1−𝑥)[1−(1−𝑥)2]𝜃−1

(1−[1−(1−𝑥)2]𝜃)
2 {𝛽 +

[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}
−1

    (8) 

𝛾(𝑥; 𝛼, 𝛽, 𝛷) =

2𝛼𝛽𝛼𝜃(1−𝑥)[1−(1−𝑥)2]𝜃−1{𝛽+
[1−(1−𝑥)2]

𝜃

1−[1−(1−𝑥)2]
𝜃}

−(𝛼+1)

(1−[1−(1−𝑥)2]𝜃)
2
(1−{𝛽+

[1−(1−𝑥)2]
𝜃

1−[1−(1−𝑥)2]
𝜃}

−𝛼

)

 

     (9) 

and 

𝐻(𝑥; 𝛼, 𝛽, 𝛷) = −𝐿𝑜𝑔 (𝛽𝛼 {𝛽 +
[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}
−(𝛼+1)

)  

     (10) 

 
Figure 3: Hazard Rate Function of the OLxTL Distribution 
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The Series Expansion of The CDF and pdf  

Using the following series expansion Logits given by Prudnikov et al. (1986) as(𝑎 − 𝑥)𝑛 = ∑ (
𝑛
𝑖
) 𝑎𝑛−𝑖𝑥𝑖𝑛

𝑖=0  and(𝑎 − 𝑥)−𝑛 =

∑
𝛤(𝑛+𝑗)𝑎𝑛−𝑗

𝑗!𝛤(𝑛)
𝑥𝑖𝑛

𝑗=0 , the cumulative distribution function of the OLxTL distribution in (3.5) can be expressed as 

𝐹(𝑥; 𝛼, 𝛽, 𝜃) = 1 − 𝛽𝛼 {𝛽 +
[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}
−𝛼

= 1 − 𝐴(𝑖, 𝑗, 𝑘, 𝑝)𝑥𝑝     (11) 

where𝐴(𝑖, 𝑗, 𝑘, 𝑝) = ∑ ∑ ∑ ∑
𝛽2𝛼−1(−1)𝑘+𝑝𝛤(𝛼+𝑖)𝛤(𝑖+𝑗)

𝑖!𝑗!𝛤(𝛼)𝛤(𝑖)𝑝=0𝑘=0𝑗=0
∞
𝑖−0 (

𝜃(𝑖 + 𝑗)

𝑘
) (
2𝑘
𝑝
) 

similarly, the corresponding probability density function of the OLxTL distribution can be expressed as  

𝑓(𝑥; 𝛼, 𝛽, 𝛷) =
2𝛼𝛽𝛼𝜃(1−𝑥)[1−(1−𝑥)2]𝜃−1

(1−[1−(1−𝑥)2]𝜃)
2 {𝛽 +

[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}
−(𝛼+1)

= 𝐵(𝑖, 𝑗, 𝑘, 𝑝)𝑥𝑝   (12) 

where 𝐵(𝑖, 𝑗, 𝑘, 𝑝) = ∑ ∑ ∑ ∑
2𝛼𝛽𝛼𝜃(−1)𝑘+𝑝𝛤(𝛼+𝑖+1)𝛤(2+𝑖+𝑗)

𝑖!𝑗!𝛤(𝛼+1)𝛤(2+𝑖)𝑝=0𝑘=0𝑗=0
∞
𝑖−0 (

𝜃(𝑖 + 𝑗 + 1) − 1
𝑘

)(
2𝑘 + 1
𝑝

) 

 

The Quantile Function of the OLxTL Distribution 

The quantile function of a probability distribution is simply the inverse expression of the cumulative distribution function 

(CDF). The mathematical expression of the quantile function is given as  

𝑞 = 𝐹−1(𝑥) = 𝐹(𝑄(𝑞))         (13) 

for all  𝑄(𝑞) and 0 < 𝑞 < 1. Then the quantile function of the OLxTL distribution model can be derived as follows 

𝑞 = 1 − 𝛽𝛼 {𝛽 +
[1 − (1 − 𝑄(𝑞))

2
]
𝜃

1 − [1 − (1 − 𝑄(𝑞))
2
]
𝜃
}

−𝛼

 

