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ABSTRACT 

The paper investigates effect of radiation pressure on dynamical structures in the Robe’s restricted three-body 

problem (R3BP) with variable masses. The non-autonomous equations of the dynamical system are obtained 

and transformed to the autonomized equations with constant coefficients under the condition that there is no 

fluid inside the first primary. Next, the equilibrium points (EPs) of the autonomized system are explored and 

the stability is investigated analytically and numerically. It is observed that the axial and non-collinear EPs can 

be stable and unstable depending on the values of the mass parameter, radiation pressure of the second primary 

and the mass variation parameter . In the case of the axial equilibrium point (EP), the radiation pressure 

reduces the region of stable motion while the mass variation parameter can have both stabilizing and 

destabilizing effects.  The stability of the EPs of the non-autonomous equations is analyzed and it is seen that 

the solutions do not converge, and are unstable EPs. Finally, the ZVCs around the EPs are explored and it is 

seen that, the radiation pressure of the second primary decreases the region where motion of the satellite around 

the axial EP, is allowed, while the mass parameter and the parameter decreases or increases the region where 

motion of the satellite around the axial EP is allowed, as they are increased or decreased, respectively. In the 

case of the non-collinear points, the radiation of the second primary increases the region where motion of the 

satellite is allowed, while an increase in the mass parameter and mass variation parameter decreases the region 

where motion is allowed.  The studied problem can be applied to small oscillation in the Earth’s core of the 

Earth-Moon system with variable masses.  
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INTRODUCTION 

The restricted three-body problem (R3BP) is the most 

fascinating problem in celestial mechanics. This model 

illustrates motion of a third body having mass infinitesimally 

small and moving in the gravitational surrounding of two 

main masses, called primaries. The primaries move in circular 

orbits around their center of mass on account of their mutual 

attraction and the third body does not affect the motion of the 

primaries. Since no general solution in the R3BP is 

obtainable, particular solutions are required to obtain insight 

into the set up . These solutions are referred to as the 

equilibrium points (EPs) and five such solutions exists for the 

classical R3BP; two triangular equilibrium points (TEPs) and 

three collinear EPs (Szebehely 1967).  

A variant form of the R3BP was formulated by Robe (1977). 

This problem was later called the Robe’s Restricted Three 

Body Problem (RR3BP). In this formulation, the first body of 

mass 𝑚1, is a rigid spherical shell, filled with homogenous, 

incompressible fluid of density 𝜌1, with the second body as a 

small point outside the shell and moving around the first body 

in a Keplerian orbit. The third body is taken as a small sphere 

of density𝜌3, travelling inside the first body on account of the 

attraction of the second body and the buoyancy force due to 

the fluid. Further, the radius of the third body
 
is assumed to 

be very negligible. Robe found an EP at the center of the shell 

and analyzed the linear stability in two cases. The first case 

examines the orbit of the second body around the first in 

circular while in the second case, the orbit is elliptical, but the 

shell is empty.   

Shrivastava and Garain (1991) explored the impact of small 

deflective forces on the location of EP in the Robe’s CR3BP 

with consideration that the densities of fluid and the third 

body are equal; in other words, the shell is empty. Plastino 

and Plastino (1995) studied the Robe’s R3BP by considering 

the first body as a Roche spheroid in an equilibrium state of a 

rotational fluid and named the formulation the “Robe-Roche 

restricted model”. The influence of small deflective forces on 

the location and stability of the EPs in the Robe’s circular 

R3BP was reconsidered by Hallan and Rana (2001a), when 

the density of the more massive primary and that of the third 

body is equal. Further, the existence of all EPs, their location 

and stability in the Robe’s (1977) R3BP when the densities of 

the fluid and the third body are not same, was studied by 

Hallan and Rana (2001b).  

Singh and Sandah (2012) investigated the existence and linear 

stability of EPs in the Robe’s R3BP with oblateness, while 

Singh and Laraba (2012) examined the Robe’s CR3BP when 

the first body is a fluid in the shape of an oblate spheroid and 

the second one is a triaxial rigid body. The investigation of 

the Robe’s problem of 2+2 bodies was carried out by Kaur 

and Aggarwal (2012) and the study was applied to dynamics 

of two submarines in the Earth-Moon system. Singh and Leke 

(2013b, c) investigated the Robes Problems when the masses 

are subject to mass variations while Singh and Omale (2014) 

studied the Robe’s CR3BP with zonal harmonics.  Ansari et. 

al (2019) explored the circular RR3BP with viscous force of 

the fluid effects of small perturbing forces in the Coriolis and 

centrifugal forces, while Abouelmagd et al. (2020) carried out 

a study on Robe’s restricted problem with a modified 

Newtonian potential and emphasized that the model can be 

used to analyze the oscillations of the Earth’s core under the 

influence of the Moon and it is also appropriate to study the 

dynamics of underwater vehicles. The effect of small 

perturbing forces in the Coriolis and centrifugal forces in the 

Robe-finite straight segment model with random density 

parameter was carried out by Kaur et. al (2020). Further, Kaur 
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et. al (2021), unveiled the outcomes of aspheric main bodies 

in Robe’s R3BP, while Kaur and Kumar (2021) examined the 

stability investigation in the perturbed CRR3BP finite straight 

segment model under the influence of viscosity. A study on 

Robe’s restricted problem with heterogeneous irregular 

primary of N-layers under the condition that the outer most 

layer has viscous fluid, was investigated by Ansari (2021), 

while, Ansari and Sahdev (2022) examined impact of a 

variable mass body motion in the perturbed Robe’s model. 

Kaur et. al (2022), explored impacts of viscosity and 

oblateness on the perturbed Robe’s problem with non-

spherical bodies, while Leke and Ahile (2022) carried out a 

study on stability of EPs the Robe’s R3BP under density 

variation.   

The model of the classical R3BP specifies that the masses of 

bodies do not change with time. Nevertheless, the 

phenomenon of absorption in stars steered scientists to design 

the R3BP with variable mass (es). The R3BP with variable 

mass models is applicable in many astronomical and 

engineering designs, such as, investigating the motion of 

spacecraft in the vicinity of an asteroids or comets with 

variable masses due to surface out-gassing. Exploring motion 

of binary stars with mass transfer between them, and also 

studying motion in the Earth-Moon system during lunar mass 

expulsion. 

  The investigations of the R3BP in the case where mass 

variations of the primaries take place under the Mestschersky 

unified Law (MUL) and their motion described by the 

Gylden-Mestschersky problem (GMP) (Gylden, 1884, 

Mestschersky 1903), has been carried out by several authors 

under different characterizations. Among such authors are 

Gelf’gat (1973), Bekov (1988), Luk’yanov (1989), Singh and 

Leke (2010, 2012, 2013a, b, c,), Leke and Singh (2023), Leke 

and Mmaju (2023), Leke and Orum (2024). 

Singh and Leke (2013b) discussed the Robe’s R3BP with 

variable masses, in which mass variations occur in accordance 

with the MUL. They found an EP at the center, which is stable 

and a pair of EPs on the 𝜉𝜁 − plane which are unstable.  

Motivated by this, the aim of this paper is to study the effect 

of radiation pressure on dynamical structures in the circular 

Robe’s R3BP with variable masses.  The paper is structured 

as follows: in Sect. 2, the dynamical equations of the systems 

with variable and constant coefficients are deduced and the 

EPs and their stability are explored. The results and discussion 

are given in Sect 3 while the conclusion is given in Sect.4 of 

the paper. 

