
ADVANCED ENCRYPTION STANDARD… Ugwunna et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 42 - 49 42

8

ADVANCED ENCRYPTION STANDARD (AES) IMPLEMENTATION EFFICIENCY USING JAVA AND

NODE.JS PLATFORMS

*1Ugwunna, C. O., 2Okimba, P. E., 3Alabi, O. A., 2Orji, E. E., 3Olowofeso, E. O. and 3Ayomide, S. O.

1Department of Computer Science, Wigwe University Isiokpo, River State, Nigeria.

2Department of Computer Science, Nnamdi Azikiwe Universirty Awka, Anambra State, Nigeria.
3Department of Computer Science, Federal University of Agriculture Abeokuta. Ogun State

*Corresponding authors’ email: charles.ugwunna@wigweuniversity.edu.ng Phone: +2348037921011

ABSTRACT

The rapid advancement of communication technologies, such as satellite networks, mobile, internet, and

terrestrial communications, has created an urgent need to protect sensitive data from potential attacks. This is

particularly crucial as photos transmitted through unreliable channels may contain sensitive or confidential

information. This study evaluates the effectiveness of the Advanced Encryption Standard (AES) algorithm

implemented in Java and Node.js, focusing on their performance in data encryption and decryption. The

research employs AES in Cipher Block Chaining (CBC) mode, using 128-bit keys for Java and 256-bit keys

for Node.js. It utilizes the Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE) to

create an optimized runtime environment with advanced cryptographic libraries. The result indicate that Java's

AES-128 implementation is more efficient than Node.js's AES-256, particularly in terms of speed and data

processing capabilities as seen in figure 11 taking Java 2.00ns to encrypt and decrypt before the Node.js

algorithm that couldn’t complete the process but remain at 0.75ns. Suggesting that specific use case and

requirements should be considered when choosing between the two platforms for AES encryption. Java

generally outperforms Node.js in efficiency, but Node.js provides essential cryptographic functions through

its built-in 'crypto' module. Overall, the research underscores the advantages of using the AES algorithm across

these platforms while demonstrating the varying performance characteristics between them.

Keywords: Encryption, Decryption, Advanced Encryption Standard (AES), Cryptography

INTRODUCTION

Because of the internet and communication technologies

rapid development, people now share information through

digital photographs. A digital image is made up of a group of

matrix arranged pixels. This growing use of technologies for

information storage and sharing, such as personal computers,

mobile phones, and many other means of alternative

communication, has increased the number of users which has

increased the rate of document hacking (Anwarul & Agarwal,

2017). Due to this rapid advancement of communication

technologies, such as satellite networks, mobile, internet, and

terrestrial communications, there is an urgent need to thwart

copying and tracking as well as to protect vital individual,

general, and universal devices and their acquired data from

intruders using AES (Wadi & Zainal, 2014). In addition,

more unauthorized users are making an effort to collect

unauthorized information. Unfortunately, by its nature, the

Internet cannot guarantee the safety of the information it

transmits (Goldberg & Wagner, 1996).

Knowledge is communicated or kept in an encrypted fashion

to address this flaw. An unauthorized user cannot decipher

this encrypted information. Information is protected both

during storage and transmission. Thanks to cryptography, a

branch of knowledge security science. Each secret writing

algorithm and secret writing technique includes two

components: an algorithm and a secret writing key usage. In

order to stop the leakage of sensitive data, data encryption has

become crucial for enterprises. This means that no personal

employee information, including usernames, passwords, and

contacts, can be transferred. Because of this, encryption is

crucial to every information system. Use of a variety of

coding techniques has become necessary to safeguard

sensitive information from unauthorized users

(Auyporn&Vongpradhip, 2015).

It is crucial to encrypt any multimedia content that needs to

be transferred. Therefore, image encryption, a branch of the

science of cryptography, is essential for protecting the images

sent and received over mobile communications, pay-TV, e-

commerce, personal emails, the transmission of financial

information, the security of ATM cards, laptop passwords,

and other aspects of daily life. Algorithms are used in

ciphering the process of cryptography.

