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ABSTRACT 

In this research, a situation where blocking is required for a split lot design in order to tease out noise from the 

dependent variable (prevent factors other than that of interest influencing the outcome) was considered. 

Blocking for every stage of the design is administered, an elaborate construction procedure for the design was 

developed by infusing the ordinary split-lot design into a Sudoku Square design structure, the hybridisation 

gave it a convenient structure for the research. The linear model and the sum of squares of the design were 

derived, the ANOVA table was constructed and the table was used to analyse the whole system. The clear 

advantage of this design has been observed to be the additional source of variation, because the introduction 

of the Block Sum of Squares will reduce the Error Sum of Squares as a result makes it more efficient, but the 

fact that precision and cost are both functions of the number of sublots per step as well as the total number of 

items, comparison is complicated. The new design provides greater precision for main effects.  
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INTRODUCTION 

Split–plot originally developed by Fisher in 1925 for use in 

agricultural experiments is basically the modified form of 

randomized block designs. These designs are used in 

situations where complete randomization of runs within block 

is not possible. In 1998, the construction of split-lot factorial 

designs was pioneered by Mee and Bates (1998). They found 

designs in certain cases where there are many processing 

stages or many factors and at each stage one and only one 

factor is to be applied to setting of that stage. In fabrication of 

integrated circuits (IC's), the Authors noted it is accomplished 

through a vast sequence of processing steps. However, the 

silicon wafers on which the IC's are produced move through 

the process in lots of size 24 or more. In the experiment, some 

processing steps are applied to individual wafers, for other 

steps several wafers (or even several lots) are processed 

simultaneously as a group. They concluded that to facilitate 

experimentation with such a multistage batch process, "split-

lot" experimental designs are attractive because they allow the 

experimental wafers to be split into sublots for processing. 

The designs were obtained by using different sets of factorial 

effects to define the composition of the sublots at each step. 

Then Butler (2004) described Split-lot designs, also as 

multiway split-unit designs, and as useful or essential in 

factorial experiments where there are multiple processing 

stages. He acknowledged that such experiments occur, for 

example, in the fabrication of integrated circuits in the 

semiconductor industry and in product assembly. The designs 

he stated, have a split-plot structure at each stage, so that 

settings of the factors are applied to sublots of experimental 

runs rather than to individual runs. He realized that it allowed 

experimental runs to be processed at much less expense than 

if the runs were completely randomized. In his work 

(construction of a two-level split lot design), split-lot designs 

are constructed for two, three, and four processing stages. The 

designs have minimum aberration under the split-lot structure 

and minimized the confounding of main effects and two-

factor interactions with the sublots at each stage.  

Split-lot designs for Multistage batch processes in the existing 

literature (Mee and Bates, 1998; Butler, 2004; Bingham, 

Sitter, Kelly, Moore, and Olivas, 2008) have all worked on 

split-lot designs that does not considered blocking. The 

neglect on designs that considers blocking will restrict 

experimenters carrying out experiments that requires it in 

experimentation, and it may lead to confounding blocking 

effects into other effects (i.e variability other than that of 

interest influencing the outcome, or overlapping effects as a 

result leading to inaccuracy - unexplained variability). The 

construction of a split-lot designs in Sudoku square designs 

structure will give it the required structure and visualize the 

randomization structure of the experiment for the purpose of 

this research. The Sudoku square designs had been 

extensively studied by many researchers (Hui–Dong and Ru–

Gen, 2008, Subramani and Ponnuswamy, 2009 and so on). 

The construction and analysis of Sudoku square designs were 

extensively discussed by Subramani and Ponnuswamy 

(2009). Subramani, J. (2013) worked on the construction of 

graeco sudoku square designs of odd orders. Likewise, 

Danbaba (2016) studied the combined analysis of Sudoku 

square designs with same treatments, and also the 

construction and analysis of Samurai Sudoku. Danbaba and 

Shehu (2016) studied the combined analysis of Sudoku square 

designs with some common treatments. Shehu A. and 

Danbaba A. (2018) also studied the variance components of 

models of sudoku square design and Subramani, J. (2018) 

worked on the construction and analysis of sudoku square 

designs with rectangle, etc. However, the construction and 

analysis of split-lot designs in Sudoku square designs 

structure is not yet in the existing literature. Therefore, a key 

step of our approach in this research is to provide a procedure 

or design which will enable blocking (i.e control such 

variability) in split–lot design using the Sudoku square 

designs structure.   

 

Construction of a Three-level Split-Lot Design in Sudoku 

Square Designs Structure 

Many industrial experiments involve a sequence of 

processing stages, where at each stage the experimental units 

are partitioned into disjoint classes, with those in the same 

class assigned the same level of certain treatment factors. The 

standard Sudoku square has a 9 x 9 grids which we consider 

each grid to be a class of items to be administered the same 

level of treatment setting from the disjoint sets. This will 

enable the use of the three-level factorial design. 
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Consider the design in which nine sublots replicates are run 

together as one experiment. We process sublots of size 9 for 

each experimental factor. We will construct an 81-wafer 

design for which wafers processed together in sublots of 

previous stage will be reordered between sublots of the next 

stage and reordered again between levels of a factor. This 

design also considers that all three runs of each processing 

step must be completed before any processing can begin at the 

next step. Denote the four factors by Xi (i = 1, 2, 3, 4). When 

the wafers arrive at processing Step 1, they will be split into 

nine sublots of nine wafers each. These nine sublots will be 

processed separately and in random order - three at the 1st 

level of X1 another three at the second level of X1 and the last 

three at the third level of X1. When the wafers arrive at Step 

2, nine new sublots will be formed.  