 

MATERIALS AND METHODS 

Dynamical Equations  

In this model formulation, we consider the second body as a 

radiating body. Therefore, the forces acting on 𝑚3 are 

i. The force of attraction of the radiating second primary, 

which is given by 

�⃗�𝑚2
= −

𝐺𝑚2𝑞2𝑚3�̄�23

𝑟23
3  

ii. The force of gravitation �⃗�𝐴 exerted by the fluid �⃗�𝐴 =

−
4𝜋𝐺ℜ3𝑚3𝑚𝛿1𝑟13

3𝑟13
3  

iii The buoyancy force: �⃗�𝐵 = −
4𝐺𝜋ℜ3𝑚3

3𝑟13
3

𝛿1
2𝑟13

𝛿3
 

iv. Radiation pressure 𝑞2of the second primary 

where 𝐺  is the gravitational constant, ℜis the radius of the 

fluid, 𝛿𝑖(𝑖 = 1,3) is the density of the fluid and the test 

particle, respectively, while �̄�13and �̄�23 is the radius vector of 

the line joining the centers of the first and second body to the 

test particle, respectively and 𝑞2 is the radiation pressure 

factor of the second primary (See Figure 1) 

 

 
Figure 1: Set up of the Robe restricted three-body problem     

 

variable masses in a Cartesian coordinate system, when the 

second primary is a radiation emitter, takes the form 

�̈� − 2𝜔�̇� = 𝜔2𝑥 + �̇�𝑦 −
4𝜋ℜ

3

3

𝐺𝛿1

𝑟13
3 (1 −

𝛿1

𝛿3
) (𝑥 − 𝑥1) −

𝜇2𝑞2(𝑥−𝑥2)

𝑟23
3   

�̈� + 2𝜔�̇� = 𝜔2𝑦 − �̇�𝑥 −
4𝜋ℜ

3

3

𝐺𝛿1𝑦

𝑟13
3 (1 −

𝛿1

𝛿3
) −

𝜇2𝑞2𝑦

𝑟23
3  

     (1) 

�̈� = −
4𝜋ℜ

3

3

𝐺𝛿1𝑧

𝑟13
3 (1 −

𝛿1

𝛿3
) −

𝜇2𝑞2𝑧

𝑟23
3  

 where:𝜇(𝑡) = 𝜇1(𝑡) + 𝜇2(𝑡): 𝜇1(𝑡) = 𝐺𝑚1, 𝜇2(𝑡) = 𝐺𝑚1(𝑡) 

𝑟13
2 = (𝑥 − 𝑥1)2 + 𝑦2 + 𝑧2 , 𝑟13

2 = (𝑥 − 𝑥2)2 + 𝑦2 + 𝑧2  and 

𝜔 is the angular velocity of revolution of the primaries. 

Now, system (2) is a non-autonomous system of equations 

and we have to transform it to the autonomized forms. 

However, it is impossible to carry out a complete 

transformation using the MT, the MUL, the particular 

solutions and integral of the GMP when the density parameter 

is not zero. In view of this, we restrict ourselves to the case 

when the first primary is empty. 

In this premise, the system of equations (1) reduces to  

�̈� − 2𝜔�̇� = 𝜔2𝑥 + �̇�𝑦 −
𝜇2𝑞2(𝑥 − 𝑥2)

𝑟23
3  

�̈� + 2𝜔�̇� = 𝜔2𝑦 − �̇�𝑥 −
𝜇2𝑞2𝑦

𝑟23
3   (2) 

�̈� = −
𝜇2𝑞2𝑧

𝑟23
3

 𝑟13
2 = (𝑥 − 𝑥2)2 + 𝑦2 + 𝑧2 

Equations (2) in the autonomized equations with constant 

coefficients is given as 

𝜉″ − 2𝜂′ =
𝜕𝛺

𝜕𝜉
,𝜂″ + 2𝜉 ′ =

𝜕𝛺

𝜕𝜂
,𝜁″ =

𝜕𝛺

𝜕𝜁
      (3) 

Where 𝛺 =
𝜅(𝜉2+𝜂2)

2
+

(𝜅−1)𝜁2

2
+

𝜅𝜐𝑞2

𝜌23
  (4)  

𝜌13
2 = (𝜉 + 𝜐 − 1)2 + 𝜂2 + 𝜁2  (5)  
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Where 𝜐 is the mass ratio and is such that 0 < 𝜐 < 1, while 𝜅 
is the random sum of the masses of the main bodies in the 

autonomized system. 

Equations (3) admits the Jacobian integral  

2𝛺(𝜉, 𝜂, 𝜁) − (𝜉 ′2 + 𝜂′2 + 𝜁′2) = 𝐶  (6) 

 

Locations and Stability of Equilibrium Points 

The positions of the EPs can be obtained by solving the 

equations Ω𝜉 = Ω𝜂 = Ω𝜁 = 0  . That is, we will solve the 

system of equations  

𝑘 [𝜉 −
𝑞2𝜐(𝜉 + 𝜐 − 1)

[(𝜉 + 𝜐 − 1)2 + 𝜂2 + 𝜁2]
3
2

] = 0

 
𝑘𝜂 [1 −

𝑞2𝜐

[(𝜉+𝜐−1)2+𝜂2+𝜁2]
3
2

] = 0  (7) 

𝜁 {(𝑘 − 1) −
𝑞2𝜅𝜐

[(𝜉 + 𝜐 − 1)2 + 𝜂2 + 𝜁2]
3
2

} = 0

  

Locations of equilibrium points 

Axial equilibrium point 

i. The axial EP is the solution of equations (7) when 𝜂 =
𝜁 = 0. Solving, we get  

𝜉 = −𝜐 [1 −
(1−𝑞2)

1+2𝜐
]

        

(8) 

This gives an EP on the line joining the centers of the first and 

second body away from the center of the first body but located 

inside it and is defined by the mass parameter and radiation 

factor of the second primary. When there is no radiation from 

the second body, the point fully coincides with that in Robe 

(1977), Hallan and Rana (2001a), and, Singh and Leke 

(2013b)

  

Non-collinear Equilibrium Points 

The existence of the non-collinear equilibrium points 

(NCEPs) was not found in the Robe (1977) problem. The 

NCEPs of the autonomized equations are obtained by solving 

system (7), when 𝜂 = 0, 𝜁 ≠ 0 to get  

𝜉 = −(1 − 𝜐)(𝜅 − 1)and𝜁 = ±√(
𝑞2𝜅𝜐

𝑘−1
)

2

3
− 𝜅2(1 − 𝜐)2 

     (9)  

Equations (9) give the position of four NCEPs 𝜉, 0, 𝜁 which 

exist for 𝜅 > 1  and are located on the 𝜉𝜁 −  plane. These 

points, depend on the mass ratio and a constant of mass 

variations and radiation pressure of the second primary. 

For the non-autonomous system, the EP near the center of the 

shell and the NCEPs are sought using the MT. These points 

differ from those of the system of equations with constant 

coefficient only by the function 𝑅(𝑡). We express them as 

𝑥(1)(𝑡) = 𝜉(1)𝑅(𝑡), 𝑥(2)(𝑡) = 𝜉(2)𝑅(𝑡), 

 𝑥(3)(𝑡) = 𝜁(2,3)𝑅(𝑡)   (10) 

where𝑥(1)is the axial EP which varies with time while𝑥(2)and 

𝑧(2,3)are the NCEPs of the non-autonomous systems varying 

with time. 𝜉(1), and𝜉(2), 𝜁(2,3)are the axial and non-collinear 

EPs, of the autonomized system, respectively. 