Kumari, Gupta and Sardana (2017) pointed out that one of the

well-known methods for protecting image secrecy over a

trustworthy, unconstrained public medium is image

encryption. Since the medium of communication is

attackable, effective encryption algorithms are a requirement

for secure data transit.

According to its creators, the concurrent, class-based, object-

oriented Java programming language is so basic that any

developer can pick it up quickly. It is intended for widespread

use. Although the Java programming language is comparable

to C and C++ in function, it is structured differently,

incorporating ideas from other languages while excluding

some C and C++ features. Many times, Java programs are

converted into bytecode that may be run on any Java Virtual

Machine (JVM), regardless of the underlying computer

architecture. Java contains fewer low-level objects than C and

C++, but its syntax is identical to both. Dynamic functionality

(such thinking and changing code while it is running) that is

not often available in conventionally translated languages is

provided by the Java runtime environment.

In this work, a Java cryptographic library from Gunnsteinsson

(2016) was used. Free, cross-platform, and capable of running

on a V8 system, Node.js is a back-end JavaScript runtime

engine. Outside of a web browser, JavaScript code is executed

by it. Node.js thus represents the "everywhere" paradigm,

which unifies the development of web applications around a

single programming language as opposed to numerous server-

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 8 No. 6, December, (Special Issue) 2024, pp 42 - 49

DOI: https://doi.org/10.33003/fjs-2024-0806-2832

mailto:charles.ugwunna@wigweuniversity.edu.ng
https://doi.org/10.33003/fjs-2024-0806-2832

ADVANCED ENCRYPTION STANDARD… Ugwunna et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 42 - 49 43

side and client-side scripting languages. Despite the fact that

the default file extension for JavaScript code is, the name

"Node.js" is only used to indicate a product in this context and

does not associate with a specific file. These design strategies

aim to improve the bandwidth and scalability of real-time web

applications as well as web applications with various I/O

activities (Node.js “Crypto | Node.js Documentation, 2021).

This study made use of the crypto library in (Nita &

Mihailescu, 2022). This study encrypted data that mimics the

most typical file types. The Advanced Encryption Standard,

or AES as often referred to, is the appropriate algorithm. Java

and node.js are two computer languages that are used to

encrypt and decrypt data. In order to compare performance,

the average encryption and decryption times for Java and

Node.js are calculated individually. Three alternative key

sizes of 128, 196, and 256 bits are used by the symmetric

cryptographic method known as the Advanced Encryption

Standard (AES). All initial data, including the encryption key,

is calculated in bytes since the AES algorithm processes all

data and encryption in bytes. 128 bits are used for the initial

block size, and everything is mathematical. The length of the

key determines how many times the AES algorithm will be

executed. The strength of the encryption is influenced by the

length of the key, the length of the key's code, and the

difficulty of obtaining the key.

An incredibly contemporary Hill (AdvHill) cipher algorithm

that codes using an unconscious key matrix is projected in

(Acharya et al, 2009). They mishandled both the original Hill

cipher algorithm and their proposed AdvHill cipher formula

to encrypt entirely distinct photos. Additionally, it is obvious

that the original Hill Cipher cannot correctly decrypt images

that contain a lot of identically colored or grayscale space.

They are generating a self invertible matrix for the Hill Cipher

algorithm. Using this key matrix, they encrypted grayscale as

well as colour images. Their algorithm works well for all

types of gray scale as well as colour images except for the

images with background of same gray level or same colour.

Zhang et al (2009) does research on algorithmic methods for

image secret writing and DES confidential/secret writing as

well as disorderly confidential/secret writing. The new secret

writing theme's first strategy involves creating a pseudo-

random sequence using a logistic chaos sequencer, carrying

on the RGB with this order to the image carelessly, and then

creating double time encryptions with advanced DES. Their

findings demonstrate strong initial sensitivity, high security,

and rapid secret writing.