(
1 − 𝑞

𝛽𝛼
) = {𝛽 +

[1 − (1 − 𝑄(𝑞))
2
]
𝜃

1 − [1 − (1 − 𝑄(𝑞))
2
]
𝜃
}

−𝛼

 

𝛽(1 − 𝑞)−
1
𝛼 = 𝛽 +

[1 − (1 − 𝑄(𝑞))
2
]
𝜃

1 − [1 − (1 − 𝑄(𝑞))
2
]
𝜃

 

[1 − (1 − 𝑄(𝑞))
2
]
𝜃

1 − [1 − (1 − 𝑄(𝑞))
2
]
𝜃
= 𝛽 [(1 − 𝑞)−

1
𝛼 − 1] 

[1 − (1 − 𝑄(𝑞))
2
]
𝜃
= 𝛽 [(1 − 𝑞)−

1
𝛼 − 1] − 𝛽 [(1 − 𝑞)−

1
𝛼 − 1] [1 − (1 − 𝑄(𝑞))

2
]
𝜃

 

[1 − (1 − 𝑄(𝑞))
2
]
𝜃
(1 + 𝛽 [(1 − 𝑞)−

1
𝛼 − 1]) = 𝛽 [(1 − 𝑞)−

1
𝛼 − 1] 

[1 − (1 − 𝑄(𝑞))
2
]
𝜃
=

𝛽 [(1 − 𝑞)−
1
𝛼 − 1]

1 + 𝛽 [(1 − 𝑞)−
1
𝛼 − 1]

 

(1 − 𝑄(𝑞))
2
= 1 − {

𝛽 [(1 − 𝑞)−
1
𝛼 − 1]

1 + 𝛽 [(1 − 𝑞)−
1
𝛼 − 1]

}

1
𝜃

 

𝑄(𝑞) = 1 − (1 − {
𝛽[(1−𝑞)−

1
𝛼−1]

1+𝛽[(1−𝑞)−
1
𝛼−1]

}

1

𝜃

)

1

2

        (14) 

The Moment and Related Measure 

The rth raw moment of a continuous random variable X, denoted by 𝜇𝑟
′  is defined as  

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

−∞
, therefore for a continuous random variable X having the OLxTL distribution, the rth raw 

moment can be obtained as 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = 𝐵(𝑖, 𝑗, 𝑘, 𝑝) ∫ 𝑥𝑟+𝑝

1

0
𝑑𝑥        (15) 

where 𝐵(𝑖, 𝑗, 𝑘, 𝑝) = ∑ ∑ ∑ ∑
2𝛼𝛽𝛼𝜃(−1)𝑘+𝑝𝛤(𝛼+𝑖+1)𝛤(2+𝑖+𝑗)

𝑖!𝑗!𝛤(𝛼+1)𝛤(2+𝑖)𝑝=0𝑘=0𝑗=0
∞
𝑖−0 (

𝜃(𝑖 + 𝑗 + 1) − 1
𝑘

)(
2𝑘 + 1
𝑝

) 

But  

∫ 𝑥𝑟+𝑝
1

0

𝑑𝑥 =
𝑥𝑟+𝑝+1

𝑟 + 𝑝 + 1
|
0

1

=
1

𝑟 + 𝑝 + 1
 

Hence,  

𝜇𝑟
′ = 𝐸(𝑋𝑟) = 𝐵(𝑖, 𝑗, 𝑘, 𝑝)

1

𝑟+𝑝+1
        (16) 

From (3.16), we obtain the first four raw moments of the Odd Lomax Topp Leone (OLxTL) distribution as  
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𝜇1
′ = 𝐸(𝑋1) =

𝐵(𝑖,𝑗,𝑘,𝑝)

𝑝+2
 𝜇2

′ = 𝐸(𝑋2) =
𝐵(𝑖,𝑗,𝑘,𝑝)

𝑝+3
 

𝜇3
′ = 𝐸(𝑋3) =

𝐵(𝑖,𝑗,𝑘,𝑝)

𝑝+4
 𝜇4

′ = 𝐸(𝑋4) =
𝐵(𝑖,𝑗,𝑘,𝑝)