 

Stability of equilibrium points 

The stability analysis of the EPs is same with that of the 

general R3BP of Szebehely (1967).  We apply small 

displacement 𝑢, 𝑣 and 𝑤 to the coordinates (𝜉0, 𝜂0, 𝜁0) of the 

test body, to the locations, 𝜉 = 𝜉0 + 𝑢 , 𝜂 = 𝜂0 + 𝑣  and 

𝜁 = 𝜁0 + 𝑤 If its motion departs from the vicinity of the point, 

such a position is an unstable one. However, if it oscillates 

about the point, then it is a stable position. 

The variational equations in this case, are: 

𝑢″ − 2𝑣 ′ = (𝛺𝜉𝜉
0 )𝑢 + (𝛺𝜉𝜂

0 )𝑣 + (𝛺𝜉𝜁
0 )𝑤 

𝑣″ + 2𝑢′ = (𝛺𝜉𝜂
0 )𝑢 + (𝛺𝜂𝜂

0 )𝑣 + (𝛺𝜂𝜁
0 )𝑤    (11) 

𝑤″ = (𝛺𝜉𝜁
0 )𝑢 + (𝛺𝜂𝜁

0 )𝑣 + (𝛺𝜁𝜁
0 )𝑤 

The superscript 0 depicts that the partial derivatives are to be 

computed at the EPs. 

 

Axial Equilibrium Point  

In order to analyze the stability of the axial EP we obtain the 

characteristic equation which corresponds to the first two 

equations of the variational equations (11): 

𝜆4 − (𝛺𝜉𝜉
0 + 𝛺𝜂𝜂

0 − 4)𝜆2 + 𝛺𝜉𝜉
0 𝛺𝜂𝜂

0 − (𝛺𝜉𝜂
0 )

2
= 0   (12) 

where 

𝛺𝜉𝜉
0 = 𝜅 + 2𝜅𝜐[1 + 3𝑝 − (1 − 𝑞2)] 

𝛺𝜂𝜂
0 = 𝜅 − 𝜅𝜐[1 + 3𝑝 − (1 − 𝑞2)]    (13) 

𝛺𝜁𝜁
0 = 𝜅 − 1 − 𝜅𝜐[1 + 3𝑝 − (1 − 𝑞2)],  

𝛺𝜉𝜁
0 = 𝛺𝜂𝜁

0 = 𝛺𝜉𝜂
0 = 0 

𝑝 =
𝜐(1−𝑞2)

1+2𝜐
, 𝑝 << 1since 1 − 𝑞2 << 1and 𝑝 = 0when 𝑞2 =

1 

Now, substituting the partial derivatives into the variational 

equations of motion (11), we get 

𝑢″ − 2𝑣 ′ = [𝜅(1 + 2𝜐) + 6𝑝𝜅𝜐 − 2𝜅𝜐(1 − 𝑞2)]𝑢 

𝑣″ + 2𝑢′ = [𝜅(1 − 𝜐) − 3𝑝𝜅𝜐 + 𝜅𝜐(1 − 𝑞2)]𝑣       (14) 

𝑤″ = [𝜅(1 − 𝜐) − 1 − 3𝑝𝜅𝜐 + 𝜅𝜐(1 − 𝑞2)]𝑤
 The third equation of (14) is independent of the first two 

equations and shows that motion parallel to the 𝜁 −axis is 

stable when 1 ≤ 𝜅 <
1

(1−3𝑝𝜐−𝑞2𝜐)
, otherwise it is unstable. 

When the second primary is a non-radiating body, we have 

𝑞2 = 1and𝑝 = 0. In this case, motion is stable in the 𝜁 −axis 

when 1 ≤ 𝜅 <
1

(1−𝜐)
, which coincides with that given in 

Singh and Leke (2013b).   

Now, substituting equations (13) in the characteristic equation 

(12), we have 

𝜆4 + 𝑃𝜆2 + 𝑄 = 0    (15) 

where 

𝑃 = 4 − 𝜅(2 + 𝜐) − 3𝑝𝜅𝜐 + 𝜅𝜐(1 − 𝑞2) 

𝑄 = 𝜅2[(1 + 𝜐 − 2𝜐2) + 𝑝𝜐(3 − 12𝜐)
− 𝜐(1 − 4𝜐)(1 − 𝑞2)] 

Evidently, 𝑄 > 0 , while 𝑃 <=> 0 when 𝜅 <=>
4

[2+𝜐+3𝑝𝜐−𝜐(1−𝑞2)]
, respectively.  

The roots are 

𝜆1,2
2 =

−[4 − 𝜅(2 + 𝜐) − 3𝑝𝜅𝜐 + 𝜅𝜐(1 − 𝑞2)] ± √𝐷

2
 

where 

𝐷 = −16(𝜅 − 1) + 𝜅𝜐(9𝜅𝜐 − 8) − 6𝑝𝜅𝜐(4 − 9𝜅𝜐) +
2𝜅𝜐(4 − 9𝜅𝜐)(1 − 𝑞2)        (16) 

is the discriminant of the equation (15).   

When the second primary is not a radiation source, we have  

𝐷 = −16(𝜅 − 1) + 𝜅𝜐(9𝜅𝜐 − 8) 

This coincides with that obtained by Singh and Leke (2013b)
 

Solving equation (16) for 𝑣 when the discriminant vanishes to 

obtain the critical mass parameter, given 

𝜐𝐶𝜅 =
4

9𝜅
[1 + √(9𝜅 − 8)[1 + 2(1 − 𝑞2)] + (1 − 𝑞2)] 

     (17) 

Equation (17) are the values of the critical mass parameter 

which exists for various values of the mass variation 

parameter, and the radiation of the second body. When the 

second body is not a source of radiation, that is 𝑞2 = 1, the 

critical mass reduces to that in Singh and Leke (2013b). 

Further, when 𝜅 = 1 (that is when mass variations are 

ignored), the critical mass reduces to that obtained by Robe 
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(1977), Hallan and Rana (2001a). The values of the critical 

mass values exists for 𝜅 ≥
8

9
  

Now, from equation (16), we have 
𝑑𝐷

𝑑𝜐
= 18𝜅2𝜐 − 8𝜅 − 24𝑝𝜅 + 108𝑝𝜅2𝜐 − 36𝜅2𝜐(1 − 𝑞2)   

     (18) 

Also, 
𝑑𝐷

𝑑𝜐
= 0, when   

𝜐 =
4(1+3𝑝)

9𝜅[1+6𝑝−2(1−𝑞2)]
   (19) 

When 𝑞2 = 1 , we have 𝑝 = 0  and we get 𝜐 =
4

9𝜅
 which 

coincides with that in Singh and Leke (2013b). 

Therefore, equation (18) is positive when 𝜐 >
4(1+3𝑝)

9𝜅[1+6𝑝−2(1−𝑞2)]
 and negative when 𝜐 <

4(1+3𝑝)

9𝜅[1+6𝑝−2(1−𝑞2)]
. 

This implies that 𝐷  is strictly increasing when the former 

holds and strictly decreasing when the later is the case.  