Seyed et al (2010) investigated a novel algorithm for image

coding supported SHA-512 hash performance. The

algorithmic rule consists of 2 main sections: the primary will

pre the operation to shuffle one half image. The second uses

a hash function to come up with a random variety mask. The

mask is then XORed with the opposite part of the image that

is going to be encrypted.

A new image encryption technique based on random pixel

permutation is also proposed by Indrakanti and Avadhani

(2011) with the goal of preserving image quality. The method

divides the encryption procedure into three steps. The picture

encryption stage is the first. The crucial generation phase is

the second stage. The procedure of identification is the third

stage. With fewer computations, this offers anonymity to

colored images. The permutation procedure is much more

efficient and rapid.

Several studies have been conducted to analyze the security

and performance of the AES algorithm. These studies have

focused on various aspects of the algorithm, including its key

size, block size, and encryption/decryption speed.

One study by Kumar et al (2020) examined the security of the

AES algorithm and concluded that it provides a high level of

security against various types of attacks, including differential

and linear cryptanalysis. The authors also highlighted the

importance of using a sufficiently long key length to ensure

the security of the algorithm.

Zahid et al (2017) analyzed the Advanced Encrypting

Standard (AES), and in their image encryption techniques

they build on a key stream generator (A5/1, W7) to AES to

confirm rising the encoding performance. A new permutation

approach called RijnDael is introduced by (Bani & Jantan,

2008). It combines image permutation and acknowledgment

coding scheme. The original image was divided into blocks of

four pixels by four pixels, which were then rearranged using

a permutation method to create a permuted image. The

resultant image was then encrypted using the RijnDael

formula. Their findings demonstrated that using the mix

technique significantly reduced the connection between

image components and increased entropy.

Nag et al (2011)outlines a two-section encoding and

decryption process that works by randomly rearranging the

pixels in the image using an affine redesign, then encrypting

the resulting image using an XOR operation. They use affine

remodel techniques with four 8-bit keys to redistribute the

element values to completely other locations. The original

image is then split into blocks of two-by-two pixels, with each

block being encrypted using an improper XOR operation with

four 8-bit keys. The method uses a sixty-four-bit full key size.

Their findings showed that the correlation between element

values was significantly reduced following the affine

redesign.

Another study by Alenezi et al (2020) compared the

performance of the AES algorithm with other encryption

algorithms, such as DES and Triple DES. The authors found

that the AES algorithm offered better encryption and

decryption speeds, making it more suitable for applications

that require high-speed data processing.

Advanced Encryption Standard (AES) implementation

efficiency using Java and Node.js platforms is to investigate

and analyze the performance and effectiveness of AES

encryption algorithms when implemented in both Java and

Node.js programming languages. This study aims to identify

the strengths and weaknesses of each platform in terms of

speed, memory usage, and overall efficiency when encrypting

and decrypting data using the AES algorithm. By comparing

the performance of AES implementation in Java and Node.js,

this study will provide valuable insights into the optimal

choice of platform for secure data encryption in real-world

applications.

Overall, the literature on the AES algorithm demonstrates its

strong security features and efficient performance, making it

a popular choice for encryption in a wide range of

applications. Further research is needed to continue

evaluating the algorithm's security and performance in

different scenarios and to explore potential improvements or

enhancements to the algorithm.