Each of these new sublots consists of three wafers from each 

of the sublots at Step 1. Three of the sublots will be processed 

separately at the three levels of X2. When the wafers arrive at 

Step 3, nine new sublots will be formed by taking three wafers 

from each of the sublots at Step 2 to make a sublot. The three 

sublots will process separately, all at the three levels of X3. 

The same goes for stage four. In this design for each batch 

process step other than the steps involving the experimental 

factors, the 81 wafers will be processed together. 

In the split-lot design, suppose an experimenter design an 

experiment as a Sudoku square design of order 𝑚2  (𝑚 =
2,3,4,… ) and one possible arrangement is given in figure 3.1, 

with standard 9 × 9  - Sudoku square, row-blocks serve as 

stage one sublots which will receive the stage factor in it 

levels and rows within the row - blocks or column serves as 

order within the sublots, column blocks serves as stage two 

sublots to receive the stage factor in its levels, and sub-blocks 

or sub-squares are the stage 3 sublots to receive the stage 

factor in its levels and columns and rows within the sub-

square are also order for treatments in each sublot, the stage 4 

considers the items in each sublot of the 4th stage which are 

the letters in rows within row-blocks. (A, B, C, D, E, F, G, H, 

I) are the split-lot or sublot items or Wafers in the case of 

Integrated Circuits in the case of Mee and Bates (1998) and 

Butler (2004). 

Stage 2 

 0 1 2 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

 

0 

R1 C  A B F D E I G H 

R2 F D E I G H C A B 

R3 I G H C A B F D E 

 

1 

R1 A B C D E F G H I 

R2 D E F G H I A B C 

R3 G H I A B C D E F 

 

2 

R1 B C A E F D H I G 

R2 E F D H I G B C A 

R3 H I G B C A E F D 

 

Figure 1: Split-lot arrangement with a standard 9 × 9 – Sudoku–square 

 

Existing model 

𝑌𝑆 = 𝜇 + ∑ (𝛼𝑆𝑖(𝑖)
𝑚
𝑖=1 + 𝑆𝑖(𝑖)) + ∑ 𝛼𝑆𝑖𝑆𝑗(𝑖𝑗)𝑖<𝑗 + 𝜖𝑆 (1) 

where m is the number of steps with sublots. S = (S1,.., Sm) 

identifies the sublot number at each step. 𝛼𝑆𝑖(𝑖) is the effect of 

the ith stage factor for the si
th sublot, and  𝑆𝑖(𝑖) is the error term 

associated with the si
th sublot of wafers processed together at 

the ith stage.  𝑆𝑖(𝑖)~ iid N(0,σ2 ), and 𝛼𝑆𝑖𝑆𝑗(𝑖𝑗) is the interaction 

effect between the ith stage factor and jth stage factor. Finally, 

𝜖𝑆 is the remaining contribution to error      𝜖𝑆- iid N(0, σ2), 
The existing model by Mee & Bates (1998) does not take into 

consideration that blocking whichis necessary to eliminate 

nuisance effect. When blocking variable is administered to an 

experiment, it teases out a source of undesired variation in the 

dependent variable. 

 

Proposed model 

𝑌𝑆 = 𝜇 + ∑ (𝛼𝑆𝑖(𝑖)
𝑚
𝑖=1 + 𝛾𝑆𝑖(𝑖)+𝑆𝑖(𝑖)) + ∑ 𝛼𝑆𝑖𝑆𝑗(𝑖𝑗)𝑖<𝑗 + 𝜖𝑆

 (2) 

where:  

m is the number of steps with sublots.  

S = (S1,.., Sm) identifies the sublot number at each step.  

𝛼𝑆𝑖(𝑖) is the effect of the ith stage factor for the si
th sublot, and   

  𝛾𝑆𝑖(𝑖) is the effect of the ith stage block for the si
th sublot 

  𝑆𝑖(𝑖)  is the error term associated with the si
th sublot of wafers 

processed together at the ith stage, 𝑆𝑖(𝑖) ~ iid N(0, σ2 ), 

 𝛼𝑆𝑖𝑆𝑗(𝑖𝑗) is the interaction effect between the ith stage factor 

and jth stage factor. Finally,  𝜖𝑆  is the remaining contribution 

to error 𝜖𝑆- iid N(0, σ2). 
In this model it is assumed that the column blocks are stage 1 

factor effects and the row blocks are stage 2 factor effects, the 

sub-blocks or sub-squares are the stage 3 factor effects and 

the letters considered row-wise are stage 4 effects. The split-

lot design in Sudoku square design structure of order  𝑚2 and 

its Analysis of Variance model together with the various 

assumptions are given in detail below:  