Next, when 𝜐 = 0in Equation (16), we have 

𝐷 = −16(𝜅 − 1)    (20) 

However, when𝜐 =
4(1+3𝑝)

9𝜅[1+6𝑝−2(1−𝑞2)]
, equation (28) reduces to 

𝐷 = −
16(9𝜅−10)

9
          (21) 

We observe that equation (21) is negative in sign when 𝜅 ≥
10

9
. Further, as 𝑣 increases to 𝑣𝑐𝜅, 𝐷 increases from the value 

in (21) to zero. Finally, 𝑣𝑐𝜅
 
increases to 1, when 𝐷 increases 

from 0 to 

𝐷 = 𝜅2[9 + 54𝑝 − 18(1 − 𝑞2)] − 𝜅[24 + 24𝑝 − 8(1 −
𝑞2)] + 16       (22) 

A careful inspection of equation (22) shows that for 0 < 𝜅 <
∞, we have 𝐷 > 0. 

   Now, since the natures of the roots depend on the 

discriminant, the mass parameter, 𝜅and radiation factor of the 

second primary; we see that when 𝑣𝑐𝜅 < 𝑣 < 1. 𝐷 is positive. 

Hence, when𝜅 <
4

[2+𝜐+3𝑝𝜐−𝜐(1−𝑞2)]
, the characteristic roots 

are all distinct pure imaginary. In this case, the axial point is 

stable, otherwise it will be unstable. 

We shall numerically explore the kinds of the roots of the 

characteristic equation and the critical mass parameters.  

 

Non-collinear Equilibrium Points 

We follow same procedure done for the axial EP. Therefore, 

we obtain the characteristic equation of the NCEPs: 

𝜆6 − 𝑐1𝜆4 + 𝑐2𝜆2 − 𝑐3 = 0   (23) 

Where 

𝑐1 = 3𝑘 − 5 

𝑐2 = 7 − 6𝜅 −
9𝜅2(𝜅 − 1)4(1 − 𝜐)6

𝜐2
+

9𝜅7/3(𝑘 − 1)5/3(1 − 𝜐)2

𝜐2/3

−
9𝜅8/3(𝑘 − 1)13/3(1 − 𝜐)4

𝜐4/3

+
18𝜅4/3(𝜅 − 1)10/3(1 − 𝜐)4

𝜐7/3

+ [
6𝜅7/3(𝑘 − 1)5/3(1 − 𝜐)2

𝜐2/3

−
12𝜅8/3(𝑘 − 1)13/3(1 − 𝜐)4

𝜐4/3

+
6𝜅4/3(𝜅 − 1)10/3(1 − 𝜐)4

𝜐7/3
] (1 − 𝑞2) 

𝑐3 = 3 − 3𝑘 +
3𝜅4/3(𝑘 − 1)5/3(1 − 𝜐)2

𝜐2/3

+
6𝜅4/3(𝑘 − 1)5/3(1 − 𝜐)2(1 − 𝑞2)

3𝜐2/3
 

These roots depend on the values of the coefficients, 

𝑐𝑖(𝑖 = 1,2,3) and shall be explored numerically to ascertain 

the kinds and the stability outcome.  

In the case of the stability of the EPs of the non-autonomous 

system given in equation (10), we adopt the definition of a 

Lyapunov stable solution (Krasnovet al. 1983), to get 

𝑙𝑖𝑚
𝑡→∞

𝑥(1) = 𝜉(1)𝑙𝑖𝑚
𝑡→∞

𝑅(𝑡) = ∞
                    

(24) 

 Equation (24) at once proves the instability of the axial EP 

𝑥(1)(𝑡)  according to the Lyapunov’s theorem. Same 

technique shows that the non-collinear EPs of the non-

autonomous system are unstable.  

 

RESULTS AND DISCUSSION  

In this section, we study the numerical results of the analytical 

solutions that have been obtained in the paper. We shall 

consider the third body to be an artificial satellite in the 

gravitational environment of two main bodies. We carry out 

all numerical exploration with the aid of the software 

Mathematica (Wolfram 2015). Throughout, we select the 

radiation pressure of the second primary to be 𝒒𝟐 =
𝟎. 𝟗𝟗𝟗𝟗𝟔. 

 

Zero Velocity Curves around Axial Equilibrium Point 

The Jacobi integral is given in Equation (6), where𝑉 = 𝜉′2 +
𝜂′2 + 𝜁′2is the velocity of the satellite and 𝐶 is the Jacobi or 

energy constant. The permissible region of motion and 

prohibited region are defined by 𝑉 ≥ 0  and 𝑉 < 0 , 

respectively. Therefore, when the velocity of the satellite is 

zero, the curve shown by equation (6)  is called zero-velocity 

curves (ZVCs) on the plane.. ZVC are important because they 

form the boundary of regions where the satellite is 

dynamically prohibited. The regions from which motion of 

the satellite is prohibited increases in area as the Jacobi 

constant grows, and vice versa.  

For any given value of C, we can measure the impact of 

radiation pressure of the second primary, the mass ratio and 

the mass variation constant on the ZVCs of the Robe’s 

circularR3BP with variable masses of the primaries. We now 

explore the ZVCs around the axial EP which have been given 

in Figures 2 to 4 under effects of the perturbing forces.  These 

figures show for different values of the energy constant how 

the area from which the satellite is dynamically restricted and 

evolves as the value of the energy constant under radiation 

pressure of the second primary, mass parameter and mass 

variation parameter are changing. Any point not in the 

prohibited region is in the permissible  area. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2: ZVCs when𝜅 = 0.1 ,𝑞2 = 0.99996  and (a) 𝜐 = 0.000000001&𝐶 = 0.00000000039998 (b) 𝜐 = 0.012&𝐶 =
0.00481421  (c) 𝜐 = 0.1 & 𝐶 = 0.0409986  (d) 𝜐 = 0.5 & 𝐶 = 0.224995  (e) 𝜐 = 0.7 & 𝐶 = 0.328994  (f) 𝜐 = 0.9 & 𝐶 =
0.440993 

 

The ZVCs around the axial EP have been plotted in Figure 2 

for 𝜅 = 0.1 under the influence of radiation pressure of the 

second body when the mass parameters is varied in the 

interval 0 < 𝜐 < 1. Figure 2, panel “a” is the ZVCs when 𝜐 =
0.000000001 and the energy constant is 𝐶 =
0.00000000039998. Because the mass parameter which also 

is the mass of the second body is very small, the second body 

is completely overwhelmed by the first primary and the 

radiation effect is insignificant. In this case, the area where 

motion of the satellite is allowed grows around the axial point.  

Figure 2 panel “b”, shows the ZVCs around axial EPs when 

𝜐 = 0.012. It is seen that the second primary becomes visible 
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but the area where motion is allowed keeps reducing around 

the axial EP, due to the combined influence of the mass 

parameter and the radiation pressure. These region decreases 

with increase in the mass parameter as seen in Figure 2b to 

Figure 2d. In Figure 2e and Figure 2f, the mass of the second 

primary is large enough to the point that the second primary 

moves so close to the axial EP. However, the axial EP lies in 

the environment where motion of the satellite is not permitted. 

Therefore, we conclude that, the environment where motion 

of the satellite is permitted reduces with increasing mass 

parameter whether in the presence or absence of the radiation 

pressure of the second body or the mass variation constant. 

Also, it is observed that as the mass parameter increases the 

location of the axial EP is altered. The effects of the variable 

mass parameter on the ZVCs have been drawn in Figure 3a-f, 

under radiation pressure of the second primary.