MATERIALS AND METHODS

Advanced Encryption Standard (AES) is a widely used

encryption algorithm that ensures secure communication and

data protection. Implementing AES efficiently using Java and

Node.js platforms require a systematic methodology to

achieve optimal performance. The suggested methodology for

implementing AES efficiently on Java and Node.js platforms

involve the following steps:Understanding the AES

algorithm: Before implementing AES, it is crucial to have a

clear understanding of how the algorithm works and its

ADVANCED ENCRYPTION STANDARD… Ugwunna et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 42 - 49 44

various components such as key expansion, substitution,

permutation, and mixing operations.Choosing the right AES

mode: AES supports different modes of operation. For this

study, the CBC was used based on the specific requirements

of the application for achieving the desired

efficiency.Optimizing key generation and management:

Generating secure and random encryption keys, as well as

implementing proper key management techniques, was

crucial for ensuring the security and efficiency of the AES

implementation.Leveraging hardware acceleration: Utilizing

hardware acceleration features available in modern processors

significantly improved the performance of AES encryption

and decryption operations.Implementing parallel processing:

Taking advantage of multi-threading and parallel processing

capabilities in Java and Node.js platforms helped optimize the

performance of AES encryption and decryption

operations.Testing and benchmarking: Thoroughly testing the

AES implementation on both Java and Node.js platforms and

benchmarking its performance against established standards

can help identify any bottlenecks and areas for further

optimization.

By following these steps and adopting a systematic approach,

it is possible to ensure the efficient implementation of AES

using Java and Node.js platforms, thereby enhancing the

security and performance of their applications.

For the purpose of gathering data for this study, we use an

experimental approach. To automate and generate research

data, a simple program for encryption and decryption has been

developed. The obtained data was investigated using

quantitative analytical methods, and the results are presented

in the study's results section. This study's experiment uses

symmetric keys of the AES algorithm to encryption and

decrypt digital images to be communicated. AES keys of 128

bits, and 256 bits were respectively used for Java and Node.js

platforms., reading each bit of the image as it is encrypted.

The sidebar or an alphanumeric character (+,*), for example,

can be used to generate this key. The key, known as a non-

byte encrypt, will be generated using Java and Node.js crypto

tools. The symmetric key must first be generated in order to

create the image before encrypting the file with it. Each bit

from the image is sent to the system, which then encrypts each

bit before adding it to the main file. After encryption, the file

will be sent to the recipient. The main goal of encryption is to

prevent unauthorized access to the material. The recipient

receives the file once it has been encrypted by giving them the

symmetric key. The same procedure is used for decryption:

the encrypted file is passed to the system, which then decrypts

every bit surrounding it to create a new file with the same

extension and finally outputs the results. The majority of

platforms provide microsecond accuracy, but Java supports

nanosecond accuracy, such that the results have the same

resolution, microseconds, and precision for all systems. A

total of 30 files, with 145 bytes and 32 MB apiece, were

created. To ensure exceptional accuracy, the process of

encrypting and decrypting this data was repeated 100 times

for each combination of data size and AES key size. The

experiment utilized the same hardware and software.

Algorithm

Making a symmetric key, which will be used to encrypt the

image of the numbers. This is the sole key that will be

understood by both the sender and the recipient, and it is used

to create files containing encrypted data by changing the data

or bit in those files to a new bit that no one else can access or

understand.

Algorithm: Pseudocode for AES encryption algorithm

STEP 1: Function AES (byte in[16]), byte out [16], key_array round key (Nr +1)

STEP 2: byte state [16]

STEP 3: state = in

STEP 4: AddRoundKey(state,round_key[0])

STEP 5: fori =1to Nr-1 do

STEP 6: SubBytes(state)

STEP 7: ShiftRows(state)

STEP 8: Mixcolum(state)

STEP 9: AddRoundKey(state,round_key[i])

STEP10: SubBytes(state)

STEP11: ShiftRows(state)

STEP12: AddRoundKey(state,round_key[Nr])

STEP 13: out = state

STEP 14: return out

Implementation

The digital image was encrypted and decrypted using the AES

technique, JavaScript (node.js) as the main programming

language, and Java and Node.js as the runtime environment.

Given that Java and the node.js library are efficient and quick

and can quickly scale out to handle larger loads, they were

used for the encryption and decryption processes. Since it can

handle more demanding tasks like handling enormous

amounts of data encryption and sending responses over the

internet, it is the programming language of choice for creating

this system. The framework of nod.js is based on Angular,

while the frontend language is composed of Typescript and

Javascript. Javascript serves as the backend language, while

Node.JS serves as the backend framework for NodeJS.