The model in equation 3 is the linear model for split-lot 

designs using Sudoku square designs structure after being 

expanded from 2 to replace iterations. The distribution 

assumptions, derivation of sum-of-squares as well as the 

ANOVA table will be given in detail below: 

 

 

 

 

 

   

Stage 4 

Stage 1 

Stage 3 
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𝑌𝑖𝑗𝑘𝑙𝑝 = 𝜇 + 𝛼𝑖 + 𝜃𝑗 + 𝜋𝑖𝑗 + 𝛽𝑘 + 𝛿𝑗 + 𝜑𝑘𝑗 + 𝛾𝑙 + 𝜗𝑗 + 𝑟𝑖𝑗 + 𝜏𝑝 + 𝜌𝑗 + 𝑆𝑝𝑗 + 𝛼𝛽(𝑖𝑗) + 𝛼𝛾(𝑖𝑙) + 𝛼𝜏(𝑖𝑝) + 𝛽𝛾(𝑘𝑙) + 𝛽𝜏(𝑘𝑝) +

𝛾𝜏(𝑙𝑝) + 𝑒𝑖𝑗𝑘𝑙𝑝           (3) 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑗 = 𝑘 = 𝑙 = 𝑝 = 1,2,… ,𝑚 

Where 𝜇 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑚𝑒𝑎𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 
𝜇: General mean of effect  

𝛼𝑖: first stage factor effect (stage treatment) 

𝜃𝑗: first stage blocks of sublots 

𝜋𝑖𝑗: error associated with first stage          𝜋𝑖𝑗 → N (0, σ
2 )   

𝛽𝑘: second stage factor effect (stage treatment) 

𝛿𝑗: second stage block effects 

𝜑𝑘𝑗: error associated with second stage     𝜑𝑘𝑗 → N (0, σ
2 )  

𝛾𝑙: third stage factor effect (stage treatment) 

𝜗𝑗: third stage block of sublots 

𝑟𝑖𝑗: error associated with third stage    𝑟𝑖𝑗 → N (0, σ
2 )

 
 

𝜏𝑝: fourth stage factor effect (stage treatment) 

𝜌𝑗: fourth stage block of sublots 

𝑆𝑝𝑗:error associated with fourth stage   𝑆𝑝𝑗 → N (0, σ
2 )

 
 

𝛼𝛽(𝑖𝑗), 𝛼𝛾(𝑖𝑙),𝛼𝜏(𝑖𝑝), 𝛽𝛾(𝑘𝑙), 𝛽𝜏(𝑘𝑝), 𝛾𝜏(𝑙𝑝): two stage factor interactions, three and four stages factor interactions are neglected. 

  𝑒𝑖𝑗𝑘𝑙𝑝= residual error, 𝑒𝑖𝑗𝑘𝑙𝑝
𝑖𝑖𝑑
⇒  N (0, σ2 ), independent of  𝜋𝑖𝑗,𝜑𝑘𝑗 , 𝑟𝑖𝑗 , 𝑆𝑝𝑗 N = 𝑚

4  

 

Derivation of Sum-of-Squares for Split-lot Designs Using Sudoku Square Structure 

From equation (3) the sum of squares of errors is 
∑ ∑ ∑ ∑ ∑ 𝑒2𝑖𝑗𝑘𝑙𝑝

𝑚
𝑝=1

𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1 ⬚

= ∑ ∑ ∑ ∑ ∑ (𝜇 + 𝛼𝑖 + 𝜃𝑗 + 𝜋𝑖𝑗 + 𝛽𝑘 + 𝛿𝑗 + 𝜑𝑘𝑗 + 𝛾𝑙 + 𝜗𝑗 + 𝑟𝑖𝑗 +
𝑚
𝑝=1

𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1

𝜏𝑝 + 𝜌𝑗 + 𝑆𝑝𝑗 + 𝛼𝛽(𝑖𝑗) + 𝛼𝛾(𝑖𝑙) + 𝛼𝜏(𝑖𝑝) + 𝛽𝛾(𝑘𝑙) + 𝛽𝜏(𝑘𝑝) + 𝛾𝜏(𝑙𝑝)) = 0       (4) 

 

Let assume that  𝐿 = ∑ ∑ ∑ ∑ ∑ 𝑒2𝑖𝑗𝑘𝑙𝑝
𝑚
𝑝=1

𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1  

Differentiating equation (4) with respect to  

𝜇, 𝛼𝑖 , 𝜃𝑗 , 𝜋𝑖𝑗 , 𝛽𝑘 , 𝛿𝑗 , 𝜑𝑘𝑗 , 𝛾𝑙 , 𝜗𝑗 , 𝑟𝑖𝑗 , 𝜏𝑝, 𝜌𝑗 , 𝑆𝑝𝑗 , 𝛼𝛽(𝑖𝑘), 𝛼𝛾(𝑖𝑙), 𝛼𝜏(𝑖𝑝), 𝛽𝛾(𝑘𝑙), 𝛽𝜏(𝑘𝑝), 𝛾𝜏(𝑙𝑝) 

respectively, and equating to zero, we obtain the following system of equations. 