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3: ZVCs for 𝜐 = 0.012  and 𝑞2 = 0.99996  when (a) 𝜅 = 0.000000001 , 𝐶 = 4.81421 × 10−11  (b) 𝜅 = 0.1 , 𝐶 =
0.00481421  (c) 𝜅 = 0.5 , 𝐶 = 0.0240711  (d) 𝜅 = 1 , 𝐶 = 0.0481421  (e) 𝜅 = 2 , 𝐶 = 0.0962842  (f) 𝜅 = 10 , 𝐶 =
0.481421 
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It is seen from Figure 3a-f, that when the variation constant 

increases, this leads to a reduction in the area where motion 

of the satellite is permitted around the axial EP, and vice 

versa. Hence, the variable mass parameter 𝜅  reduces or 

increases the area where motion is allowed whenever, it is 

increasing or decreasing, respectively.  

 

(a) (b) 

 

(c)  

Figure 4: ZVCs when (a) 𝜐 = 0.3, 𝜅 = 1, 𝑞2 = 0.99996 and 𝐶 = 1.28996 (b) 𝜐 = 0.3, 𝜅 = 1, 𝑞2 = 1 and 𝐶 = 1.29 (c) 𝜐 =
0.012(red) &𝜐 = 0.9(Green), for 𝑞2 = 0.99996 

 

Finally, Figure 4a, b illustrates the effect of the radiation 

pressure of the second body on the ZVCs while Figure 4c, 

shows the variations of the mass parameter when 𝜐 =
0.012(red) and 𝜐 = 0.9(Green), under effects of radiation 

pressure of the second primary. It is seen that the presence of 

the radiation pressure of the second primary reduces area 

where motion of the satellite is permitted, though the effect 

may be minimal. Also, from Figure 4c, it is seen the motion 

around the axial point designated in green (𝜐 = 0.9) is not 

allowed while it is allowed around the axial EP designated in 

red (𝜐 = 0.012).  

We observe from our results, that when0 < 𝜐 < 1, the area 

where motion of the satellite is allowed remain increasingly 

large for 0 < 𝜅 < 0.1 . However, this region begins to 

decrease when 𝜅 = 0.1 . Hence, we conclude that the mass 

parameter and the mass variation parameter can increase or 

decrease the environment where motion of the satellite is 

permitted while the radiation pressure of the second primary 

always decreases the region of motion. Consequently, the 

mass parameter 𝜐and the variable mass parameter 𝜅can have 

both stabilizing and destabilizing behaviors on the motion of 

the satellite around axial EP, while the radiation of the second 

primary 𝑞2is always a destabilizing force. 

 

Stability Analysis of the Axial Equilibrium Point 

We now numerically compute the roots of the characteristic 

equation (15) in Table 1 to 4 for various values of the mass 

parameter and the parameter of mass variations when 𝑞2 =
0.99996.   
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Table 1: Characteristic Roots and Critical Mass Parameter for𝝊 = 𝟎. 𝟎𝟏𝟐and 𝟎 < 𝜿 < ∞ 

𝜿 ±𝝎𝟏 ±𝝎𝟐 𝝊𝑪𝜿  

0.000000001 5.02919*10^-10i 2i -1.33346*10^9  

0.00001 5.02921*10^-6i 1.99999i -133344.  

0.01 0.00504191i 1.99496i -131.346  

0.1 0.0516247i 1.94837i -11.3344  

0.5 0.294969i 1.70499i -0.666756  

0.8 0.55808i 1.44186i 0.333338  

0.9 0.692275i 1.30765i 0.51854  

0.994 0.989177i 1.01074i 0.658653  

0.995 Complex Complex 0.660001  

0.9999 Complex Complex 0.666569  

1 Complex Complex 0.666702  

2 Complex Complex 1.33343  

5 Complex Complex 1.73347  

10 Complex Complex 1.86681  

50 Complex Complex 1.97349  

100 Complex Complex 1.98683  

1000 Complex Complex 1.99883  

𝜅 → ∞ Real  Real 2.00016  

 

Table 2: Characteristic Roots and Critical Mass Parameter for𝝊 = 𝟎. 𝟑and 𝟎 < 𝜿 < ∞ 

𝜿 ±𝝎𝟏 ±𝝎𝟐 𝝊𝑪𝜿  

0.000000001 Imaginary Imaginary -1.33346*10^9  

0.00001 Imaginary Imaginary - 133344.  

0.01 Imaginary Imaginary -131.346  

0.1 Imaginary Imaginary -11.3344  

0.5 Imaginary Imaginary -0.666756  

0.8 Imaginary Imaginary 0.333338  

0.9 Imaginary Imaginary 0.51854  

0.994 Complex Complex 0.658653  

0.995 Complex Complex 0.660001  

0.9999 Complex Complex 0.666569  

1 Complex Complex 0.666702  

2 Complex Complex 1.33343  

5 Complex Complex 1.73347  

10 Complex Complex 1.86681  

50 Real Real 1.97349  

100 Real Real 1.98683  

1000 Real Real 1.99883  

𝜅 → ∞ Real  Real 2.00016  

 

Table 3: Characteristic Roots and Critical Mass Parameter for𝝊 = 𝟎. 𝟕and 𝟎 < 𝜿 < ∞ 

𝜿 ±𝝎𝟏 ±𝝎𝟐 𝝊𝑪𝜿  

0.000000001 Imaginary Imaginary -1.33346*10^9  

0.00001 Imaginary Imaginary -133344.  

0.01 Imaginary Imaginary -131.346  

0.1 Imaginary Imaginary -11.3344  

0.5 Imaginary Imaginary -0.666756  

0.8 Imaginary Imaginary 0.333338  

0.9 Imaginary Imaginary 0.51854  

0.994 Complex Complex 0.658653  

0.995 Complex Complex 0.660001  

0.9999 Complex Complex 0.666569  

1 Complex Complex 0.666702  

2 Complex Complex 1.33343  

3 Complex Complex 1.55567  

5 Real Real 1.73347  

10 Real Real 1.86681  

50 Real Real 1.97349  

100 Real Real 1.98683  
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1000 Real Real 1.99883  

𝜿 → ∞ Real  Real 2.00016  

 

Table 4: Characteristic Roots and Critical Mass Parameter for𝝊 = 𝟎. 𝟗𝟗𝟗𝟗and 𝟎 < 𝜿 < ∞ 

𝜿 ±𝝎𝟏 ±𝝎𝟐 𝝊𝑪𝜿  

0.000000001 Imaginary Imaginary -1.33346*10^9  

0.00001 Imaginary Imaginary -133344.  

0.01 Imaginary Imaginary -131.346  

0.1 Imaginary Imaginary -11.3344  

0.5 Imaginary Imaginary -0.666756  

0.8 Imaginary Imaginary 0.333338  

0.9 Imaginary Imaginary 0.51854  

0.994 Imaginary Imaginary 0.658653  

0.995 Imaginary Imaginary 0.660001  

0.9999 Imaginary Imaginary 0.666569  

1 Imaginary Imaginary 0.666702  

2 Real Real 1.33343  

3 Real Real 1.55567  

5 Real Real 1.73347  

10 Real Real 1.86681  

50 Real Real 1.97349  

100 Real Real 1.98683  

1000 Real Real 1.99883  

𝜿 → ∞ Real  Real 2.00016  

 