𝑝+5
 

Similarly, the central moment of a random variable X is defined by  

𝜇𝑟 = 𝐸(𝑋 − 𝜇)
𝑟 = 𝐸 {∑ (

𝑟
𝑖
)𝑋𝑟−𝑖(−𝜇)𝑟

𝑖=1 } = ∑ (
𝑟
𝑖
) (−1)𝑖𝑟

𝑖=1 𝐸[𝑋𝑟−𝑖]𝐸[𝜇𝑖] 

= ∑ (
𝑟
𝑖
) (−1)𝑖𝑟

𝑖=1 𝜇𝑟−1𝜇
𝑖         (17) 

The first four central moments can be obtained from (3.17) as follows 

𝜇2 = 𝜇2
′ ; 𝜇3 = 𝜇3

′ − 3𝜇2
′ 𝜇 + 2𝜇3 and 𝜇4 = 𝜇4

′ − 4𝜇3
′ 𝜇 + 6𝜇2

′ 𝜇 − 3𝜇4 

Then some statistical measures that are related to the moment of a probability distribution which are the mean (𝜇), variance 

(𝜎2), coefficient of variation (𝐶𝑉), skewness (𝑆𝑘) and kurtosis (𝐾𝑠) respectively be obtained using the expressions as follows: 

𝜇 = 𝜇1
′ = 𝐸(𝑋1); 𝜎2 = 𝜇2 − 𝜇

2; 𝐶𝑉 =
𝜎

𝜇
; 𝑆𝑘 =

𝜇3

(𝜇2)
3
2

 and 𝐾𝑠 =
𝜇4

(𝜇2)
2 

Remark: It is important to note that the standard deviation (𝜎) of any random variable say X is the square root of variance i.e. 

𝜎 = √𝜇2 − 𝜇
2  

Due to the fact that the moment of some probability distributions does not exist or may be difficult to evaluate, Moor (1988) 

developed the method of obtaining the skewness and kurtosis of any distribution whose quantile function is well defined (3.18) 

and (3.19) respectively as 

 𝑆𝑘 =
𝑄(

3

4
)+𝑄(

1

4
)−2𝑄(

2

4
)

𝑄(
3

4
)−𝑄(

1

4
)

        (18) 

and  

 𝐾𝑠 =
𝑄(

7

8
)−𝑄(

5

8
)+𝑄(

3

8
)−𝑄(

1

8
)

𝑄(
6

8
)−𝑄(

2

8
)

        (19) 

 

The Moment Generating Function of OLxTL Distribution 

The moment generating function (mgf) of a random variable X with pdf 𝑓(𝑥)  is defined as 𝑀𝑋(𝑇) = 𝐸(𝑒
𝑡𝑥) =

∫ 𝑒𝑡𝑥
∞

−∞
𝑓(𝑥)𝑑𝑥. Then the moment generating function of the Odd Lomax Topp Leone (OLxTL) distribution can be derived 

as follows 

𝑀𝑋(𝑇) = 𝐸(𝑒
𝑡𝑥) = 𝐵(𝑖, 𝑗, 𝑘, 𝑝)∫ 𝑒𝑡𝑥

1

0

𝑥𝑝𝑑𝑥 

But𝑒𝑍 = ∑
𝑧𝑖

𝑖!

∞
𝑖=0 , then we have  

𝐸(𝑒𝑡𝑥) = 𝐵(𝑖, 𝑗, 𝑘, 𝑝, 𝑠) ∫ 𝑥𝑝+𝑠
1

0
𝑑𝑥  = 𝐵(𝑖, 𝑗, 𝑘, 𝑝, 𝑠)

𝑥𝑝+𝑠+1

𝑝+𝑠+1
|
1
0

  

= 𝐵(𝑖, 𝑗, 𝑘, 𝑝, 𝑠) (
1

𝑝+𝑠+1
)         (20) 

Where 𝐵(𝑖, 𝑗, 𝑘, 𝑝, 𝑠) = ∑ ∑ ∑ ∑ ∑
2𝛼𝛽𝛼𝜃(−1)𝑘+𝑝𝑡𝑠𝛤(𝛼+𝑖+1)𝛤(2+𝑖+𝑗)