𝑌….. = Nμ +m
3∑ αi

m
i=1 +m3 ∑ θj

m
i=1 +m2∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝛽k

m
i=1 +m3 ∑ 𝛿j

m
j=1 +m2 ∑ ∑ 𝜑𝑘𝑗

m
j=1

m
k=1 +m3∑ 𝛾𝑙

m
l=1 +

m3∑ 𝜗𝑗
m
j=1 +m2∑ ∑ 𝑟𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝜏𝑝

m
p=1 +m3 ∑ 𝜌𝑗

m
j=1 +m2∑ ∑ 𝑆𝑝𝑗

m
j=1

m
p=1 +m2 ∑ ∑ 𝛼𝛽(𝑖𝑘)

m
k=1

m
i=1 +

m2∑ ∑ 𝛼𝛾(𝑖𝑙)
m
l=1

m
i=1 +m2 ∑ ∑ 𝛼𝜏(𝑖𝑝)

m
p=1

m
i=1 +m2∑ ∑ 𝛽𝛾(𝑘𝑙)

m
l=1

m
i=1 +m2 ∑ ∑ 𝛽𝜏(𝑘𝑝)

m
p=1

m
k=1 +m2 ∑ ∑ 𝛾𝜏(𝑙𝑝)

m
p=1

m
l=1 =

∑ ∑ ∑ ∑ ∑ 𝑌𝑖𝑗𝑘𝑙𝑝
𝑚
𝑝=1

𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1          (5) 

 

Yi…. = Nμ +m
3∑ αi

m
i=1 +m3 ∑ θj

m
i=1 +m2∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝛽k

m
i=1 +m3∑ 𝛿j

m
j=1 +m2 ∑ ∑ 𝜑𝑘𝑗

m
j=1

m
k=1 +m3 ∑ γl

m
l=1 +

m3∑ ϑj
m
j=1 +m2∑ ∑ rij

m
j=1

m
i=1 +m3 ∑ τp

m
p=1 +m3 ∑ ρj

m
j=1 +m2 ∑ ∑ Spj

m
j=1

m
p=1 +m2∑ ∑ αβ(ik)

m
k=1

m
i=1 +

m2∑ ∑ αγ(il)
m
l=1

m
i=1 +m2∑ ∑ ατ(ip)

m
p=1

m
i=1 +m2∑ ∑ βγ(kl)

m
l=1

m
i=1 +m2∑ ∑ βτ(kp)

m
p=1

m
k=1 +m2 ∑ ∑ γτ(lp)

m
p=1

m
l=1  (6) 

 

𝑌.𝑗… = Nμ +m
3 ∑ αi

m
i=1 +m3∑ θj

m
i=1 +m2 ∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝛽k

m
i=1 +m3 ∑ 𝛿j

m
j=1 +m2∑ ∑ 𝜑𝑘𝑗

m
j=1

m
k=1 +m3∑ 𝛾𝑙

m
l=1 +

m3∑ 𝜗𝑗
m
j=1 +m2∑ ∑ 𝑟𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝜏𝑝

m
p=1 +m3 ∑ 𝜌𝑗

m
j=1 +m2∑ ∑ 𝑆𝑝𝑗

m
j=1

m
p=1 +m2 ∑ ∑ 𝛼𝛽(𝑖𝑘)

m
k=1

m
i=1 +

m2∑ ∑ 𝛼𝛾(𝑖𝑙)
m
l=1

m
i=1 +m2 ∑ ∑ 𝛼𝜏(𝑖𝑝)

m
p=1

m
i=1 +m2∑ ∑ 𝛽𝛾(𝑘𝑙)

m
l=1

m
i=1 +m2 ∑ ∑ 𝛽𝜏(𝑘𝑝)

m
p=1

m
k=1 +m2 ∑ ∑ 𝛾𝜏(𝑙𝑝)

m
p=1

m
l=1     (7) 

 

𝑌𝑖𝑗… = Nμ +m
3∑ αi

m
i=1 +m3 ∑ θj

m
i=1 +m2 ∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝛽k

m
i=1 +m3 ∑ 𝛿j

m
j=1 +m2 ∑ ∑ 𝜑𝑘𝑗

m
j=1

m
k=1 +m3∑ 𝛾𝑙

m
l=1 +

m3∑ 𝜗𝑗
m
j=1 +m2∑ ∑ 𝑟𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝜏𝑝

m
p=1 +m3 ∑ 𝜌𝑗

m
j=1 +m2∑ ∑ 𝑆𝑝𝑗

m
j=1

m
p=1 +m2 ∑ ∑ 𝛼𝛽(𝑖𝑘)

m
k=1

m
i=1 +

m2∑ ∑ 𝛼𝛾(𝑖𝑙)
m
l=1

m
i=1 +m2 ∑ ∑ 𝛼𝜏(𝑖𝑝)

m
p=1

m
i=1 +m2∑ ∑ 𝛽𝛾(𝑘𝑙)

m
l=1

m
i=1 +m2 ∑ ∑ 𝛽𝜏(𝑘𝑝)

m
p=1

m
k=1 +m2 ∑ ∑ 𝛾𝜏(𝑙𝑝)

m
p=1

m
l=1     (8)  