JavaScript code can be run outside of a web browser using

Node.js, an open source, cross-platform runtime engine that

runs on a V8 computer. Figures 1A through Figure 7G

illustrate the process for encrypting and decrypting the data

picture used in this research.

ADVANCED ENCRYPTION STANDARD… Ugwunna et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 42 - 49 45

(A)

Figure 1 First interface

(B)

Figure 2: Upload original image

(C)

Figure 3: Encryption process
(D)

Figure 4: Encryption Done

(E)

Figure 5: Upload encrypted image to decrypt
(F)

Figure 6: Decryption process

(G)

Figure 7: Decryption Done

RESULTS AND DISCUSSION

Once the Java and Node.js programs that generate the study

data depicted in table 1 and the included information therein

have been executed, it generates the dataset arising from this

analysis as shown in tables 2 and 3. Figure 11 illustrates the

typical encryption and decryption times per iteration. The

cumulative results of 100 repetitions determine the time

required for data encryption and decryption. By raising the

number of retries, you gain weight by lowering the noise that

may be caused by unplanned operating system events. By

dividing these figures by the overall size of the encrypted data,

the total time per Byte for each combination of key size,

programming language, and platform is computed. The mean

time (in ns) for complete encryption and decryption, based on

the platform, operation, and key size, shows that Java AES

implementations are currently the most effective and fast in

terms of performance using the AES128 algorithm,

surpassing node.js with the AES256 algorithm. The typical

times, in milliseconds, needed to perform encryption and

decryption operations on each content platform inside the

zone of 145 bytes at 32M are shown in Figs. 9 and 12. Based

on the normal time required to fully decrypt the data, Fig. 11

provides a visual conclusion that, in terms of performance,

Java has generally demonstrated to be the best option for data

encryption in the algorithm tested even at 128-bits AES

computation. The mean time (in ns) for full encryption and

decryption demonstrates that Java AES implementations are

now the most efficient and quick in terms of performance,

exceeding node.js. According to the amount of the encrypted

data, the key size, which is determined by the key length, in

bytes, and the overall encryption and decryption time, a group

of raw data records can be formed for further analysis. Fig. 13

displays data on the typical encryption and decryption times

in nanoseconds for a byte of data. Analysis of the information

gathered was also used to obtain the data.

ADVANCED ENCRYPTION STANDARD… Ugwunna et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 42 - 49 46

Table 1: Experimental result

Table 2: First Set of Data

Key Size Payload Size Duration (ns) Operation Platform

128 145 172091 ENCRYPTION Java

128 145 293555 DECRYPTION Java

128 145 193368 ENCRYPTION Java

128 145 142647 DECRYPTION Java

128 145 136840 ENCRYPTION Java

128 145 3269115 DECRYPTION Java

128 145 175830 ENCRYPTION Java

128 145 135301 DECRYPTION Java

128 145 139426 ENCRYPTION Java

128 145 128157 DECRYPTION Java

128 145 147642 ENCRYPTION Java

Table 3: Last Set of Data

Count Key Size Payload Size Duration (ns) Operation Platform

38370 256 32000000 35080951 ENCRYPTION NodeJS

38371 256 32000000 21711575 DECRYPTION NodeJS

38372 256 32000000 36095070 ENCRYPTION NodeJS

38373 256 32000000 13664608 DECRYPTION NodeJS

38374 256 32000000 35010851 ENCRYPTION NodeJS

38375 256 32000000 19336487 DECRYPTION NodeJS

38376 256 32000000 36217529 ENCRYPTION NodeJS

38377 256 32000000 20392842 DECRYPTION NodeJS

38378 256 32000000 36473128 ENCRYPTION NodeJS

38379 256 32000000 19944245 DECRYPTION NodeJS

Figure 8: Platform (Java & Node.js)