𝑖!𝑗!𝑠!𝛤(𝛼+1)𝛤(2+𝑖)𝑠=0𝑝=0𝑘=0𝑗=0
∞
𝑖−0 (

𝜃(𝑖 + 𝑗 + 1) − 1
𝑘

) (
2𝑘 + 1
𝑝

) 

 

Renyi Entropy 

Entropy is an important concept in statistics. It is used to measure the level of uncertainty with respect to a random variable 

X. Renyi (1961) defined the entropy of a random variable X with pdf 𝑓(𝑥) as 

𝐽𝑅(𝑠) =
1

1−𝑠
𝐿𝑜𝑔𝜑(𝑠),  𝑠 > 0𝑎𝑛𝑑𝑠 ≠ 1      (21) 

where 𝜑(𝑠) = ∫ 𝑓𝑠(𝑥)
∞

0
𝑑𝑥 

Using the pdf in (6) and the concept of the series expansion in section (3), we derive the Renyi entropy of the OLxTL 

distribution as follows 

𝜑(𝑠) = (2𝛼𝛽𝛼𝜃)𝑠∫
(1 − 𝑥)𝑠[1 − (1 − 𝑥)2]𝑠(𝜃−1)

(1 − [1 − (1 − 𝑥)2]𝜃)2𝑠
{𝛽 +

[1 − (1 − 𝑥)2]𝜃

1 − [1 − (1 − 𝑥)2]𝜃
}

−𝑠(𝛼+1)∞

0

𝑑𝑥 

= (2𝛼𝛽𝛼𝜃)𝑠∑
𝛽𝑠(𝛼+1)−1𝛤(𝛼𝑠 + 𝑠 + 𝑖)

𝑖! 𝛤(𝛼𝑠 + 𝑠)

∞

𝑖=0

∫ (1 − 𝑥)𝑠[1 − (1 − 𝑥)2]𝑠(𝜃−1)(1 − [1 − (1 − 𝑥)2]𝜃)
−(2𝑠+𝑖)

1

0

𝑑𝑥 

= (2𝛼𝛽𝛼𝜃)𝑠 ∑
𝛽𝑠(𝛼+1)−1𝛤(𝛼𝑠 + 𝑠 + 𝑖)𝛤(2𝑠 + 𝑖 + 𝑗)

𝑖! 𝑗! 𝛤(𝛼𝑠 + 𝑠)𝛤(2𝑠 + 𝑖)

∞

𝑖,𝑗=0

∫ (1 − 𝑥)𝑠[1 − (1 − 𝑥)2]𝜃(𝑠+𝑖+𝑗)−𝑠
1

0

𝑑𝑥 

= (2𝛼𝛽𝛼𝜃)𝑠 ∑
𝛽𝑠(𝛼+1)−1𝛤(𝛼𝑠 + 𝑠 + 𝑖)𝛤(2𝑠 + 𝑖 + 𝑗)

𝑖! 𝑗! 𝛤(𝛼𝑠 + 𝑠)𝛤(2𝑠 + 𝑖)

∞

𝑖,𝑗,𝑘=0

(
𝜃[𝑠 + 𝑖 + 𝑗] − 𝑠

𝑘
) (−1)𝑘∫ (1 − 𝑥)2𝑘+𝑠

1

0

𝑑𝑥 

= (2𝛼𝛽𝛼𝜃)𝑠 ∑
𝛽𝑠(𝛼+1)−1𝛤(𝛼𝑠 + 𝑠 + 𝑖)𝛤(2𝑠 + 𝑖 + 𝑗)

𝑖! 𝑗! 𝛤(𝛼𝑠 + 𝑠)𝛤(2𝑠 + 𝑖)

∞

𝑖,𝑗,𝑘,𝑝=0

(
𝜃[𝑠 + 𝑖 + 𝑗] − 𝑠

𝑘
) (
2𝑘 + 𝑠
𝑝

) (−1)𝑘∫ 𝑥𝑝
1

0

𝑑𝑥 

= (2𝛼𝛽𝛼𝜃)𝑠∑
𝛽𝑠(𝛼+1)−1𝛤(𝛼𝑠+𝑠+𝑖)𝛤(2𝑠+𝑖+𝑗)