Table 1 to 4 give the roots and the values of the critical mass 

parameter (17) corresponding to the axial EP, for different 

values of the mass variation parameter and the mass ratio. We 

observe from Table 1, that when 𝜐 = 0.012, the four roots are 

distinctive wholly imaginary roots when  0 < 𝜅 ≤ 0.994but 

are however complex when 0.995 ≤ 𝜅 ≤ 1000. These four 

roots then become real when 𝜅 → ∞.  From Table 2, it is 

observed that the roots are imaginary when 0 < 𝜅 ≤ 0.9and 

are complex 0.994 ≤ 𝜅 ≤ 10. These roots then become real 

as 𝜅 → ∞. Table 3is the case when 𝜐 = 0.7and the same trend 

of change in the nature of the roots is similar to that observed 

in Table 3. Finally, Table 4 gives the roots of the characteristic 

equation (15) when the mass parameter is 𝜐 = 0.9999and 

0 < 𝜅 < ∞. In this case, the roots are imaginary different 

roots when 0 < 𝜅 ≤ 1  and then evolve into real roots 

when1 < 𝜅 < ∞. From Table 1 to 4, the values of the critical 

mass are negative because 𝜅 ≤
8

9
 and so they do not exists. 

Also, the value of the critical mass should not exceed one 

since we have  0 < 𝜐 < 1 . Therefore, any value of the critical 

mass exceeding one is ignored and taken not to exists. Clearly, 

ii is seen that numerically when 𝜅 <
4

[2+𝜐+3𝑝𝜐−𝜐(1−𝑞2)]
 , the 

roots are imaginary roots. For instance, in the case when  𝜐 =
0.9999, we get 𝜅 < 1.33338, which holds according to Table 

4 as all the roots when 𝜅 < 1.33338are all pure imaginary 

quantities. When 𝜅 > 1.33338, the roots are real . Therefore, 

the axial EP is stable when simultaneously the roots of the 

characteristic equation are distinct pure imaginary roots and 

when the critical mass, is less than the mass ratio. Hence, the 

axial EP can be unstable and stable depending on the radiation 

pressure of the second primary, mass parameter and the mass 

variation constant. 

 

Zero Velocity Curves around the Non-Collinear 

Equilibrium Points 

Equations (9) give the positions of a pair of Eps 𝜉, 0, 𝜁 which 

exist for 𝜅 > 1   and lies in the 𝜉𝜁 −plane. We call these 

points, non-collinear EPs and they depend on the mass ratio 

and the constant of mass variations and radiation pressure of 

the second primary. The locations of the NCEPs have been 

computed numerically in Table 5 to Table 12 using equation 

(9). We have indicated under the remark column whether the 

points exist or do not exists. The remark that they exist means 

the points are located inside the first primary, while they do 

not exist when the points are located outside the first primary.  

The ZVCs around the NCEPs have been explored and drawn 

in Figure 5 to Figure 8 for different values of the mass 

parameter and the parameter𝜅 under effect of the radiation of 

the second primary.  
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(a)  (b) 

(c)  (d) 

Figure 5: ZVCs of Non-collinear EPs for 𝜐 = 0.000000001 , 𝑞2 = 0.99996 when(a) 𝜅 = 1.01 and 𝐶 = 0.002702 (b) 𝜅 =
1.1and 𝐶 = 0.04760(c) 𝜅 = 2and𝐶 = 6(d)𝜅 = 5, 𝐶 = 705 

 (a)  (b) 

Figure 6: ZVCs of the Non-collinear EPs for 𝜐 = 0.8and 𝑞2 = 0.99996 when (a) 𝜅 = 1.1and 𝐶 = 1.22871(b) 𝜅 = 2and 𝐶 =
12.6398 
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(a)  (b) 

Figure 7: ZVCs of the Non-collinear EPs for 𝜐 = 0.9 and 𝜅 = 1.1when (a), 𝑞2 = 1 and 𝐶 = 1.27613(b) 𝑞2 = 0.99996and 

𝐶 = 1.27611 

 

 
Figure 8: ZVCs of the Non-collinear EPs for 𝜐 = 0.9, 𝑞2 = 0.99996, 𝐶 = 13.4368and 𝜅 = 2 

 

Figure 5a-d gives the ZVCs of the NCEPs for 𝜐 =
0.000000001, 𝑞2 = 0.99996, and 𝜅 = 1.01, 𝜅 = 1.1, 𝜅 =
2and 𝜅 = 5, respectively. It is seen from Figure 5a, that when 

𝜅 = 1.01, the energy constant is 𝐶 = 0.0027024and the area 

where motion of the satellite increases but as the mass 

variation constant increases to 1.1 (Figure 5b), the energy 

constant also increases to 𝐶 = 0.0476023and the area where 

motion of the satellite is permitted begins to decrease and 

decreases further in Figure 5c when 𝜅 = 2 . In this case, 

motion near the NCEPs is not possible as they are located in 

the prohibited regions. The area where motion of the satellite 

is allowed soon disappears when 𝜅 = 5and 𝐶 = 705 (Figure 

5d), confirming that these points do not exists when 𝜐 =
0.000000001 and 𝜅 = 5 . Hence, motion of the satellite 

around the NCEPs when the mass ratio is very small and 𝜅 ≥
5is not possible as the region of motion do not exist since the 

positions of the NCEPs are located outside the first primary.  

In Figure 6a, the ZVCs around the NCEPs is drawn for 𝜐 =
0.8, 𝑞2 = 0.99996, and 𝜅 = 1.1, thus yielding 𝐶 = 1.22871. 

In this case the environment where motion of the satellite is 

permitted around the NCEPs grows for 𝜅 = 1.1but as kappa 

increases to 2 in Figure 6b, we observe that the environment 

where motion of the Earth’s satellite is allowed decreases. 

However, the motion is possible around the non-collinear 

EPs. Therefore, an increase in the parameter kappa yields a 

reduction in the environment where motion of the satellite 

around the NCEPs is allowed.  

Figure 7a is drawn when 𝜐 = 0.9and 𝜅 = 1.1when the second 

primary is not a radiation emitter. Here we get 𝐶 =
1.27613compared to Figure 7b where 𝐶 = 1.27611when the 

radiation pressure of the second primary is present. 

Consequently, the region of motion increases slightly due to 

the presence of the radiation pressure of the second primary. 

Hence, we can conclude that the radiation pressure of the 

second body increases area where motion of the Earth’s 

satellite is permitted around the NCEPs. Figure 7b is similar 

to Figure 6a, with the difference being the value of the mass 

parameter. When 𝜐 = 0.8 and 𝜅 = 1.1 , we have 𝐶 =
1.22871 while when 𝜐 = 0.9 and 𝜅 = 1.1 under radiation 

effect of the second primary, we get 𝐶 = 1.27611. It is seen 

that increasing mass parameter yields a larger value of the 

energy constant and consequently, the area where motion of 

the satellite is permitted decreases with increase in the mass 

parameter. Figure 8 is similar to Figure 6b with the difference 

being the mass parameter. It is seen from Figure 6b that as the 

mass parameter increases from 0.8 to 0.9 in Figure 8, the 
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Jacobi constant also increases and the area where motion of 

the satellite is permitted decreases as seen when Figure 6b and 

Figure 8 are compared. 