Figure 9: Platform (Java & Node.js)

 Key Size Payload Size Duration (ns)

count 38400.000000 3.84000e+04 3.84000e+04

mean 192.000000 2.211935e+06 2.786460e+06

 std 52.256462 6.161608e+06 8.243116e+06

 min 128.000000 1.450000e+02 4.919000e+03

 25% 128.000000 9.815000e+02 1.856875e+04

 50% 192.000000 2.540000e+05 3.465215e+05

 75% 256.000000 9.182500e+05 1.567990e+06

 max 256.000000 3.2000000e+07 1.996791e+08

ADVANCED ENCRYPTION STANDARD… Ugwunna et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 42 - 49 47

Figure 10: Operation (Encryption & Decryption)

Figure 11: Duration (ns)

Figure 12: Key Sizes (128, 192, 256)bits

Figure 13: Experimental Result

ADVANCED ENCRYPTION STANDARD… Ugwunna et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 42 - 49 48

Based on the findings, comparing the performance of AES

implementation on Java and Node.js platforms, several

factors come into play that influenced efficiency differences.

In Java, AES encryption was noticed to be typically faster due

to its strong emphasis on performance optimization and

efficient memory management. Java's Just-In-Time (JIT)

compiler allows for code to be dynamically compiled and

optimized, resulting in faster execution times. Additionally,

Java's multithreading capabilities enable parallel processing,

further enhancing performance.

On the other hand, Node.js, being a JavaScript runtime built

on Google's V8 engine, may not perform as well when it

comes to AES encryption. JavaScript is inherently single-

threaded, which can limit the ability to leverage multiple cores

for parallel processing. This can result in slower execution

times compared to Java.

Furthermore, the underlying libraries and implementations

used in each platform can also impact performance. Java's

standard cryptographic libraries are well-established and

optimized for performance, whereas Node.js may rely on

external libraries that may not be as efficient.

Benefits

The following are the benefits of using either the Java or

Node.js platforms in CBC picture encryption using AES128

and AES256 algorithms respectively;

Data security: The use of AES algorithm in digital image

(picture) encryption ensures that the data is securely

encrypted, making it difficult for unauthorized users to access

the information.

Privacy protection: By encrypting pictures using cipher block

chain and AES algorithm, the privacy of the individuals in the

pictures is protected, as the encrypted data can only be

accessed by authorized users.

Tamper-proofing: The use of cipher block chain ensures that

the encrypted pictures are tamper-proof, as any attempt to

alter the data would be immediately detected.

Data integrity: The AES algorithm ensures that the integrity

of the encrypted pictures is maintained, as any unauthorized

changes to the data would be detected and prevented.

Secure sharing: The use of cipher block chain and AES

algorithm allows for secure sharing of encrypted pictures, as

only authorized users with the correct decryption keys can

access the information.

Compliance with regulations: Encrypting pictures using AES

algorithm and cipher block chain helps organizations comply

with data protection regulations and standards, as it ensures

the security and privacy of sensitive information.

CONCLUSION

In conclusion, data encryption and decryption using the AES

algorithm in CBC mode with 128 bits, and 256-bit keys were

tested. Experience has also shown that when it comes to

online platforms, the speed of data encryption and decryption

using Java programming exceeds node.js even with lesser

bits. We can draw the conclusion that Java, as opposed to

node.js, is the platform with the best effective implementation

of AES. On the other hand, the node.js AES implementation's

performance fell short of expectations with higher bits as

compared to Java platform. Node.js took longer than Java to

conduct the encryption and decryption operations while

utilizing a 128-bit key. AES encryption can be implemented

in web platforms using both Java and Node.js, but each has

unique advantages and limitations. Java is a good option for

computationally difficult workloads because of its

performance, numerous cryptography libraries, and mature

environment. On the other hand, Node.js excels at

asynchronous I/O operations and offers a more

straightforward development and deployment environment.