𝑖!𝑗!𝛤(𝛼𝑠+𝑠)𝛤(2𝑠+𝑖)
∞
𝑖,𝑗,𝑘,𝑝=0 (

𝜃[𝑠 + 𝑖 + 𝑗] − 𝑠
𝑘

) (
2𝑘 + 𝑠
𝑝

) (−1)𝑘
1

𝑝+1
   (22) 

Hence, the Renyi entropy of OLxTL distribution is given as 
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𝐽𝑅(𝑠) =
1

1−𝑠
𝐿𝑜𝑔(2𝛼𝛽𝛼𝜃)𝑠 {∑

𝛽𝑠(𝛼+1)−1𝛤(𝛼𝑠+𝑠+𝑖)𝛤(2𝑠+𝑖+𝑗)

𝑖!𝑗!𝛤(𝛼𝑠+𝑠)𝛤(2𝑠+𝑖)
∞
𝑖,𝑗,𝑘,𝑝=0 (

𝜃[𝑠 + 𝑖 + 𝑗] − 𝑠
𝑘

)(
2𝑘 + 𝑠
𝑝

) (−1)𝑘
1

𝑝+1
}  

           (23) 

 

Maximum Likelihood Estimation (MLE) 

Let 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛 be a random sample of size n taken from the OLxTL distribution with pdf in (3.6), then the likelihood 

function denoted by 𝐿(𝑥; 𝛼, 𝛽, 𝜃) is given as 

𝐿(𝑥; 𝛼, 𝛽, 𝜃) =∏𝑓(𝑥)

𝑛

𝑖=1

 

= (2𝛼𝛽𝛼𝜃)𝑛∏
(1−𝑥)[1−(1−𝑥)2](𝜃−1)

(1−[1−(1−𝑥)2]𝜃)
2 {𝛽 +

[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}
−(𝛼+1)

𝑛
𝑖=1      (24) 

Taking the log of the likelihood function, we have 

𝑙𝑛 𝐿 (𝑥; 𝛼, 𝛽, 𝜃) = 𝑛 𝑙𝑛(2𝛼𝛽𝛼𝜃) + ∑ 𝑙𝑛(1 − 𝑥)𝑛
𝑖=1 + (𝜃 − 1)∑ 𝑙𝑛[1 − (1 − 𝑥)2]𝑛

𝑖=1 − 2∑ 𝑙𝑛(1 − [1 − (1 − 𝑥)2]𝜃)𝑛
𝑖=1 −

(𝛼 + 1)∑ 𝑙𝑛 {𝛽 +
[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}𝑛

𝑖=1         (25) 

The partial derivatives of (25) with respect to𝛼, 𝛽 and 𝜃 are respectively given as 
𝜕 𝑙𝑛 𝐿

𝜕𝛼
=
𝑛

𝛼
+ 𝑛 𝑙𝑛 𝛽 − ∑ 𝑙𝑛 {𝛽 +

[1−(1−𝑥)2]𝜃

1−[1−(1−𝑥)2]𝜃
}𝑛

𝑖=1        (26) 

𝜕 𝑙𝑛 𝐿

𝜕𝛽
=
𝑛

𝛽
− ∑ {

1

𝛽(1−[1−(1−𝑥)2]𝜃)+[1−(1−𝑥)2]𝜃
}𝑛

𝑖=1        (27) 

𝜕 𝑙𝑛 𝐿

𝜕𝜃
=
𝑛

𝜃
+∑ 𝑙𝑛[1 − (1 − 𝑥)2] + 2∑ {

[1−(1−𝑥)2]𝜃 𝑙𝑛[1−(1−𝑥)2]

1−[1−(1−𝑥)2]𝜃
}𝑛

𝑖=1
𝑛
𝑖=1 − (𝛼 − 1)∑ {

[1−(1−𝑥)2]𝜃 𝑙𝑛[1−(1−𝑥)2]

𝛽(1−[1−(1−𝑥)2]𝜃)+[1−(1−𝑥)2]𝜃
}𝑛

𝑖=1  

           (28) 

The maximum likelihood estimates (MLEs) (�̂�, �̂�, 𝜃) of (𝛼, 𝛽, 𝜃) can be obtained by equating (26) – (28) to zero and solving 

the nonlinear system of equation simultaneously. Since the system of equation cannot be solved analytically, we achieve the 

solution by using an iterative method called the Newton-Raphson iterative scheme with the help of R-Software package. 