 

Stability of the Non-Collinear Equilibrium Points 

We computed the partial derivatives and substituted in the 

variational equations of motion to obtain the characteristic 

equation (23). The six roots have been explored numerically 

to determine the kinds of roots in Table 5 to Table 8 for the 

mass ratios 𝜐 = 0.012 . 𝜐 = 0.3 , 𝜐 = 0.7 and 𝜐 = 0.9999 , 

respectively, when 1 < 𝜅 < ∞ . Clearly, the kinds of roots 

will depend on the values of the coefficients, 𝑐𝑖(𝑖 = 1,2,3)in 

(23).  

 

Table 5: Characteristic Roots of the Non-collinear EPs when𝝊 = 𝟎. 𝟎𝟏𝟐and 𝟏 < 𝜿 < ∞ 

𝜿 ±𝝎𝟏 ±𝝎𝟐 ±𝝎𝟑  

1.000000001 0.0000547717i 0.999961i 1.00004i  

1.00001 0.00545382i 0.996138i 1.00382i  

1.01 Complex complex imaginary  

1.1 Complex complex Real  

2 Complex complex Real  

5 Imaginary  Imaginary Real  

10 Imaginary  Imaginary Real  

20 Imaginary  Imaginary Real  

50 Imaginary  Imaginary Real  

100 Imaginary  Imaginary Real  

1000 Imaginary  Imaginary Real  

𝜿 → ∞ Imaginary  Imaginary Real  

 

Table 6: Characteristic Roots of the Non-collinear EPs when𝝊 = 𝟎. 𝟑and 𝟏 < 𝜿 < ∞ 

𝜿 ±𝝎𝟏 ±𝝎𝟐 ±𝝎𝟑  

1.000000001 0.0000547722i 0.999961i 1.00004i  

1.00001 0.00547616i 0.996106i 1.00385i  

1.01 0.179604i 0.855053i 1.09847i  

1.1 Complex Complex Imaginary  

2 Complex Complex Real  

5 Imaginary  Imaginary Real  

10 Imaginary  Imaginary Real  

20 Imaginary  Imaginary Real  

50 Imaginary  Imaginary Real  

100 Imaginary  Imaginary Real  

1000 Imaginary  Imaginary Real  

𝜿 → ∞ Imaginary  Imaginary Real  

 

Table 7: Characteristic Roots of the Non-collinear EPs when𝝊 = 𝟎. 𝟕and 𝟏 < 𝜿 < ∞ 

𝜿 ±𝝎𝟏 ±𝝎𝟐 ±𝝎𝟑  

1.000000001 0.0000547723i 0.999961i 1.00004i  

1.00001 0.00547741i 0.996105i 1.00385i  

1.01 0.184727i 0.847341i 1.10358i  

1.1 Complex Complex Imaginary  

2 Complex Complex Imaginary  

5 Imaginary Imaginary Real  

10 Imaginary Imaginary Real  

20 Imaginary Imaginary Real  

50 Imaginary Imaginary Real  

100 Imaginary Imaginary Real  

1000 Imaginary Imaginary Real  

𝜿 → ∞ Imaginary Imaginary Real  

 

Table 8: Characteristic Roots of the Non-collinear EPs when𝝊 = 𝟎. 𝟗𝟗𝟗𝟗and 𝟏 < 𝜿 < ∞ 

𝜿 ±𝝎𝟏 ±𝝎𝟐 ±𝝎𝟑  

1.000000001 0.0000547723i 0.999961i 1.00004i  

1.00001 0.00547755i 0.996104i 1.00385i  

1.01 0.185321i 0.84646i 1.10416i  

1.1 Complex Complex  Imaginary  

2 Real  Imaginary  Real  

5 Real  Imaginary  Real  

10 Real  Imaginary  Real  
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20 Real  Imaginary  Real  

50 Real  Imaginary  Real  

100 Real  Imaginary  Real  

1000 Real  Imaginary  Real  

𝜿 → ∞ Imaginary Imaginary Real  

 

From Table 5, It is seen that when𝜐 = 0.012and 1 < 𝜅 <
1.00001, the six roots are all distinct imaginary roots and the 

NCEPs is a stable point in this case. When 1.01 ≤ 𝜅 < ∞, 

four of the roots are either complex roots or imaginary and the 

other remaining two roots are real. Therefore, the positive root 

induces instability at the NCEPs rendering it an unstable 

equilibrium point. Table 6 gives the roots of characteristic 

equation (23) of the NCEPs when𝜐 = 0.3and1 < 𝜅 < ∞. It is 

seen that when 1 < 𝜅 < 1.01the six roots are all distinct pure 

imaginary while for  1.01 < 𝜅 < ∞four of the roots are either 

complex roots or imaginary while the remaining two roots are 

real.  The NCEPs is a stable point when 1 < 𝜅 < 1.01and 

unstable when 1.01 < 𝜅 < ∞.  

Same result follows in the case of Table 7 and Table 8. Hence, 

we conclude that the NCEPs is conditionally stable in the 

entire range of the mass parameter depending on the mass 

parameter and the parameter kappa. This result differs from 

those of Hallan and Rana (2001b), Singh and Sandah (2012), 

Singh and Laraba (2012), Ansari et al. (2019), Abouelmagd 

et al. (2020), Kaur, et al. (2020, 2021), Kaur and Kumar 

(2021) and Ansari (2021). 

 

CONCLUSION 

The paper investigated the effect of radiation pressure on 

dynamical structures in the circular Robe’s restricted three-

body problem (R3BP) with variable masses. The main bodies 

are assumed to move under the Gylden-Mestschersky 

problem while their masses vary with time in accordance with 

the MUL and the second primary is a radiation emitter. The 

non-autonomous and autonomized equations of the governing 

dynamical system were deduced under the condition that the 

first primary has no fluid.  Next, the EPs and stability of the 

autonomized system were studied analytically and 

numerically. 

It was observed that the axial and NCEPs can be stable and 

unstable depending on the values of the mass parameter, 

radiation pressure of the second primary and the parameter𝜿, 

which represented the mass variations of the primaries. In the 

case of the axial EP, the radiation pressure of the second 

primary reduced the region of stable motion and is therefore 

a destabilizing force, while the mass variation parameter had 

both stabilizing and destabilizing effects.  The stability of the 

EPs of the non-autonomous equations was analyzed and it is 

seen that the solutions do not converge, thereby making the 

points unstable EPs.  

Finally, the ZVCs around the EPs of the autonomized system 

were explored and it was seen in the case of the axial EP that, 

the radiation pressure of the second primary decreased the 

area where motion of the satellite around the axial EP, is 

permitted, while the mass parameters and the variation 

constant𝜿decreased or increased the region where motion of 

the satellite around the axial EP is allowed, as they are 

increased or decreased, respectively. In the case of the 

NCEPs, it was seen that the radiation of the second primary 

increased the region where motion of the satellite is allowed, 

while an increase in the mass parameter and mass variation 

parameter decreased the region where motion is allowed.  The 

studied formulation can be applied to study small oscillation 

in the Earth’s core of the Earth-Moon system with variable 

masses, while the EPs may be used in diverse problems of 

stellar dynamics, and also in other astrophysical and 

engineering applications. 

 

REFERENCES 

Abouelmagd, E. I., Ansari, A. A., Shehata, M. H., (2020). On 

Robe’s restricted problem with a  modified Newtonian 

potential . International Journal of Geometric Methods in 

Modern Physics. 18,3-19. 