 

𝑌..𝑘.. = Nμ +m
3∑ αi

m
i=1 +m3 ∑ θj

m
i=1 +m2∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝛽k

m
i=1 +m3∑ 𝛿j

m
j=1 +m2 ∑ ∑ 𝜑𝑘𝑗

m
j=1

m
k=1 +m3 ∑ 𝛾𝑙

m
l=1 +

m3∑ 𝜗𝑗
m
j=1 +m2∑ ∑ 𝑟𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝜏𝑝

m
p=1 +m3 ∑ 𝜌𝑗

m
j=1 +m2∑ ∑ 𝑆𝑝𝑗

m
j=1

m
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k=1 +m2 ∑ ∑ 𝛾𝜏(𝑙𝑝)
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p=1

m
l=1     (10)  

 

𝑌…𝑙. = Nμ +m
3∑ αi

m
i=1 +m3 ∑ θj

m
i=1 +m2∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝛽k

m
i=1 +m3∑ 𝛿j

m
j=1 +m2 ∑ ∑ 𝜑𝑘𝑗

m
j=1

m
k=1 +m3 ∑ 𝛾𝑙

m
l=1 +

m3∑ 𝜗𝑗
m
j=1 +m2∑ ∑ 𝑟𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝜏𝑝

m
p=1 +m3 ∑ 𝜌𝑗

m
j=1 +m2∑ ∑ 𝑆𝑝𝑗

m
j=1

m
p=1 +m2 ∑ ∑ 𝛼𝛽(𝑖𝑘)

m
k=1

m
i=1 +

m2∑ ∑ 𝛼𝛾(𝑖𝑙)
m
l=1

m
i=1 +m2 ∑ ∑ 𝛼𝜏(𝑖𝑝)

m
p=1

m
i=1 +m2∑ ∑ 𝛽𝛾(𝑘𝑙)

m
l=1

m
i=1 +m2 ∑ ∑ 𝛽𝜏(𝑘𝑝)

m
p=1

m
k=1 +m2 ∑ ∑ 𝛾𝜏(𝑙𝑝)

m
p=1

m
l=1    (11)  
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𝑌.𝑗.𝑙. = Nμ +m
3∑ αi

m
i=1 +m3∑ θj

m
i=1 +m2∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 +m3 ∑ 𝛽k

m
i=1 +m3∑ 𝛿j
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j=1 +m2∑ ∑ 𝜑𝑘𝑗
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m3∑ 𝜗𝑗
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j=1 +m2∑ ∑ 𝑟𝑖𝑗
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j=1

m
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p=1 +m2 ∑ ∑ 𝛼𝛽(𝑖𝑘)
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l=1

m
i=1 +m2 ∑ ∑ 𝛽𝜏(𝑘𝑝)

m
p=1

m
k=1 +m2 ∑ ∑ 𝛾𝜏(𝑙𝑝)

m
p=1

m
l=1    (12) 

 

𝑌....𝑝 = Nμ +m
3 ∑ αi

m
i=1 +m3∑ θj

m
i=1 +m2 ∑ ∑ 𝜋𝑖𝑗

m
j=1

m
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m
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k=1 +m3∑ 𝛾𝑙
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𝑌.𝑗..𝑝 = Nμ +m
3 ∑ αi
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i=1 +m3∑ θj
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i=1 +m2∑ ∑ 𝜋𝑖𝑗
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3∑ αi
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𝑌𝑖..𝑙. = Nμ +m
3 ∑ αi
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𝑌..𝑙𝑘. = Nμ +m
3∑ αi
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𝑌..𝑘.𝑝 = Nμ +m
3 ∑ αi
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i=1 +m2 ∑ ∑ 𝛼𝜏(𝑖𝑝)
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𝑌...𝑙𝑝 = Nμ +m
3 ∑ αi

m
i=1 +m3∑ θj

m
i=1 +m2 ∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 +m3∑ 𝛽k

m
i=1 +m3 ∑ 𝛿j

m
j=1 +m2∑ ∑ 𝜑𝑘𝑗

m
j=1

m
k=1 +m3∑ 𝛾𝑙

m
l=1 +

m3∑ 𝜗𝑗
m
j=1 +m2∑ ∑ 𝑟𝑖𝑗

m
j=1
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i=1 +m3∑ 𝜏𝑝
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m
j=1

m
p=1 +m2 ∑ ∑ 𝛼𝛽(𝑖𝑘)

m
k=1

m
i=1 +

m2∑ ∑ 𝛼𝛾(𝑖𝑙)
m
l=1

m
i=1 +m2 ∑ ∑ 𝛼𝜏(𝑖𝑝)

m
p=1

m
i=1 +m2∑ ∑ 𝛽𝛾(𝑘𝑙)

m
l=1

m
i=1 +m2 ∑ ∑ 𝛽𝜏(𝑘𝑝)