 

Newton Raphson Iterative Method 

The Newton-Raphson method is an iterative scheme that is used to determine the value �̂� of 𝜑 that maximizes a function of 

𝜑.  

Let 𝜑𝑘 be the kth approximation of �̂�, where 𝑘 = 0,1,2, …. According to Agresti (1990), this method requires an initial guess, 

𝜑0, that will maximize the function of 𝜑. At the kth step, in the iterative process is maximized by 

�̂�𝑘+1 = 𝜑𝑘 −𝐻
−1(𝜑𝑘)𝑈(𝜑𝑘)        (29) 

where𝑈(𝜑) is the first derivative of the log-likelihood function of the model defined as  

𝑈(𝜑) =
𝜕 𝑙𝑛 𝐿

𝜕𝜑𝑖
=

(

 
 

𝜕 𝑙𝑛 𝐿

𝜕𝛼
𝜕 𝑙𝑛 𝐿

𝜕𝛽

𝜕 𝑙𝑛 𝐿

𝜕𝜃 )

 
 

         (30) 

and 𝐻(𝜑) is the Hessian matrix and the elements of the Hessian matrix can be derived from the second derivatives of the log-

likelihood function given by  

𝐻(𝜑) =
𝜕2 𝑙𝑛 𝐿

𝜕𝜑𝑖𝜕𝜑𝑗
=
𝜕𝑈(𝜑)

𝜕𝜑
=

(

  
 

𝜕2 𝑙𝑛 𝐿

𝜕𝛼2
𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝛽

𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝜃

𝜕2 𝑙𝑛 𝐿

𝜕𝛽𝜕𝛼

𝜕2 𝑙𝑛 𝐿

𝜕𝛽2
𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝜃

𝜕2 𝑙𝑛 𝐿

𝜕𝛽𝜕𝜃

𝜕2 𝑙𝑛 𝐿

𝜕𝜃𝜕𝛽

𝜕2 𝑙𝑛 𝐿

𝜕𝜃2 )

  
 

      (31) 

 

Application 

In this section, we present the application of the odd Lomax Topp Leone (OLxTL) distributionby considering a real data, as 

well as to compare the OLxTL distribution model with some competing distribution models namely the Marshall-Olkin Topp 

Leone (MOTL) distribution model and the beta distribution model. The probability density function (pdf) of MOTL and beta 

distributions are given as; 

Marshall-Olkin Topp Leone (MOTL) distribution; 

𝑓(𝑥) =
2𝛼𝜃(1−𝑥)[1−(1−𝑥)2]𝜃

[1−�̄�{1−[1−(1−𝑥)2]𝜃}]
2, 0 < 𝑥 < 1, 𝛼, 𝜃 > 0 

Beta distribution; 

𝑓(𝑥) =
𝑥𝛼−1(1−𝑥)𝛽−1

𝐵(𝛼,𝛽)
,   0 < 𝑥 < 1, 𝛼, 𝜃 > 0 

where 𝐵(𝛼, 𝛽) =
𝛤(𝛼)𝛤𝛽

𝛤(𝛼+𝛽)
 

For the data set, the estimates of the parameters of OLxTL, MOTL and Beta distributions was computed by the maximum 

likelihood estimation method. The maximum likelihood estimates (MLEs) of the parameters by using the Newton-Raphson 

iterative scheme with the help of R-Software package.  

 

 



THE ODD LOMAX TOPP LEONE…      Edeme and Okwonu FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 5, October, 2024, pp 286 – 294 292 

For purpose of comparison, we use the information criterion 

statistics which includes negative log – likelihood value (-l), 

the Akaike Information Criterion (AIC) and the Bayesian 

information criterion (BIC), as well as the goodness-of-fit 

statistics which includes the Kolmogorov-Smirnov (K-S) 

statistic, the Cramer-Von Mises (CVM) statistic and the 

Anderson-Darling (AD) statistics. Generally, the smaller the 

value of the goodness of fit criteria/statistics from a model, 

the better the fit of the model to the data set. 