 

Ansari, A. A., Singh, J., Ziyad, A. A., Hafedh B., (2019). 

Perturbed Robe’s CR3BP with viscous     force. Astrophysics 

and Space Science. 364, 95.  

 

Ansari, A.A., (2021). Kind of Robe’s restricted problem with 

heterogeneous irregular primary of N-layers when the outer 

most layer has viscous fluid. New Astronomy. 83, 101496 

 

Ansari., A, A., Sahdev, S.K., (2022). Variable mass body 

motion in the perturbed Robe’s Configuration. Astronomy 

Reports. 66, 595-605.  

 

Bekov, A. A., (1988). Libration points of the restricted 

problem of Three Bodies with variable Mass. Soviet 

Astronomy Journal. 33, 92-95. 

 

Gelf’gat, B.E., (1973). Current Problems of Celestial 

Mechanics and Astrodynamics, Nauka, Moscow.  

 

Gylden, H., (1884). Die Bahnbewegungen in EinemSysteme 

von zweiKörpern in demFalle, dassdieMassenVerNderun- 

Gen Unterworfen Sind, AstronomischeNachrichten.109, 1-6. 

 

Hallan, P.P. , Rana, N., (2001a). Effect of perturbations in 

Coriolis and centrifugal forces on the location and stability of 

the equilibrium point in the Robe’s circular restricted three 

body problem. Planetary and Space Science. 49,  957–960. 

 

Hallan, P.P., Rana, N., (2001b). The existence and stability of 

equilibrium points in the Robe’s  restricted three-body 

problem. Celestial Mechanics and Dynamical Astronomy. 79, 

145–155. 

 

Kaur, B., Aggarwal, R., (2012) Robe’s problem: its extension 

to 2+2 bodies. Astrophysics and Space Science. 339, 283–

294. 

 

Kaur, B., Kumar. S., Chauchan., S (2020). Effect of 

perturbations in the Coriolis and centrifugal forces in the 

Robe-finite straight segment model with arbitrary density 

parameter Astron Nachr. 341, 32-43.  

 

Kaur, B., Kumar. S., (2021). Stability analysis in the 

perturbed CRR3BP finite straight segment model under the 

effect of viscosity. Astrophysics and Space Science. 366, 43 

(2021). 

 

Kaur, B., Chauchan., S., Kumar. D., (2021). Outcomes of 

aspheric primaries in the Robe’s circular restricted three-body 

problem. Applications and Applied Mathematics. 16, 463-480 

 



EFFECT OF RADIATION PRESSURE ON…      Leke and Clement FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 5, October, 2024, pp 210 – 223 223 

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

Kaur, B., Kumar. S., Aggarwal, R., (2022). Effects of 

viscosity and oblateness on the perturbed Robe’s problem 

with non-spherical primaries. Kinematics and physics of 

celestial bodies. 38, 248-261 

 

Krasnov, M. L., Kiselyov, A. I., Makarenko, G. I., (1983). A 

Book of Problems in Ordinary Differential Equations, MIR 

Publications, Moscow, 255-291. 

 

Leke, O., Ahile, G., (2022). A study on equilibrium points and 

stability of the Robe’s R3BP with density variation.  Journal 

of Applied Physical Science International. 14, 13-41.  

 

Leke, O., Mmaju, C., (2023). Zero velocity curves of a dust 

grain around equilibrium points under effects of radiation, 

perturbations and variable Kruger 60. Physics and 

Astronomy. International Journal. 7, 280-285.  

 

Leke, O., Singh, J., (2023). Out-of-plane equilibrium points 

of extra-solar planets in the central binaries PSR B1620-26 

and Kepler-16 with cluster of material points and variable 

masses. New  Astronomy. 99, 101958  

 

Leke. O., Orum, S., (2024). Motion and zero velocity curves 

of a dust grain around collinear libration points for the binary 

IRAS 11472-0800 and G29-38 with a triaxial star and variable 

masses. New Astronomy. 108, 102177 Elsevier 

 

Leke, O., Amuda, T.O., (2024). Locations of Triangular 

Equilibrium Points of the Restricted Three-Body Problem 

with Poynting-Robertson Drag and Variable Masses FUDMA 

Journal of Sciences. 8, 313-318  

 

Luk’yanov, L. G., (1989). Particular solutions in the restricted 

problem of three-bodies with variable masses. Astronomical 

Journal of Academy of Sciences of USSR. 66, 180-187 

 

Mestschersky, I.V., (1902). Ueber die Integration der 

Bewegungs- gleichungenim Probleme zweierKörper von 

vernderli- cher Masse, AstronomischeNachrichten.  159, 229-

242.  

 

Plastino, A. R., Plastino, A., (1995). Robe’s restricted three-

body problem revisited. Celestial Mechanics and Dynamical 

Astronomy. 61, 197–206. 

 

Robe H. A. G., (1977). A new kind of three body problem. 

Celestial Mechanics. 16, 343–351. 

 

Shrivastava, A.K., Garain, D.N., (1991). Effect of 

perturbation on the location of libration  

point in the robe restricted problem of three bodies. Celestial 

Mechanics and Dynamical Astronomy. 51, 67-73. 

 

Shu Si-hui., Lu Ben-Kui., Chen, Wu-shen., Liu Fu-yao., 

(2005). A criterion for the stability of the equilibrium points 

in the perturbed restricted three-body problem and its 

application in Robe’s problem. Chinese Astronomy. 28, 432-

440 

 

Singh, J., Leke, O., (2010). Stability of the photogravitational 

restricted three-body problem with variable masses. 

Astrophysics and Space Science. 326, 305- 314.  

 

Singh, J., Leke, O., (2012). Equilibrium points and stability in 

the restricted three- body problem with oblateness and 

variable masses. Astrophysics and Space Science. 340: 27-41. 

 

Singh, J., Laraba, H.M., (2012). Robe’s circular restricted 

three-body problem under oblate and triaxial primaries. Earth 

Moon and Planets. 109, 1–11. 

 

Singh, J., Sandah, A.U., (2012). Existence and linear stability 

of equilibrium points in the Robe’s restricted three-body 

problem with oblateness. Advances in Mathematical Physics. 

2012, Article ID 679063, 18 pages. 

 

Singh, J. Leke, O., (2013a). Effects of oblateness, 

perturbations, radiation and varying masses on the stability of 

equilibrium points in the restricted three-body problem. 

Astrophysics and Space Science. 344: 51-61.  

 

Singh, J., Leke, O., (2013b). Existence and stability of 

equilibrium points in the Robe’s restricted three-body 

problem with variable masses. International Journal of 

Astronomy and Astrophysics. 3: 113–122. 

 

Singh, J., Leke, O., (2013c). Robe’s restricted three-body 

problem with variable masses and perturbing forces. ISRN 

Astronomy and Astrophysics. 2013, Article ID 910354.  

 

Singh, J., Omale, J.A., (2014). Robe’s circular restricted 

three-body problem with zonal Harmonics. Astrophysics and 

Space Science. 353, 89-96 Szebehely, V.G., (1967a). Theory 

of Orbits. Academic Press, New York.  

 

Taura, J.J., Leke, O., (2022). Derivation of the dynamical 

equations of motion of the R3BP with variable masses and 

disk. FUDMA Journal of Sciences. 6, 125- 133. 

 

Wolfram, S., (2015). The Mathematica Book 5th Edition. 

Wolfram Media, Champaign.    

 

 

 

 

 

 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/