The specific needs of your project, such as performance

requirements, available libraries, and the general architecture

of your application, will determine which of the two platforms

you should use.

REFERENCES

Acharya, B., Panigrahy, S. K., Patra, S. K., & Panda, G.

(2009). Image encryption using advanced hill cipher

algorithm. International Journal of Recent Trends in

Engineering, 1(1), 663-667.

Alenezi, M. N., Alabdulrazzaq, H., & Mohammad, N. Q.

(2020). Symmetric encryption algorithms: Review and

evaluation study. International Journal of Communication

Networks and Information Security, 12(2), 256-272.

Anwarul, S., & Agarwal, S. (2017). Image enciphering using

modified AES with secure key transmission.

In Communication and Computing Systems: Proceedings of

the International Conference on Communication and

Computing Systems (ICCCS 2016), Gurgaon, India, 9-11

September, 2016 (p. 137). CRC Press.

Auyporn, W., &Vongpradhip, S. (2015). A robust image

encryption method based on bit plane decomposition and

multiple chaotic maps. Int. J. Signal Process. Syst, 3(1),

Bani, M. A., & Jantan, A. (2008). Image encryption using

block-based transformation algorithm. IJCSNS International

Journal of Computer Science and Network Security, 8(4),

191-197.

Goldberg, I., & Wagner, D. (1996). Randomness and the

Netscape browser. Dr Dobb's Journal Software Tools for the

Professional Programmer, 21(1), 66-71.

Gunnsteinsson, O. (2016). A search for a convenient data

encryption algorithm-For an Internet of Things device 8-13.

Indrakanti, S. P., &Avadhani, P. S. (2011). Permutation based

image encryption technique. International Journal of

Computer Applications, 28(8), 45-47.

Kumari, M., Gupta, S. & Sardana, P. (2017) A Survey of

Image Encryption Algorithms. 3D Res 8, 37.

https://doi.org/10.1007/s13319-017-0148-5

Kumar, K., Ramkumar, K. R., & Kaur, A. (2020, June). A

design implementation and comparative analysis of advanced

encryption standard (AES) algorithm on FPGA. In 2020 8th

International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future

Directions)(ICRITO) (pp. 182-185). IEEE.

Nag, A., Singh, J. P., Khan, S., Ghosh, S., Biswas, S., Sarkar,

D., & Sarkar, P. P. (2011). Image encryption using affine

transform and XOR operation. In 2011 International

conference on signal processing, communication, computing

and networking technologies (pp. 309-312). IEEE.

Nita, S. L., & Mihailescu, M. I. (2022). Java Cryptography

Architecture. In Cryptography and Cryptanalysis in Java:

Creating and Programming Advanced Algorithms with Java

SE 17 LTS and Jakarta EE 10 (pp. 29- 46). Berkeley, CA:

Apress.

https://doi.org/10.1007/s13319-017-0148-5

ADVANCED ENCRYPTION STANDARD… Ugwunna et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December (Special Issue), 2024, pp 42 - 49 49

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

Node.js, “Crypto | Node.js Documentation. Available:

https://nodejs.org/api/cryptohtml # crypto. [Accessed 4 April

2021].

Seyed Mohammad Seyedzade, Reza Ebrahimi Atani and

Sattar Mirzakuchaki, A Novel Image Encryption Algorithm

Based on Hash Function 6th Iranian Conference on Machine

Vision and Image Processing, 2010

Wadi, S. M., & Zainal, N. (2014). High-definition image

encryption algorithm based on AES modification. Wireless

personal communications, 79, 811-829.

Zahid,M., Machhout,M., Khriji,L., Baganne,A.,

Tourkianalyze,R., (2017) “Advanced encoding Standard

(AES)”

Zhang,Y., Liu,W., Cao, S., Zhai, Z., Nie,X., and

Dai,W.,(2009). ”Secret writing & speed sensitivity

https://creativecommons.org/licenses/by/4.0/