Data analysis and results 

 

Real Data Set On Rock Samples from a Petroleum 

Reservoir  

We consider an uncensored data set observed from 

measurements on petroleum rock samples. The data contains 

48 rock samples from a petroleum reservoir as reported in 

Cordeiro et al (2012). The observed data set is as presented in 

table 1 below 

Table 1present the maximum likelihood estimates (MLEs) of 

the unknown parameters with the corresponding standard 

errors (S.Es) enclosed in parentheses for Dataset above. Table 

3shows the summary statistics: l, AIC, BIC, CVM, AD and KS 

Values for all the models under consideration. 

 

Table 1: Rock Samples from a Petroleum Reservoir 

0.0903296 0.2036540 0.2043140 0.2808870 0.1976530 0.3286410 0.1486220 

0.1623940 0.2627270 0.1794550 0.3266350 0.2300810  0.1833120  0.1509440  

 0.2000710 0.1918020 0.1541920 0.4641250 0.1170630 0.1481410  0.1448100  

0.1330830 0.2760160 0.4204770 0.1224170 0.2285950 0.1138520  0.2252140 

0.1769690 0.2007440  0.1670450 0.2316230 0.2910290 0.3412730  0.4387120  

0.2626510 0.1896510 0.1725670 0.2400770 0.3116460 0.1635860  0.1824530 

0.1641270 0.1534810 0.1618650 0.2760160 0.2538320 0.2004470  

 

Table 2: The MLEs and S.Es (in parentheses) for Data Set 1 

Distributions  �̂�   �̂�  �̂� 

MOTL 5.5829 

(0.6957) 

 0.3542 

(0.1472) 

Beta 5.9416 

(1.1813) 

21.2078 

(4.3473) 

 

 

OLxTL 4.3503 

(4.5400) 

0.2956 

(0.5118) 

3.0199 

(0.6451) 

 

Table 3: Summary Statistics for the Data Set 1 

Model  ℓ  𝐴𝐼𝐶  𝐵𝐼𝐶 𝐶𝑉𝑀  𝐴𝐷 𝐾𝑆 

MOTL 58.14939 -107.20043 -96.12975 0.149734 1.059758 0.14265 

Beta 90.60239 -14.29879 -10.55630 15.89042 48.71644 0.99644 

OLxTL 53.87168 -115.74340 -103.45802 0.129803 0.776148 0.13583 

 
Figure 1: The probability density function (pdf) and the cumulative distribution function (CDF) of the fitted distributions for 

the data set 

 

From the values of the summary statistics presented in Table 

3, the OLxTL distribution has smaller values for all the 

statistics criteria. Hence, it shows that the OLxTL distribution 

performed better than the others. Also, the plot of the 

empirical density function and cumulative distribution 

function in Figure 4 indicated that the OLxTL distribution 

yields a better fit for the data set. 

 

CONCLUSION 

In this study, we propose a new unit interval lifetime 

probability distribution, called the Odd Lomax Topp Leone 

(OLxTL) distribution. The flexibility of the proposed 

distribution in data analysis accommodates increasing, 

decreasing, right skewed, left skewed, symmetric and u-



THE ODD LOMAX TOPP LEONE…      Edeme and Okwonu FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 5, October, 2024, pp 286 – 294 293 

shaped in its pdf, as well as increasing and bathtub shapes in 

its hazard rate function. These attractive features of the 

OLxTL distribution makes it suitable for modelling several 

data on a unit interval in practical situations. Some of the 

Statistical properties of the OLxTL, such as the quantile 

function, moments with its related measures, moment 

generating function and Renyi entropy were derived. The 

maximum likelihood estimation (MLE) method was 

employed in estimating the parameters of OLxTL 

distribution. An application of the OLxTL distribution was 

illustrated with a real data set and the performance compared 

to that of existing distribution models and the result revealed 

that the proposed OLxTL distribution model performed better 

than the competing models. 
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