m
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m
k=1 +m2 ∑ ∑ 𝛾𝜏(𝑙𝑝)
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Assumptions 
∑ αi
m
i=1 = ∑ θj

m
i=1 = ∑ ∑ 𝜋𝑖𝑗

m
j=1

m
i=1 = ∑ 𝛽k

m
i=1 = ∑ 𝛿j

m
j=1 = ∑ ∑ 𝜑𝑘𝑗

m
j=1

m
k=1 = ∑ 𝛾𝑙

m
l=1 = ∑ 𝜗𝑗

m
j=1 = ∑ ∑ 𝑟𝑖𝑗

m
j=1

m
i=1 = ∑ 𝜏𝑝

m
p=1 =

∑ 𝜌𝑗
m
j=1 = ∑ ∑ 𝑆𝑝𝑗

m
j=1

m
p=1 = ∑ ∑ 𝛼𝛽(𝑖𝑘)

m
k=1

m
i=1 = ∑ ∑ 𝛼𝛾(𝑖𝑙)

m
l=1

m
i=1 = ∑ ∑ 𝛼𝜏(𝑖𝑝)

m
p=1

m
i=1 = ∑ ∑ 𝛽𝛾(𝑘𝑙)

m
l=1

m
i=1 =

∑ ∑ 𝛽𝜏(𝑘𝑝)
m
p=1

m
k=1 = ∑ ∑ 𝛾𝜏(𝑙𝑝)

m
p=1

m
l=1           (21) 

                      

Equation (4) through (20) can be reduce to 
∑ ∑ ∑ ∑ ∑ 𝑌𝑖𝑗𝑘𝑙𝑝

𝑚
𝑝=1

𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1 −Nμ = 0      (22) 

m3∑ 𝑌𝑖….
𝑚
𝑖=1 − Nμ = 0      (23)  

m2∑ ∑ 𝑌𝑖𝑗...
m
j

m
i − Nμ = 0     (24) 

m3∑ 𝑌..𝑘..
𝑚
𝑖=1 − Nμ = 0   (25) 

m2∑ ∑ 𝑌.𝑗𝑘..
m
k=1

m
j=1 −Nμ = 0       (26)   

m3∑ 𝑌…𝑙.
m
l=1 − Nμ = 0              (27) 

m3∑ 𝑌.𝑗,..
m
j=1 − Nμ = 0     (28)  

m2∑ ∑ 𝑌𝑖𝑗...
m
j=1

m
i=1 − Nμ = 0       (29) 

m3∑ 𝑌....𝑝
m
p=1 −Nμ = 0     (30) 

m2∑ ∑ 𝑌.𝑗.𝑝.
m
j=1

m
p=1 − Nμ = 0     (31)    

m2∑ ∑ 𝑌𝑖.𝑘..
m
k=1

m
i=1 −Nμ = 0        (32)   

m2∑ ∑ 𝑌𝑖..𝑙.
m
l=1

m
i=1 −Nμ = 0       (33) 

m2∑ ∑ 𝑌𝑖..𝑝.
m
p=1

m
i=1 − Nμ = 0   (34) 

m2∑ ∑ 𝑌..𝑘𝑙.
m
l=1

m
k=1 − Nμ = 0       (35) 

m2∑ ∑ 𝑌..𝑘𝑝.
m
p=1

m
k=1 − Nμ = 0         (36) 

m2∑ ∑ 𝑌...𝑙𝑝
m
p=1

m
l=1 − Nμ = 0         (37) 

Solving equation (22) through (37) simultaneously, yields 

the following estimates of parameters 

μ =
G

N
,  Where  N = m4 and 𝐺 =

∑ ∑ ∑ ∑ ∑ 𝑌𝑖𝑗𝑘𝑙𝑝
𝑚
𝑝=1

𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1     (38) 

𝑆𝑆𝑇 = ∑ ∑ ∑ ∑ ∑ 𝑌𝑖𝑗𝑘𝑙𝑝
𝑚
𝑝=1 −

G2

N
𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1  (39) 

𝑆𝑆𝑋1 = ∑
𝛼𝑖

𝑚3
𝑚
𝑖=1 −

G2

N
   (40) 

𝑆𝑆𝑋1𝐵 = ∑
𝜃𝑗

𝑚3
𝑚
𝑖=1 −

G2

N
   (41) 

𝑆𝑆𝑋1𝐸 = ∑ ∑
𝜋𝑖𝑗

𝑚3
𝑚
𝑗=1

𝑚
𝑖=1 −

G2

N
   (42)       

𝑆𝑆𝑋2 = ∑
𝛽𝑗

𝑚3
𝑚
𝑗=1 −

G2

N
        (43) 

𝑆𝑆𝑋3𝐵 = ∑
𝛿𝑗

𝑚3
𝑚
𝑗=1 −

G2

N
   (44) 

𝑆𝑆𝑋2𝐸 = ∑ ∑
𝜑𝑘𝑗

𝑚3
𝑚
𝑘=1

𝑚
𝑗=1 −

G2

N
   (45) 

𝑆𝑆𝑋3 = ∑
𝛾𝑖

𝑚3
𝑚
𝑖=1 −

G2

N
   (46)        

𝑆𝑆𝑋3𝐸 = ∑ ∑
𝑟𝑗𝑙

𝑚2
𝑚
𝑙=1

𝑚
𝑗=1 −

G2

N
   (47) 

𝑆𝑆𝑋4 = ∑
𝜏𝑝

𝑚3
𝑚
𝑝=1 −

G2

N
   (48) 
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𝑆𝑆𝑋4𝐵 = ∑
𝜌𝑗

𝑚3
𝑚
𝑗=1 −

G2

N
   (49) 

𝑆𝑆𝑋4𝐸 = ∑ ∑
𝑆𝑗𝑝

𝑚2
𝑚
𝑝=1

𝑚
𝑗=1 −

G2

N
   (50) 

𝑆𝑆𝑋1𝑋2 = ∑ ∑
𝛼𝛽(𝑖𝑘)

𝑚2
𝑚
𝑘=1

𝑚
𝑖=1 − ∑

𝛼𝑖

𝑚3
𝑚
𝑖=1 −∑

𝛽𝑘

𝑚3
𝑚
𝑘=1 +

G2

N
 

     (51)   

 𝑆𝑆𝑋1𝑋3 = ∑ ∑
𝛼𝛾(𝑖𝑙)

𝑚2
𝑚
𝑘=1

𝑚
𝑖=1 −∑

𝛼𝑖

𝑚3
𝑚
𝑖=1 − ∑

𝛾𝑙

𝑚3
𝑚
𝑙=1 +

G2

N
 

     (52)     

𝑆𝑆𝑋1𝑋3 = ∑ ∑
𝛼𝜏(𝑖𝑝)

𝑚2
𝑚
𝑝=1

𝑚
𝑖=1 − ∑

𝛼𝑖

𝑚3
𝑚
𝑖=1 − ∑

𝜏𝑝

𝑚3
𝑚
𝑝=1 +

G2

N
 

     (53)  

  53𝑆𝑆𝑋2𝑋3 = ∑ ∑
𝛽𝛾(𝑘𝑙)

𝑚2
𝑚
𝑙=1

𝑚
𝑘=1 − ∑

𝛽𝑘

𝑚3
𝑚
𝑘=1 −∑

𝛾𝑙

𝑚3
𝑚
𝑙=1 +

G2

N
 

     (54)   

𝑆𝑆𝑋2𝑋4 = ∑ ∑
𝛽𝜏(𝑘𝑝)

𝑚2
𝑚
𝑝=1

𝑚
𝑘=1 − ∑

𝛽𝑘

𝑚3
𝑚
𝑘=1 −∑

𝜏𝑝

𝑚3
𝑚
𝑝=1 +

G2

N
 

     (55)   

𝑆𝑆𝑋2𝑋4 = ∑ ∑
𝛾𝜏(𝑘𝑝)

𝑚2
𝑚
𝑝=1

𝑚
𝑘=1 − ∑

𝛾𝑙

𝑚3
𝑚
𝑙=1 − ∑

𝜏𝑝

𝑚3
𝑚
𝑝=1 +

G2

N
 

     (56) 

𝑆𝑆𝐸 = By subtraction 

 

Table 1: ANOVA table for the split–lot design in Sudoku Square structure  

Source 
Sum of 

squares 

Degrees of 

Freedom 
Mean squares 

F-Ratio  

(observed) 

𝑋1 𝑆𝑆𝑋1 𝑚− 1 𝑀𝑆𝑋1 =
𝑆𝑆𝑋1

𝑚 − 1⁄  
𝑀𝑆𝑋1

𝑀𝑆𝑋1𝐸
⁄  

𝑆𝑡𝑎𝑔𝑒 1 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆𝑆𝑋1𝐵 𝑚− 1 𝑀𝑆𝑋1𝐵 =
𝑆𝑆𝑋1𝐵

𝑚 − 1⁄  
𝑀𝑆𝑋1𝐵

𝑀𝑆𝑋1𝐸
⁄  

𝑆𝑡𝑎𝑔𝑒 1 𝑠𝑢𝑏𝑙𝑜𝑡 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑆𝑆𝑋1𝐸 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋1𝐸 =
𝑆𝑆𝑋1𝐸

(𝑚 − 1)(𝑚 − 1)⁄  
𝑀𝑆𝑋1𝐸

𝑀𝑆𝐸⁄  

𝑋2 𝑆𝑆𝑋2 𝑚− 1 𝑀𝑆𝑋2 =
𝑆𝑆𝑋2

𝑚 − 1⁄  
𝑀𝑆𝑋2

𝑀𝑋2𝐸
⁄  

𝑆𝑡𝑎𝑔𝑒 2 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆𝑆𝑋2𝐵 𝑚− 1 𝑀𝑆𝑋2𝐵 =
𝑆𝑆𝑋2𝐵

𝑚 − 1⁄  
𝑀𝑆𝑋2𝐵

𝑀𝑆𝐸⁄  

𝑆𝑡𝑎𝑔𝑒 2 𝑠𝑢𝑏𝑙𝑜𝑡 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑆𝑆𝑋2𝐸 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋2𝐸 =  𝑆𝑆𝑋2𝐸/(𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋2𝐸
𝑀𝑋2𝐸
⁄  

𝑋3 𝑆𝑆𝑋3 𝑚− 1 𝑀𝑆𝑋3 =
𝑆𝑆𝑋3

𝑚 − 1⁄  
𝑀𝑆𝑋3

𝑀𝑆𝑋3𝐸
⁄  

𝑆𝑡𝑎𝑔𝑒 3 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆𝑆𝑋3𝐵 𝑚− 1 𝑀𝑆𝑋3𝐵 =
𝑆𝑆𝑋3𝐵

𝑚 − 1⁄  
𝑀𝑆𝑋3𝐵

𝑀𝑆𝑋3𝐸
⁄  

𝑆𝑡𝑎𝑔𝑒 3 𝑠𝑢𝑏𝑙𝑜𝑡 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑆𝑆𝑋3𝐸 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋3𝐸 =  𝑆𝑆𝑋3𝐸/(𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋3𝐸
𝑀𝑆𝐸⁄  

𝑋4 𝑆𝑆𝑋4 𝑚− 1 𝑀𝑆𝑋4 =
𝑆𝑆𝑋4

𝑚 − 1⁄  
𝑀𝑆𝑋4

𝑀𝑆𝑋4𝐸
⁄  

𝑆𝑡𝑎𝑔𝑒 4 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆𝑆𝑋4𝐵 𝑚− 1 𝑀𝑆𝑋4𝐵 =
𝑆𝑆𝑋4𝐵

𝑚 − 1⁄  
𝑀𝑆𝑋4𝐵

𝑀𝑆𝑋4𝐸
⁄  

𝑆𝑡𝑎𝑔𝑒 4 𝑠𝑢𝑏𝑙𝑜𝑡 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑆𝑆𝑋4𝐸 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋4𝐸 =  𝑆𝑆𝑋4𝐸/(𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋4𝐸
𝑀𝑆𝐸⁄  

𝑋1𝑋2 𝑆𝑆𝑋1𝑋2 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋1𝑋2 =
𝑆𝑆𝑋1𝑋2

(𝑚 − 1)(𝑚 − 1)⁄  
𝑀𝑆𝑋1𝑋2

𝑀𝑆𝐸⁄  

𝑋1𝑋3 𝑆𝑆𝑋1𝑋3 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋1𝑋3 =
𝑆𝑆𝑋1𝑋3

(𝑚 − 1)(𝑚 − 1)⁄  
𝑀𝑆𝑋1𝑋3

𝑀𝑆𝐸⁄  

𝑋1𝑋4 𝑆𝑆𝑋1𝑋4 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋1𝑋4 =
𝑆𝑆𝑋1𝑋4

(𝑚 − 1)(𝑚 − 1)⁄  
𝑀𝑆𝑋1𝑋4

𝑀𝑆𝐸⁄  

𝑋2𝑋3 𝑆𝑆𝑋2𝑋3 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋2𝑋3 =
𝑆𝑆𝑋2𝑋3

(𝑚 − 1)(𝑚 − 1)⁄  
𝑀𝑆𝑋2𝑋3

𝑀𝑆𝐸⁄  

𝑋2𝑋4 𝑆𝑆𝑋2𝑋4 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋2𝑋4 =
𝑆𝑆𝑋2𝑋4

(𝑚 − 1)(𝑚 − 1)⁄  
𝑀𝑆𝑋2𝑋4

𝑀𝑆𝐸⁄  

𝑋3𝑋4 𝑆𝑆𝑋3𝑋4 (𝑚 − 1)(𝑚 − 1) 𝑀𝑆𝑋3𝑋4 =
𝑆𝑆𝑋3𝑋4

(𝑚 − 1)(𝑚 − 1)⁄  
𝑀𝑆𝑋3𝑋4

𝑀𝑆𝐸⁄  

Error  𝑆𝑆𝐸 By subtraction 𝑀𝑆𝐸 = 𝑆𝑆𝐸 𝑑𝑓⁄   

TOTAL 𝑆𝑆𝑇 𝑚4 − 1   

 

CONCLUSION 

Comparing split-lot designs is complicated by the fact that 

precision and cost are both functions of the number of sublots 

per step as well as the total number of items. Introduction of 

the Block Sum of Squares by default will reduce the Error 

Sum of Squares which makes it more efficient. This design 

had captured some variability that has not been accounted for 

by ordinary split-lot designs. 

When a design with 16 wafers experiment in a 4 x 4 Sudoku 

Square Design Structure is adopted, the procedure and 

structure becomes the same with the existing procedure and 

structure, but the Sudoku’s additional source of variation still 

makes it more efficient. The proposed design is recommended 

in the field of industrial statistics, batch productions or even 

parts assembly firm. All these areas require stages before 

accomplishing any task and certain processing stages require 

splitting discrete units into sublots.  
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